Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genes Dev ; 38(9-10): 436-454, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38866556

RESUMEN

Genome organization can regulate gene expression and promote cell fate transitions. The differentiation of germline stem cells (GSCs) to oocytes in Drosophila involves changes in genome organization mediated by heterochromatin and the nuclear pore complex (NPC). Heterochromatin represses germ cell genes during differentiation, and NPCs anchor these silenced genes to the nuclear periphery, maintaining silencing to allow for oocyte development. Surprisingly, we found that genome organization also contributes to NPC formation, mediated by the transcription factor Stonewall (Stwl). As GSCs differentiate, Stwl accumulates at boundaries between silenced and active gene compartments. Stwl at these boundaries plays a pivotal role in transitioning germ cell genes into a silenced state and activating a group of oocyte genes and nucleoporins (Nups). The upregulation of these Nups during differentiation is crucial for NPC formation and further genome organization. Thus, cross-talk between genome architecture and NPCs is essential for successful cell fate transitions.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila , Genoma de los Insectos , Poro Nuclear , Oogénesis , Animales , Oogénesis/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Diferenciación Celular/genética , Poro Nuclear/metabolismo , Poro Nuclear/genética , Genoma de los Insectos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Femenino , Drosophila melanogaster/genética , Oocitos/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Drosophila/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética
2.
Nucleic Acids Res ; 52(14): 8286-8302, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38917328

RESUMEN

Nuclear pore complexes (NPCs) have emerged as genome organizers, defining a particular nuclear compartment enriched for SUMO protease and proteasome activities, and act as docking sites for the repair of DNA damage. In fission yeast, the anchorage of perturbed replication forks to NPCs is an integral part of the recombination-dependent replication restart mechanism (RDR) that resumes DNA synthesis at terminally dysfunctional forks. By mapping DNA polymerase usage, we report that SUMO protease Ulp1-associated NPCs ensure efficient initiation of restarted DNA synthesis, whereas proteasome-associated NPCs sustain the progression of restarted DNA polymerase. In contrast to Ulp1-dependent events, this last function is not alleviated by preventing SUMO chain formation. By analyzing the role of the nuclear basket, the nucleoplasmic extension of the NPC, we reveal that the activities of Ulp1 and the proteasome cannot compensate for each other and affect the dynamics of RDR in distinct ways. Our work probes two distinct mechanisms by which the NPC environment ensures optimal RDR, both controlled by different NPC components.


Asunto(s)
Replicación del ADN , Poro Nuclear , Complejo de la Endopetidasa Proteasomal , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Complejo de la Endopetidasa Proteasomal/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Poro Nuclear/metabolismo , Poro Nuclear/genética , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Núcleo Celular/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39000572

RESUMEN

The p53 family remains a captivating focus of an extensive number of current studies. Accumulating evidence indicates that p53 abnormalities rank among the most prevalent in cancer. Given the numerous existing studies, which mostly focus on the mutations, expression profiles, and functional perturbations exhibited by members of the p53 family across diverse malignancies, this review will concentrate more on less explored facets regarding p53 activation and stabilization by the nuclear pore complex (NPC) in cancer, drawing on several studies. p53 integrates a broad spectrum of signals and is subject to diverse regulatory mechanisms to enact the necessary cellular response. It is widely acknowledged that each stage of p53 regulation, from synthesis to degradation, significantly influences its functionality in executing specific tasks. Over recent decades, a large body of data has established that mechanisms of regulation, closely linked with protein activation and stabilization, involve intricate interactions with various cellular components. These often transcend canonical regulatory pathways. This new knowledge has expanded from the regulation of genes themselves to epigenomics and proteomics, whereby interaction partners increase in number and complexity compared with earlier paradigms. Specifically, studies have recently shown the involvement of the NPC protein in such complex interactions, underscoring the further complexity of p53 regulation. Furthermore, we also discuss therapeutic strategies based on recent developments in this field in combination with established targeted therapies.


Asunto(s)
Neoplasias , Poro Nuclear , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Poro Nuclear/metabolismo , Poro Nuclear/genética , Animales , Regulación Neoplásica de la Expresión Génica
4.
Front Immunol ; 15: 1330738, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449868

RESUMEN

Nucleoporins (NUPs) are cellular effectors of human immunodeficiency virus-1 (HIV-1) replication that support nucleocytoplasmic trafficking of viral components. However, these also non-canonically function as positive effectors, promoting proviral DNA integration into the host genome and viral gene transcription, or as negative effectors by associating with HIV-1 restriction factors, such as MX2, inhibiting the replication of HIV-1. Here, we investigated the regulatory role of NUP98 on HIV-1 as we observed a lowering of its endogenous levels upon HIV-1 infection in CD4+ T cells. Using complementary experiments in NUP98 overexpression and knockdown backgrounds, we deciphered that NUP98 negatively affected HIV-1 long terminal repeat (LTR) promoter activity and lowered released virus levels. The negative effect on promoter activity was independent of HIV-1 Tat, suggesting that NUP98 prevents the basal viral gene expression. ChIP-qPCR showed NUP98 to be associated with HIV-1 LTR, with the negative regulatory element (NRE) of HIV-1 LTR playing a dominant role in NUP98-mediated lowering of viral gene transcription. Truncated mutants of NUP98 showed that the attenuation of HIV-1 LTR-driven transcription is primarily contributed by its N-terminal region. Interestingly, the virus generated from the producer cells transiently expressing NUP98 showed lower infectivity, while the virus generated from NUP98 knockdown CD4+ T cells showed higher infectivity as assayed in TZM-bl cells, corroborating the anti-HIV-1 properties of NUP98. Collectively, we show a new non-canonical function of a nucleoporin adding to the list of moonlighting host factors regulating viral infections. Downregulation of NUP98 in a host cell upon HIV-1 infection supports the concept of evolutionary conflicts between viruses and host antiviral factors.


Asunto(s)
VIH-1 , Proteínas de Complejo Poro Nuclear , Humanos , Proteínas de Complejo Poro Nuclear/genética , Poro Nuclear/genética , Duplicado del Terminal Largo de VIH/genética , Expresión Génica
5.
Curr Opin Genet Dev ; 84: 102150, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38215626

RESUMEN

Nuclear organization has emerged as a critical layer in the coordination of DNA repair activities. Distinct types of DNA lesions have notably been shown to relocate at the vicinity of nuclear pore complexes (NPCs), where specific repair pathways are favored, ultimately safeguarding genome integrity. Here, we review the most recent progress in this field, notably highlighting the increasingly diverse types of DNA structures undergoing repositioning, and the signaling pathways involved. We further discuss our growing knowledge of the molecular mechanisms underlying the choice of repair pathways at NPCs, and their conservation - or divergences. Intriguingly, a series of recent findings suggest that DNA metabolism may be coupled to NPC biogenesis and specialization, challenging our initial vision of these processes.


Asunto(s)
Reparación del ADN , Poro Nuclear , Humanos , Poro Nuclear/genética , Reparación del ADN/genética , Daño del ADN/genética , Inestabilidad Genómica/genética , ADN/metabolismo , Membrana Nuclear
6.
Nat Plants ; 10(6): 1005-1017, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38773271

RESUMEN

The nuclear pore complex (NPC) is vital for nucleocytoplasmic communication. Recent evidence emphasizes its extensive association with proteins of diverse functions, suggesting roles beyond cargo transport. Yet, our understanding of NPC's composition and functionality at this extended level remains limited. Here, through proximity-labelling proteomics, we uncover both local and global NPC-associated proteome in Arabidopsis, comprising over 500 unique proteins, predominantly associated with NPC's peripheral extension structures. Compositional analysis of these proteins revealed that the NPC concentrates chromatin remodellers, transcriptional regulators and mRNA processing machineries in the nucleoplasmic region while recruiting translation regulatory machinery on the cytoplasmic side, achieving a remarkable orchestration of the genetic information flow by coupling RNA transcription, maturation, transport and translation regulation. Further biochemical and structural modelling analyses reveal that extensive interactions with nucleoporins, along with phase separation mediated by substantial intrinsically disordered proteins, may drive the formation of the unexpectedly large nuclear pore proteome assembly.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Poro Nuclear , Poro Nuclear/metabolismo , Poro Nuclear/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteoma/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteómica
7.
J Cell Biol ; 223(7)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38683248

RESUMEN

Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading, and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.


Asunto(s)
Transporte Activo de Núcleo Celular , Guanosina Trifosfato , Proteína de Unión al GTP ran , Guanosina Trifosfato/metabolismo , Proteína de Unión al GTP ran/metabolismo , Proteína de Unión al GTP ran/genética , Humanos , Núcleo Celular/metabolismo , Movimiento Celular , Poro Nuclear/metabolismo , Poro Nuclear/genética , Animales , Membrana Nuclear/metabolismo , Citoesqueleto/metabolismo , Biosíntesis de Proteínas , Citoplasma/metabolismo
8.
Genetics ; 226(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38302116

RESUMEN

The nuclear pore complex (NPC) mediates the selective exchange of macromolecules between the nucleus and the cytoplasm. Neurodegenerative diseases such as amyotrophic lateral sclerosis are characterized by mislocalization of nucleoporins (Nups), transport receptors, and Ras-related nuclear proteins into nucleoplasmic or cytosolic aggregates, underscoring the importance of precise assembly of the NPC. The assembly state of large protein complexes is strictly monitored by the protein quality control system. The ubiquitin-proteasome system may eliminate aberrant, misfolded, and/or orphan components; however, the involvement of the ubiquitin-proteasome system in the degradation of nonnative Nups in the NPC remains unclear. Here, we show that in Saccharomyces cerevisiae, although Nup1 (the FG-Nup component of the central core of the NPC) was stable, C-terminally green fluorescent protein-tagged Nup1, which had been incorporated into the NPC, was degraded by the proteasome especially under heat stress conditions. The degradation was dependent on the San1 ubiquitin ligase and Cdc48/p97, as well as its cofactor Doa1. We also demonstrate that San1 weakly but certainly contributes to the degradation of nontagged endogenous Nup1 in cells defective in NPC biogenesis by the deletion of NUP120. In addition, the overexpression of SAN1 exacerbated the growth defect phenotype of nup120Δ cells, which may be caused by excess degradation of defective Nups due to the deletion of NUP120. These biochemical and genetic data suggest that San1 is involved in the degradation of nonnative Nups generated by genetic mutation or when NPC biogenesis is impaired.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae , Poro Nuclear/genética , Poro Nuclear/química , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/análisis , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657142

RESUMEN

In fission yeast lacking the telomere binding protein, Taz1, replication forks stall at telomeres, triggering deleterious downstream events. Strand invasion from one taz1Δ telomeric stalled fork to another on a separate (nonsister) chromosome leads to telomere entanglements, which are resolved in mitosis at 32°C; however, entanglement resolution fails at ≤20°C, leading to cold-specific lethality. Previously, we found that loss of the mitotic function of Rif1, a conserved DNA replication and repair factor, suppresses cold sensitivity by promoting resolution of entanglements without affecting entanglement formation. To understand the underlying pathways of mitotic entanglement resolution, we performed a series of genome-wide synthetic genetic array screens to generate a comprehensive list of genetic interactors of taz1Δ and rif1Δ. We modified a previously described screening method to ensure that the queried cells were kept in log phase growth. In addition to recapitulating previously identified genetic interactions, we find that loss of genes encoding components of the nuclear pore complex (NPC) promotes telomere disentanglement and suppresses taz1Δ cold sensitivity. We attribute this to more rapid anaphase midregion nuclear envelope (NE) breakdown in the absence of these NPC components. Loss of genes involved in lipid metabolism reverses the ability of rif1+ deletion to suppress taz1Δ cold sensitivity, again pinpointing NE modulation. A rif1+ separation-of-function mutant that specifically loses Rif1's mitotic functions yields similar genetic interactions. Genes promoting membrane fluidity were enriched in a parallel taz1+ synthetic lethal screen at permissive temperature, cementing the idea that the cold specificity of taz1Δ lethality stems from altered NE homeostasis.


Asunto(s)
Homeostasis , Membrana Nuclear , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Unión a Telómeros , Telómero , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Telómero/genética , Telómero/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Mitosis/genética , Pruebas Genéticas , Poro Nuclear/metabolismo , Poro Nuclear/genética
10.
Nat Commun ; 15(1): 4358, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778058

RESUMEN

3C-based methods have significantly advanced our understanding of 3D genome organization. However, it remains a formidable task to precisely capture long-range chromosomal interactions between individual loci, such as those between promoters and distal enhancers. Here, we present Methyltransferase Targeting-based chromosome Architecture Capture (MTAC), a method that maps the contacts between a target site (viewpoint) and the rest of the genome in budding yeast with high resolution and sensitivity. MTAC detects hundreds of intra- and inter-chromosomal interactions within nucleosome-depleted regions (NDRs) that cannot be captured by 4C, Hi-C, or Micro-C. By applying MTAC to various viewpoints, we find that (1) most long-distance chromosomal interactions detected by MTAC reflect tethering by the nuclear pore complexes (NPCs), (2) genes co-regulated by methionine assemble into inter-chromosomal clusters near NPCs upon activation, (3) mediated by condensin, the mating locus forms a highly specific interaction with the recombination enhancer (RE) in a mating-type specific manner, and (4) correlation of MTAC signals among NDRs reveal spatial mixing and segregation of the genome. Overall, these results demonstrate MTAC as a powerful tool to resolve fine-scale long-distance chromosomal interactions and provide insights into the 3D genome organization.


Asunto(s)
Cromosomas Fúngicos , Metilación de ADN , Nucleosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Nucleosomas/metabolismo , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mapeo Cromosómico/métodos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Genoma Fúngico , Regiones Promotoras Genéticas/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/genética , Poro Nuclear/metabolismo , Poro Nuclear/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA