Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Yi Chuan ; 45(12): 1128-1146, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764276

RESUMEN

The lytic polysaccharide monooxygenase (LPMO) in the auxiliary active protein family (AA family) catalyzes the oxidative depolymerization of various refractory carbohydrates including cellulose, chitin and starch. While accumulating studies investigate the enzymology of LPMO, the research on the inactivation of LPMO genes has been rarely explored. In this study, five LPMO genes PaLPMO11A (Pa_4_4790), PaLPMO11B (Pa_1_5310), PaLPMO11C (Pa_2_7840), PaLPMO11D (Pa_2_8610) and PaLPMO11E (Pa_3_9420) of the AA11 family in the filamentous fungus Podospora anserina were knocked out by homologous recombination. Single mutants ΔPaLPMO11A (ΔA), ΔPaLPMO11B (ΔB), ΔPaLPMO11C (ΔC), ΔPaLPMO11D (ΔD) and ΔPaLPMO11E (ΔE) were constructed, and then all polygenic mutants were constructed via genetic crosses. The differences in the growth rate and sexual reproduction between wild type and mutant strains were observed on different carbon source media. The alteration of oxidative stress and cellulose degradation ability were found on DAB and NBT staining and cellulase activity determination. These results implicated that LPMO11 genes play a key role in the growth, development, and lignocellulose degradation of P. anserina. The results showed that the spore germination efficiency, growth rate and reproductive capacity of mutant strains including ΔBΔCΔE, ΔAΔBΔCΔE, ΔAΔCΔDΔE and ΔAΔBΔCΔDΔE was significantly decreased on different cellulose carbon sources and the remaining strains have no difference. The reduced utilization of various carbon sources, the growth rate, the spore germination rate, the number of fruiting bodies, the normal fruiting bodies, the shortened life span and the ability to degrade cellulose were found in strains which all five genes in the PaLPMO11 family were deleted. However, the strain still had 45% cellulase activity compared to wild type. These results suggest that LPMO11 genes may be involved in the growth and development, sexual reproduction, senescence and cellulose degradation of P. anserina. This study provides information for systematically elucidating the regulatory mechanism of lignocellulose degradation in filamentous fungus P. anserina.


Asunto(s)
Proteínas Fúngicas , Oxigenasas de Función Mixta , Podospora , Podospora/genética , Podospora/enzimología , Podospora/metabolismo , Podospora/crecimiento & desarrollo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Celulosa/metabolismo , Polisacáridos/metabolismo , Estrés Oxidativo
2.
Fungal Genet Biol ; 161: 103711, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35597448

RESUMEN

The Crippled Growth (CG) cell degeneration of the model ascomycete Podospora anserina (strain S) is controlled by a prion-like element and has been linked to the self-activation of the PaMpk1 MAP kinase cascade. Here, we report on the identification of the "86-11" locus containing twelve genes, ten of which are involved either in setting up the self-activation loop of CG or in inhibiting this loop, as demonstrated by targeted gene deletion. Interestingly, deletion of the whole locus results only in the elimination of CG and in no detectable additional physiological defect. Sequence comparison shows that these ten genes belong to four different families, each one endowed with a specific activity: two encode factors activating the loop, a third one encodes a factor crucial for inhibition of the loop and the fourth one participates in inhibiting the loop in a pathway parallel to the one controlled by the previously described PDC1 gene. Intriguingly, a very distant homologue of this "86-11" locus is present at the syntenic position in Podospora comata (strain T) that do not present Crippled Growth. Introgression of the P. comata strain T locus in P. anserina strain S and the P. anserina strain S in P. comata strain T showed that both drive CG in the P. anserina strain S genetic background, but not in the genetic background of strain P. comata T, indicating that genetic determinants outside the twelve-gene locus are responsible for lack of CG in P. comata strain T. Our data question the role of this twelve-gene locus in the physiology of P. anserina.


Asunto(s)
Familia de Multigenes , Podospora , Eliminación de Gen , Sistema de Señalización de MAP Quinasas , Podospora/genética , Podospora/crecimiento & desarrollo
3.
Fungal Genet Biol ; 137: 103338, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32035225

RESUMEN

The endoplasmic reticulum (ER) is composed of distinct structural domains that perform diverse essential functions, including the synthesis of membrane lipids and proteins of the cell endomembrane system. The polarized growth of fungal hyphal cells depends on a polarized secretory system, which delivers vesicles to the hyphal apex for localized cell expansion, and that involves a polarized distribution of the secretory compartments, including the ER. Here we show that, additionally, the ER of the ascomycete Podospora anserina possesses a peripheral ER domain consisting of highly dynamic pleomorphic ER sub-compartments, which are specifically associated with the polarized growing apical hyphal cells.


Asunto(s)
Retículo Endoplásmico/fisiología , Hifa/crecimiento & desarrollo , Podospora/crecimiento & desarrollo , Ciclo Celular/fisiología , Polaridad Celular/genética , Polaridad Celular/fisiología , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/metabolismo , Hifa/metabolismo , Podospora/metabolismo
4.
Mol Microbiol ; 110(4): 499-512, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30069939

RESUMEN

The model fungus Podospora anserina exhibits Crippled Growth (CG), a cell degeneration process linked to the spreading of a prion-like hereditary element. Previous work has shown that the PaMpk1 MAP kinase and the PaNox1 NADPH oxidase are key player in setting up CG. Here, we identified PDC1, a new gene that negatively regulates the PaMpk1 pathway, by identifying the gene mutated in the PDC2205 mutant. This mutant exhibits strong CG in conditions where the wild-type does not. PDC1 encodes a small protein conserved in other Pezizomycotina. The protein contains four evolutionary-conserved cysteines, a tryptophan and a histidine; all six amino-acid are essential for function. PDC1 is located in the cytosol and is present in lower amounts in stationary hyphae in accordance with its role as a repressor. Epistasis analyses place PDC1 between PaMpk1 and PaNox1.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , NADPH Oxidasa 1/genética , Podospora/crecimiento & desarrollo , Podospora/genética , Piruvato Descarboxilasa/genética , Secuencia de Aminoácidos/genética , Regulación Fúngica de la Expresión Génica , Hifa/metabolismo , Mutación/genética
5.
Dev Biol ; 421(2): 126-138, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27979655

RESUMEN

Filamentous ascomycetes produce complex multicellular structures during sexual reproduction. Little is known about the genetic pathways enabling the construction of such structures. Here, with a combination of classical and reverse genetic methods, as well as genetic mosaic and graft analyses, we identify and provide evidence for key roles for two genes during the formation of perithecia, the sexual fruiting bodies, of the filamentous fungus Podospora anserina. Data indicate that the proteins coded by these two genes function cell-non-autonomously and that their activity depends upon conserved cysteines, making them good candidate for being involved in the transmission of a reactive oxygen species (ROS) signal generated by the PaNox1 NADPH oxidase inside the maturing fruiting body towards the PaMpk1 MAP kinase, which is located inside the underlying mycelium, in which nutrients are stored. These data provide important new insights to our understanding of how fungi build multicellular structures.


Asunto(s)
Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Podospora/crecimiento & desarrollo , Podospora/genética , Transducción de Señal/genética , Secuencia de Aminoácidos , Western Blotting , Celulosa/farmacología , Secuencia Conservada , Cisteína/metabolismo , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/metabolismo , Mosaicismo , Micelio/metabolismo , Fenotipo , Fosforilación/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Vacuolas/metabolismo
6.
Dev Biol ; 429(1): 285-305, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28629791

RESUMEN

The molecular pathways involved in the development of multicellular fruiting bodies in fungi are still not well known. Especially, the interplay between the mycelium, the female tissues and the zygotic tissues of the fruiting bodies is poorly documented. Here, we describe PM154, a new strain of the model ascomycetes Podospora anserina able to mate with itself and that enabled the easy recovery of new mutants affected in fruiting body development. By complete genome sequencing of spod1, one of the new mutants, we identified an inositol phosphate polykinase gene as essential, especially for fruiting body development. A factor present in the wild type and diffusible in mutant hyphae was able to induce the development of the maternal tissues of the fruiting body in spod1, but failed to promote complete development of the zygotic ones. Addition of myo-inositol in the growth medium was able to increase the number of developing fruiting bodies in the wild type, but not in spod1. Overall, the data indicated that inositol and inositol polyphosphates were involved in promoting fruiting body maturation, but also in regulating the number of fruiting bodies that developed after fertilization. The same effect of inositol was seen in two other fungi, Sordaria macrospora and Chaetomium globosum. Key role of the inositol polyphosphate pathway during fruiting body maturation appears thus conserved during the evolution of Sordariales fungi.


Asunto(s)
Fosfatos de Inositol/metabolismo , Podospora/crecimiento & desarrollo , Podospora/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Fertilidad , Cuerpos Fructíferos de los Hongos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Proteínas Fluorescentes Verdes/metabolismo , Inositol/metabolismo , Sistema de Señalización de MAP Quinasas , Mosaicismo , Mutación/genética , Fenotipo , Pigmentos Biológicos/metabolismo , Podospora/enzimología , Podospora/genética , Transporte de Proteínas , Reproducción , Sordariales/metabolismo , Esporas Fúngicas/metabolismo , Temperatura , Cigoto/metabolismo
7.
Fungal Genet Biol ; 116: 1-13, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29654834

RESUMEN

The Podospora anserina genome contains a large family of 15 multicopper oxidases (MCOs), including three genes encoding a FET3-like protein, an ABR1-like protein and an ascorbate oxidase (AO)-like protein. FET3, ABR1 and AO1 are involved in global laccase-like activity since deletion of the relevant genes led to a decrease of activity when laccase substrate (ABTS) was used as substrate. However, contrary to the P. anserina MCO proteins previously characterized, none of these three MCOs seemed to be involved in lignocellulose degradation and in resistance to phenolic compounds and oxidative stress. We showed that the bulk of ferroxidase activity was clearly due to ABR1, and only in minor part to FET3, although ABR1 does not contain all the residues typical of FET3 proteins. Moreover, we showed that ABR1, related to the Aspergillus fumigatus ABR1 protein, was clearly and specifically involved in pigmentation of ascospores. Surprisingly, phenotypes were more severe in mutants lacking both abr1 and ao1. Deletion of the ao1 gene led to an almost total loss of AO activity. No direct involvement of AO1 in fungal developmental process in P. anserina was evidenced, except in a abr1Δ background. Overall, unlike other previously characterized MCOs, we thus evidence a clear involvement of ABR1 protein in fungal development.


Asunto(s)
Proteínas Fúngicas/metabolismo , Oxidorreductasas/metabolismo , Podospora/enzimología , Cobre/química , Lignina/metabolismo , Oxidorreductasas/química , Podospora/crecimiento & desarrollo , Esporas Fúngicas
8.
J Biol Chem ; 290(26): 16415-30, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25979334

RESUMEN

Low levels of reactive oxygen species (ROS) act as important signaling molecules, but in excess they can damage biomolecules. ROS regulation is therefore of key importance. Several polyphenols in general and flavonoids in particular have the potential to generate hydroxyl radicals, the most hazardous among all ROS. However, the generation of a hydroxyl radical and subsequent ROS formation can be prevented by methylation of the hydroxyl group of the flavonoids. O-Methylation is performed by O-methyltransferases, members of the S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase superfamily involved in the secondary metabolism of many species across all kingdoms. In the filamentous fungus Podospora anserina, a well established aging model, the O-methyltransferase (PaMTH1) was reported to accumulate in total and mitochondrial protein extracts during aging. In vitro functional studies revealed flavonoids and in particular myricetin as its potential substrate. The molecular architecture of PaMTH1 and the mechanism of the methyl transfer reaction remain unknown. Here, we report the crystal structures of PaMTH1 apoenzyme, PaMTH1-SAM (co-factor), and PaMTH1-S-adenosyl homocysteine (by-product) co-complexes refined to 2.0, 1.9, and 1.9 Å, respectively. PaMTH1 forms a tight dimer through swapping of the N termini. Each monomer adopts the Rossmann fold typical for many SAM-binding methyltransferases. Structural comparisons between different O-methyltransferases reveal a strikingly similar co-factor binding pocket but differences in the substrate binding pocket, indicating specific molecular determinants required for substrate selection. Furthermore, using NMR, mass spectrometry, and site-directed active site mutagenesis, we show that PaMTH1 catalyzes the transfer of the methyl group from SAM to one hydroxyl group of the myricetin in a cation-dependent manner.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Podospora/enzimología , S-Adenosilmetionina/metabolismo , Biofisica , Cristalografía por Rayos X , Flavonoides/química , Flavonoides/metabolismo , Proteínas Fúngicas/genética , Metiltransferasas/genética , Estrés Oxidativo , Podospora/química , Podospora/genética , Podospora/crecimiento & desarrollo
9.
Fungal Genet Biol ; 94: 1-10, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27353975

RESUMEN

In filamentous fungi, entrance into stationary phase is complex as it is accompanied by several differentiation and developmental processes, including the synthesis of pigments, aerial hyphae, anastomoses and sporophores. The regulatory networks that control these processes are still incompletely known. The analysis of the "Impaired in the development of Crippled Growth (IDC)" mutants of the model filamentous ascomycete Podospora anserina has already yielded important information regarding the pathway regulating entrance into stationary phase. Here, the genes affected in two additional IDC mutants are identified as orthologues of the Saccharomyces cerevisiae WHI2 and PSR1 genes, known to regulate stationary phase in this yeast, arguing for a conserved role of these proteins throughout the evolution of ascomycetes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Micelio/genética , Podospora/genética , Proteínas Fúngicas/genética , Prueba de Complementación Genética , Mutación , Micelio/crecimiento & desarrollo , Fosforilación , Podospora/crecimiento & desarrollo
10.
Mycologia ; 108(3): 590-602, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26908647

RESUMEN

Peroxisomes are versatile and dynamic organelles that are required for the development of diverse eukaryotic organisms. We demonstrated previously that in the fungus Podospora anserina different peroxisomal functions are required at distinct stages of sexual development, including the initiation and progression of meiocyte (ascus) development and the differentiation and germination of sexual spores (ascospores). Peroxisome assembly during these processes relies on the differential activity of the protein machinery that drives the import of proteins into the organelle, indicating a complex developmental regulation of peroxisome formation and activity. Here we demonstrate that peroxisome dynamics is also highly regulated during development. We show that peroxisomes in P. anserina are highly dynamic and respond to metabolic and environmental cues by undergoing changes in size, morphology and number. In addition, peroxisomes of vegetative and sexual cell types are structurally different. During sexual development peroxisome number increases at two stages: at early ascus differentiation and during ascospore formation. These processes are accompanied by changes in peroxisome structure and distribution, which include a cell-polarized concentration of peroxisomes at the beginning of ascus development, as well as a morphological transition from predominantly spherical to elongated shapes at the end of the first meiotic division. Further, the mostly tubular peroxisomes present from second meiotic division to early ascospore formation again become rounded during ascospore differentiation. Ultimately the number of peroxisomes dramatically decreases upon ascospore maturation. Our results reveal a precise regulation of peroxisome dynamics during sexual development and suggest that peroxisome constitution and function during development is defined by the coordinated regulation of the proteins that control peroxisome assembly and dynamics.


Asunto(s)
Peroxisomas/metabolismo , Podospora/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos , Peroxisomas/genética , Podospora/genética , Podospora/metabolismo , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo
11.
Nat Cell Biol ; 9(1): 99-105, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17173038

RESUMEN

Ageing of biological systems is accompanied by alterations in mitochondrial morphology, including a transformation from networks and filaments to punctuate units. The significance of these alterations with regard to ageing is not known. Here, we demonstrate that the dynamin-related protein 1 (Dnm1p), a mitochondrial fission protein conserved from yeast to humans, affects ageing in the two model systems we studied, Podospora anserina and Saccharomyces cerevisiae. Deletion of the Dnm1 gene delays the transformation of filamentous to punctuate mitochondria and retards ageing without impairing fitness and fertility typically observed in long-lived mutants. Our data further suggest that reduced mitochondrial fission extends life span by increasing cellular resistance to the induction of apoptosis and links mitochondrial dynamics, apoptosis and life-span control.


Asunto(s)
Senescencia Celular , Proteínas Fúngicas/metabolismo , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Podospora/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Apoptosis , ADN Mitocondrial/metabolismo , Fertilidad , Proteínas Fúngicas/genética , GTP Fosfohidrolasas/genética , Regulación Fúngica de la Expresión Génica , Mitocondrias/fisiología , Proteínas Mitocondriales , Modelos Biológicos , Datos de Secuencia Molecular , Podospora/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
12.
Biosci Biotechnol Biochem ; 77(10): 2117-24, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24096679

RESUMEN

For Podospora anserina, several studies of cellulolytic enzymes have been established, but characteristics of amylolytic enzymes are not well understood. When P. anserina grew in starch as carbon source, it accumulated glucose, nigerose, and maltose in the culture supernatant. At the same time, the fungus secreted α-glucosidase (PAG). PAG was purified from the culture supernatant, and was found to convert soluble starch to nigerose and maltose. The recombinant enzyme with C-terminal His-tag (rPAG) was produced with Pichia pastoris. Most rPAG produced under standard conditions lost its affinity for nickel-chelating resin, but the affinity was improved by the use of a buffered medium (pH 8.0) supplemented with casamino acid and a reduction of the cultivation time. rPAG suffered limited proteolysis at the same site as the original PAG. A site-directed mutagenesis study indicated that proteolysis had no effect on enzyme characteristics. A kinetic study indicated that the PAG possessed significant transglycosylation activity.


Asunto(s)
Podospora/enzimología , Almidón/metabolismo , alfa-Glucosidasas/metabolismo , Clonación Molecular , Técnicas de Cultivo , ADN Complementario/genética , Glicosilación , Cinética , Mutagénesis Sitio-Dirigida , Péptidos/metabolismo , Podospora/crecimiento & desarrollo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Solubilidad , Almidón/química , Especificidad por Sustrato , alfa-Glucosidasas/genética , alfa-Glucosidasas/aislamiento & purificación
13.
Mol Biol Evol ; 28(7): 2063-75, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21273631

RESUMEN

An F(1)F(O) ATP synthase in the inner mitochondrial membrane catalyzes the late steps of ATP production via the process of oxidative phosphorylation. A small protein subunit (subunit c or ATP9) of this enzyme shows a substantial genetic diversity, and its gene can be found in both the mitochondrion and/or nucleus. In a representative set of 26 species of fungi for which the genomes have been entirely sequenced, we found five Atp9 gene repartitions. The phylogenetic distribution of nuclear and mitochondrial Atp9 genes suggests that their evolution has included two independent transfers to the nucleus followed by several independent episodes of the loss of the mitochondrial and/or nuclear gene. Interestingly, we found that in Podospora anserina, subunit c is exclusively produced from two nuclear genes (PaAtp9-5 and PaAtp9-7), which display different expression profiles through the life cycle of the fungus. The PaAtp9-5 gene is specifically and strongly expressed in germinating ascospores, whereas PaAtp9-7 is mostly transcribed during sexual reproduction. Consistent with these observations, deletion of PaAtp9-5 is lethal, whereas PaAtp9-7 deletion strongly impairs ascospore production. The P. anserina PaAtp9-5 and PaAtp9-7 genes are therefore nonredundant. By swapping the 5' and 3' flanking regions between genes we demonstrated, however, that the PaAtp9 coding sequences are functionally interchangeable. These findings show that after transfer to the nucleus, the subunit c gene in Podospora became a key target for the modulation of cellular energy metabolism according to the requirements of the life cycle.


Asunto(s)
Proteínas Fúngicas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , ATPasas de Translocación de Protón Mitocondriales/genética , Podospora/genética , Secuencia de Bases , Núcleo Celular , Proteínas Fúngicas/metabolismo , Eliminación de Gen , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Datos de Secuencia Molecular , Micelio/genética , Micelio/crecimiento & desarrollo , Fenotipo , Filogenia , Podospora/enzimología , Podospora/crecimiento & desarrollo , Subunidades de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
14.
Cells ; 10(12)2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34943827

RESUMEN

The accumulation of functionally impaired mitochondria is a key event in aging. Previous works with the fungal aging model Podospora anserina demonstrated pronounced age-dependent changes of mitochondrial morphology and ultrastructure, as well as alterations of transcript and protein levels, including individual proteins of the oxidative phosphorylation (OXPHOS). The identified protein changes do not reflect the level of the whole protein complexes as they function in-vivo. In the present study, we investigated in detail the age-dependent changes of assembled mitochondrial protein complexes, using complexome profiling. We observed pronounced age-depen-dent alterations of the OXPHOS complexes, including the loss of mitochondrial respiratory supercomplexes (mtRSCs) and a reduction in the abundance of complex I and complex IV. Additionally, we identified a switch from the standard complex IV-dependent respiration to an alternative respiration during the aging of the P. anserina wild type. Interestingly, we identified proteasome components, as well as endoplasmic reticulum (ER) proteins, for which the recruitment to mitochondria appeared to be increased in the mitochondria of older cultures. Overall, our data demonstrate pronounced age-dependent alterations of the protein complexes involved in energy transduction and suggest the induction of different non-mitochondrial salvage pathways, to counteract the age-dependent mitochondrial impairments which occur during aging.


Asunto(s)
Mitocondrias/metabolismo , Fosforilación Oxidativa , Podospora/crecimiento & desarrollo , Podospora/metabolismo , Respiración de la Célula , Transporte de Electrón
15.
Cells ; 10(10)2021 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-34685755

RESUMEN

Mitochondria are ubiquitous organelles of eukaryotic organisms with a number of essential functions, including synthesis of iron-sulfur clusters, amino acids, lipids, and adenosine triphosphate (ATP). During aging of the fungal aging model Podospora anserina, the inner mitochondrial membrane (IMM) undergoes prominent morphological alterations, ultimately resulting in functional impairments. Since phospholipids (PLs) are key components of biological membranes, maintenance of membrane plasticity and integrity via regulation of PL biosynthesis is indispensable. Here, we report results from a lipidomic analysis of isolated mitochondria from P. anserina that revealed an age-related reorganization of the mitochondrial PL profile and the involvement of the i-AAA protease PaIAP in proteolytic regulation of PL metabolism. The absence of PaIAP enhances biosynthesis of characteristic mitochondrial PLs, leads to significant alterations in the acyl composition of the mitochondrial signature PL cardiolipin (CL), and induces mitophagy. These alterations presumably cause the lifespan increase of the PaIap deletion mutant under standard growth conditions. However, PaIAP is required at elevated temperatures and for degradation of superfluous CL synthase PaCRD1 during glycolytic growth. Overall, our study uncovers a prominent role of PaIAP in the regulation of PL homeostasis in order to adapt membrane plasticity to fluctuating environmental conditions as they occur in nature.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Homeostasis , Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Podospora/crecimiento & desarrollo , Podospora/metabolismo , Cardiolipinas/metabolismo , Fermentación/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Glicerol/farmacología , Homeostasis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Podospora/efectos de los fármacos , Podospora/genética , Proteolisis/efectos de los fármacos
16.
Mol Microbiol ; 74(2): 480-96, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19775249

RESUMEN

NADPH oxidases are enzymes that produce reactive oxygen species. Studies in mammals, plants and fungi have shown that they play important roles in differentiation, defence, host/pathogen interaction and mutualistic symbiosis. In this paper, we have identified a Podospora anserina mutant strain impaired for processes controlled by PaNox1 and PaNox2, the two Nox isoforms characterized in this model ascomycete. We show that the gene mutated is PaNoxR, the homologue of the gene encoding the regulatory subunit p67(phox), conserved in mammals and fungi, and that PaNoxR regulates both PaNox1 and PaNox2. Genome sequence analysis of P. anserina reveals that this fungus posses a third Nox isoform, PaNox3, related to human Nox5/Duox and plant Rboh. We have generated a knock-out mutant of PaNox3 and report that PaNox3 plays a minor role in P. anserina, if any. We show that PaNox1 and PaNox2 play antagonist roles in cellulose degradation. Finally, we report for the first time that a saprobic fungus, P. anserina, develops special cell structures dedicated to breach and to exploit a solid cellulosic substrate, cellophane. Importantly, as for similar structures present in some plant pathogens, their proper differentiation requires PaNox1, PaNox2, PaNoxR and the tetraspanin PaPls1.


Asunto(s)
Celofán/metabolismo , Proteínas Fúngicas/metabolismo , NADPH Oxidasas/metabolismo , Podospora/genética , Biodegradación Ambiental , Proteínas Fúngicas/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , NADPH Oxidasas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Podospora/enzimología , Podospora/crecimiento & desarrollo , ARN de Hongos/genética
17.
Sci Rep ; 10(1): 3131, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081880

RESUMEN

The success of filamentous fungi in colonizing most natural environments can be largely attributed to their ability to form an expanding interconnected network, the mycelium, or thallus, constituted by a collection of hyphal apexes in motion producing hyphae and subject to branching and fusion. In this work, we characterize the hyphal network expansion and the structure of the fungus Podospora anserina under controlled culture conditions. To this end, temporal series of pictures of the network dynamics are produced, starting from germinating ascospores and ending when the network reaches a few centimeters width, with a typical image resolution of several micrometers. The completely automated image reconstruction steps allow an easy post-processing and a quantitative analysis of the dynamics. The main features of the evolution of the hyphal network, such as the total length L of the mycelium, the number of "nodes" (or crossing points) N and the number of apexes A, can then be precisely quantified. Beyond these main features, the determination of the distribution of the intra-thallus surfaces (Si) and the statistical analysis of some local measures of N, A and L give new insights on the dynamics of expanding fungal networks. Based on these results, we now aim at developing robust and versatile discrete/continuous mathematical models to further understand the key mechanisms driving the development of the fungus thallus.


Asunto(s)
Proteínas Fúngicas/genética , Hongos/crecimiento & desarrollo , Hifa/crecimiento & desarrollo , Microscopía/métodos , Podospora/crecimiento & desarrollo , Regulación Fúngica de la Expresión Génica , Procesamiento de Imagen Asistido por Computador , Modelos Biológicos , Micelio/crecimiento & desarrollo , Esporas Fúngicas/crecimiento & desarrollo
18.
Curr Genet ; 55(2): 175-84, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19277665

RESUMEN

Carotenoids have been identified in the fungus Podospora anserina and a parallel pathway to neurosporene and beta-carotene was established. Three genes for the beta-carotene branch have been cloned and their function elucidated. They correspond to the al-1, al-2 and al-3 genes from Neurospora crassa. They were individually and in combinations over-expressed in P. anserina in order to modify the carotenoid composition qualitatively and quantitatively. In the resulting transformants, carotenoid synthesis was up to eightfold increased and several intermediates of the pathway together with special cyclic carotenoids, beta-zeacarotene and 7,8-dihydro-beta-carotene, accumulated. All transformants with an over-expressed al-2 gene (encoding a phytoene synthase and a lycopene cyclase) displayed up to 31% prolonged life span.


Asunto(s)
Carotenoides/biosíntesis , Podospora/crecimiento & desarrollo , Podospora/metabolismo , Neurospora crassa/genética , Podospora/genética , Transgenes
19.
Fungal Genet Biol ; 46(1): 55-66, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18992353

RESUMEN

ATP-binding cassette transporters are ubiquitous proteins that facilitate transport of diverse substances across a membrane. However, their exact role remains poorly understood. In order to test their function in a fungus life cycle, we deleted the two Podospora anserina peroxisomal ABC transporter pABC1 and pABC2 genes as well as the three genes involved in peroxisomal (fox2) and mitochondrial (scdA and echA) beta-oxidation. Analysis of the single and double mutants shows that fatty acid beta-oxidation occurs in both organelles. Furthermore, the peroxisomal and mitochondrial fatty acid beta-oxidation pathways are both dispensable for vegetative and sexual development. They are, however, differently required for ascospore pigmentation and germination, this latter defect being restored in a DeltapABC1 and DeltapABC2 background. We report also that lack of peroxisomal ABC transporters does not prevent peroxisomal long-chain fatty acid oxidation, suggesting the existence of another pathway for their import into peroxisomes. Finally, we show that some aspects of fatty acid degradation are clearly fungus species specific.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Fúngicas/metabolismo , Oxidación-Reducción , Peroxisomas/metabolismo , Podospora/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Ácidos Grasos/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Mitocondrias/metabolismo , Ácido Oléico/metabolismo , Peroxisomas/genética , Podospora/citología , Podospora/genética , Podospora/crecimiento & desarrollo , Esporas Fúngicas/crecimiento & desarrollo
20.
Genome Biol Evol ; 11(10): 2807-2817, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529025

RESUMEN

Podospora anserina is a model ascomycetous fungus which shows pronounced phenotypic senescence when grown on solid medium but possesses unlimited lifespan under submerged cultivation. In order to study the genetic aspects of adaptation of P. anserina to submerged cultivation, we initiated a long-term evolution experiment. In the course of the first 4 years of the experiment, 125 single-nucleotide substitutions and 23 short indels were fixed in eight independently evolving populations. Six proteins that affect fungal growth and development evolved in more than one population; in particular, in the G-protein alpha subunit FadA, new alleles fixed in seven out of eight experimental populations, and these fixations affected just four amino acid sites, which is an unprecedented level of parallelism in experimental evolution. Parallel evolution at the level of genes and pathways, an excess of nonsense and missense substitutions, and an elevated conservation of proteins and their sites where the changes occurred suggest that many of the observed fixations were adaptive and driven by positive selection.


Asunto(s)
Evolución Molecular , Podospora/genética , Alelos , Proteínas Fúngicas/genética , Variación Genética , Genoma Fúngico , Mutación INDEL , Micología/métodos , Fenotipo , Podospora/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA