RESUMEN
Oncogenic mutations are abundant in the tissues of healthy individuals, but rarely form tumours1-3. Yet, the underlying protection mechanisms are largely unknown. To resolve these mechanisms in mouse mammary tissue, we use lineage tracing to map the fate of wild-type and Brca1-/-;Trp53-/- cells, and find that both follow a similar pattern of loss and spread within ducts. Clonal analysis reveals that ducts consist of small repetitive units of self-renewing cells that give rise to short-lived descendants. This offers a first layer of protection as any descendants, including oncogenic mutant cells, are constantly lost, thereby limiting the spread of mutations to a single stem cell-descendant unit. Local tissue remodelling during consecutive oestrous cycles leads to the cooperative and stochastic loss and replacement of self-renewing cells. This process provides a second layer of protection, leading to the elimination of most mutant clones while enabling the minority that by chance survive to expand beyond the stem cell-descendant unit. This leads to fields of mutant cells spanning large parts of the epithelial network, predisposing it for transformation. Eventually, clone expansion becomes restrained by the geometry of the ducts, providing a third layer of protection. Together, these mechanisms act to eliminate most cells that acquire somatic mutations at the expense of driving the accelerated expansion of a minority of cells, which can colonize large areas, leading to field cancerization.
Asunto(s)
Transformación Celular Neoplásica , Glándulas Mamarias Animales , Mutación , Animales , Femenino , Ratones , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linaje de la Célula/genética , Autorrenovación de las Células/genética , Transformación Celular Neoplásica/genética , Células Clonales/citología , Células Clonales/metabolismo , Células Clonales/patología , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/patología , Glándulas Mamarias Animales/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ciclo Estral , Células Madre/citología , Células Madre/metabolismo , Células Madre/patologíaRESUMEN
Homologous recombination (HR) deficiency is associated with DNA rearrangements and cytogenetic aberrations1. Paradoxically, the types of DNA rearrangements that are specifically associated with HR-deficient cancers only minimally affect chromosomal structure2. Here, to address this apparent contradiction, we combined genome-graph analysis of short-read whole-genome sequencing (WGS) profiles across thousands of tumours with deep linked-read WGS of 46 BRCA1- or BRCA2-mutant breast cancers. These data revealed a distinct class of HR-deficiency-enriched rearrangements called reciprocal pairs. Linked-read WGS showed that reciprocal pairs with identical rearrangement orientations gave rise to one of two distinct chromosomal outcomes, distinguishable only with long-molecule data. Whereas one (cis) outcome corresponded to the copying and pasting of a small segment to a distant site, a second (trans) outcome was a quasi-balanced translocation or multi-megabase inversion with substantial (10 kb) duplications at each junction. We propose an HR-independent replication-restart repair mechanism to explain the full spectrum of reciprocal pair outcomes. Linked-read WGS also identified single-strand annealing as a repair pathway that is specific to BRCA2 deficiency in human cancers. Integrating these features in a classifier improved discrimination between BRCA1- and BRCA2-deficient genomes. In conclusion, our data reveal classes of rearrangements that are specific to BRCA1 or BRCA2 deficiency as a source of cytogenetic aberrations in HR-deficient cells.
Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Aberraciones Cromosómicas , Reparación del ADN , Neoplasias , Humanos , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Proteína BRCA2/deficiencia , Proteína BRCA2/genética , Inversión Cromosómica , Reparación del ADN/genética , Neoplasias/genética , Translocación Genética/genética , Recombinación Homóloga , Análisis Citogenético , Aberraciones Cromosómicas/clasificaciónRESUMEN
Agents that induce DNA damage can cure some cancers. However, the side effects of chemotherapy are severe because of the indiscriminate action of DNA-damaging agents on both healthy and cancerous cells. DNA repair pathway inhibition provides a less toxic and targeted alternative to chemotherapy. A compelling DNA repair target is the Fanconi anemia (FA) E3 ligase core complex due to its critical-and likely singular-role in the efficient removal of specific DNA lesions. FA pathway inactivation has been demonstrated to specifically kill some types of cancer cells without the addition of exogenous DNA damage, including cells that lack BRCA1, BRCA2, ATM, or functionally related genes. In this perspective, we discuss the genetic and biochemical evidence in support of the FA core complex as a compelling drug target for cancer therapy. In particular, we discuss the genetic, biochemical, and structural data that could rapidly advance our capacity to identify and implement the use of FA core complex inhibitors in the clinic.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Reparación del ADN/efectos de los fármacos , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Anemia de Fanconi/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , Daño del ADN , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/uso terapéutico , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/antagonistas & inhibidores , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Terapia Molecular Dirigida/métodos , Morfolinas/uso terapéutico , Pironas/uso terapéutico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Mutaciones Letales Sintéticas , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/antagonistas & inhibidores , Ubiquitinas/genética , Ubiquitinas/metabolismoRESUMEN
Stabilization of stalled replication forks is a prominent mechanism of PARP (Poly(ADP-ribose) Polymerase) inhibitor (PARPi) resistance in BRCA-deficient tumors. Epigenetic mechanisms of replication fork stability are emerging but remain poorly understood. Here, we report the histone acetyltransferase PCAF (p300/CBP-associated) as a fork-associated protein that promotes fork degradation in BRCA-deficient cells by acetylating H4K8 at stalled replication forks, which recruits MRE11 and EXO1. A H4K8ac binding domain within MRE11/EXO1 is required for their recruitment to stalled forks. Low PCAF levels, which we identify in a subset of BRCA2-deficient tumors, stabilize stalled forks, resulting in PARPi resistance in BRCA-deficient cells. Furthermore, PCAF activity is tightly regulated by ATR (ataxia telangiectasia and Rad3-related), which phosphorylates PCAF on serine 264 (S264) to limit its association and activity at stalled forks. Our results reveal PCAF and histone acetylation as critical regulators of fork stability and PARPi responses in BRCA-deficient cells, which provides key insights into targeting BRCA-deficient tumors and identifying epigenetic modulators of chemotherapeutic responses.
Asunto(s)
Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN , Exodesoxirribonucleasas/metabolismo , Histonas/metabolismo , Proteína Homóloga de MRE11/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Replicación del ADN/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Lisina/metabolismo , Modelos Biológicos , Mutación/genética , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Unión Proteica/efectos de los fármacos , Factores de Transcripción p300-CBP/química , Factores de Transcripción p300-CBP/genéticaRESUMEN
The BRCA1-BRCA2-RAD51 axis is essential for homologous recombination repair (HRR) and is frequently disrupted in breast cancers. PARP inhibitors (PARPis) are used clinically to treat BRCA-mutated breast tumors. Using a genetic screen, we identified EMI1 as a modulator of PARPi sensitivity in triple-negative breast cancer (TNBC) cells. This function requires the F-box domain of EMI1, through which EMI1 assembles a canonical SCF ubiquitin ligase complex that constitutively targets RAD51 for degradation. In response to genotoxic stress, CHK1-mediated phosphorylation of RAD51 counteracts EMI1-dependent degradation by enhancing RAD51's affinity for BRCA2, leading to RAD51 accumulation. Inhibition of RAD51 degradation restores HRR in BRCA1-depleted cells. Human breast cancer samples display an inverse correlation between EMI1 and RAD51 protein levels. A subset of BRCA1-deficient TNBC cells develop resistance to PARPi by downregulating EMI1 and restoring RAD51-dependent HRR. Notably, reconstitution of EMI1 expression reestablishes PARPi sensitivity both in cellular systems and in an orthotopic mouse model.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Resistencia a Antineoplásicos , Proteínas F-Box/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN , Resistencia a Antineoplásicos/genética , Proteínas F-Box/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Ratones Endogámicos NOD , Ratones SCID , Fosforilación , Proteolisis , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BRCA1-deficient tumor cells have defects in homologous-recombination repair and replication fork stability, resulting in PARP inhibitor sensitivity. Here, we demonstrate that a deubiquitinase, USP1, is upregulated in tumors with mutations in BRCA1. Knockdown or inhibition of USP1 resulted in replication fork destabilization and decreased viability of BRCA1-deficient cells, revealing a synthetic lethal relationship. USP1 binds to and is stimulated by fork DNA. A truncated form of USP1, lacking its DNA-binding region, was not stimulated by DNA and failed to localize and protect replication forks. Persistence of monoubiquitinated PCNA at the replication fork was the mechanism of cell death in the absence of USP1. Taken together, USP1 exhibits DNA-mediated activation at the replication fork, protects the fork, and promotes survival in BRCA1-deficient cells. Inhibition of USP1 may be a useful treatment for a subset of PARP-inhibitor-resistant BRCA1-deficient tumors with acquired replication fork stabilization.
Asunto(s)
Proteína BRCA1/deficiencia , Neoplasias de la Mama/enzimología , Replicación del ADN , ADN de Neoplasias/biosíntesis , Proteasas Ubiquitina-Específicas/metabolismo , Neoplasias del Cuello Uterino/enzimología , Animales , Proteína BRCA1/genética , Sitios de Unión , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Supervivencia Celular , ADN de Neoplasias/genética , Resistencia a Medicamentos , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Ratones Desnudos , Mutación , Desnaturalización de Ácido Nucleico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BRCA1/2 proteins function in genome stability by promoting repair of double-stranded DNA breaks through homologous recombination and by protecting stalled replication forks from nucleolytic degradation. In BRCA1/2-deficient cancer cells, extensively degraded replication forks can be rescued through distinct fork recovery mechanisms that also promote cell survival. Here, we identified a novel pathway mediated by the E3 ubiquitin ligase RAD18, the E2-conjugating enzyme UBC13, the recombination factor PALB2, the E3 ubiquitin ligase RNF168 and PCNA ubiquitination that promotes fork recovery in BRCA1- but not BRCA2-deficient cells. We show that this pathway does not promote fork recovery by preventing replication fork reversal and degradation in BRCA1-deficient cells. We propose a mechanism whereby the RAD18-UBC13-PALB2-RNF168 axis facilitates resumption of DNA synthesis by promoting re-annealing of the complementary single-stranded template strands of the extensively degraded forks, thereby allowing re-establishment of a functional replication fork. We also provide preliminary evidence for the potential clinical relevance of this novel fork recovery pathway in BRCA1-mutated cancers, as RAD18 is over-expressed in BRCA1-deficient cancers, and RAD18 loss compromises cell viability in BRCA1-deficient cancer cells.
Asunto(s)
Proteína BRCA1 , Replicación del ADN , Proteínas de Unión al ADN , Proteína del Grupo de Complementación N de la Anemia de Fanconi , Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/deficiencia , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Línea Celular Tumoral , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación N de la Anemia de Fanconi/metabolismo , Ubiquitinación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Reparación del ADNRESUMEN
Senataxin is an evolutionarily conserved DNA/RNA helicase, whose dysfunctions are linked to neurodegeneration and cancer. A main activity of this protein is the removal of R-loops, which are nucleic acid structures capable to promote DNA damage and replication stress. Here we found that Senataxin deficiency causes the release of damaged DNA into extranuclear bodies, called micronuclei, triggering the massive recruitment of cGAS, the apical sensor of the innate immunity pathway, and the downstream stimulation of interferon genes. Such cGAS-positive micronuclei are characterized by defective membrane envelope and are particularly abundant in cycling cells lacking Senataxin, but not after exposure to a DNA breaking agent or in absence of the tumor suppressor BRCA1 protein, a partner of Senataxin in R-loop removal. Micronuclei with a discontinuous membrane are normally cleared by autophagy, a process that we show is impaired in Senataxin-deficient cells. The formation of Senataxin-dependent inflamed micronuclei is promoted by the persistence of nuclear R-loops stimulated by the DSIF transcription elongation complex and the engagement of EXO1 nuclease activity on nuclear DNA. Coherently, high levels of EXO1 result in poor prognosis in a subset of tumors lacking Senataxin expression. Hence, R-loop homeostasis impairment, together with autophagy failure and unscheduled EXO1 activity, elicits innate immune response through micronuclei formation in cells lacking Senataxin.
Asunto(s)
Autofagia , Daño del ADN , ADN Helicasas , Inflamación , Enzimas Multifuncionales , Nucleotidiltransferasas , Estructuras R-Loop , ARN Helicasas , Humanos , Autofagia/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/deficiencia , ADN Helicasas/metabolismo , ADN Helicasas/genética , ADN Helicasas/deficiencia , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/deficiencia , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Inmunidad Innata , Inflamación/patología , Inflamación/metabolismo , Inflamación/genética , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Fosfoproteínas , ARN Helicasas/metabolismo , ARN Helicasas/genéticaRESUMEN
BRCA1 mutations are associated with increased breast and ovarian cancer risk. BRCA1-mutant tumors are high-grade, recurrent, and often become resistant to standard therapies. Herein, we performed a targeted CRISPR-Cas9 screen and identified MEPCE, a methylphosphate capping enzyme, as a synthetic lethal interactor of BRCA1. Mechanistically, we demonstrate that depletion of MEPCE in a BRCA1-deficient setting led to dysregulated RNA polymerase II (RNAPII) promoter-proximal pausing, R-loop accumulation, and replication stress, contributing to transcription-replication collisions. These collisions compromise genomic integrity resulting in loss of viability of BRCA1-deficient cells. We also extend these findings to another RNAPII-regulating factor, PAF1. This study identifies a new class of synthetic lethal partners of BRCA1 that exploit the RNAPII pausing regulation and highlight the untapped potential of transcription-replication collision-inducing factors as unique potential therapeutic targets for treating cancers associated with BRCA1 mutations.
Asunto(s)
Proteína BRCA1 , Replicación del ADN , Síndrome de Cáncer de Mama y Ovario Hereditario , Mutación , Transcripción Genética , Humanos , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Replicación del ADN/genética , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Síndrome de Cáncer de Mama y Ovario Hereditario/patología , Síndrome de Cáncer de Mama y Ovario Hereditario/fisiopatología , ARN Polimerasa II/metabolismo , Transcripción Genética/genética , Regiones Promotoras Genéticas , Metiltransferasas/deficiencia , Metiltransferasas/genética , Estructuras R-Loop , Muerte CelularRESUMEN
Poly-(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cells, but their efficacy in BRCA-deficient patients is limited by drug resistance. Here, we used derived cell lines and cells from patients to investigate how to overcome PARPi resistance. We found that the functions of BRCA1 in homologous recombination (HR) and replication fork protection are sequentially bypassed during the acquisition of PARPi resistance. Despite the lack of BRCA1, PARPi-resistant cells regain RAD51 loading to DNA double-stranded breaks (DSBs) and stalled replication forks, enabling two distinct mechanisms of PARPi resistance. Compared with BRCA1-proficient cells, PARPi-resistant BRCA1-deficient cells are increasingly dependent on ATR for survival. ATR inhibitors (ATRis) disrupt BRCA1-independent RAD51 loading to DSBs and stalled forks in PARPi-resistant BRCA1-deficient cells, overcoming both resistance mechanisms. In tumor cells derived from patients, ATRis also overcome the bypass of BRCA1/2 in fork protection. Thus, ATR inhibition is a unique strategy to overcome the PARPi resistance of BRCA-deficient cancers.
Asunto(s)
Recombinación Homóloga/genética , Neoplasias Ováricas/genética , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Reparación del ADN , ADN de Neoplasias , Resistencia a Antineoplásicos/genética , Femenino , Recombinación Homóloga/efectos de los fármacos , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Células Tumorales CultivadasRESUMEN
In DNA repair, the resection of double-strand breaks dictates the choice between homology-directed repair-which requires a 3' overhang-and classical non-homologous end joining, which can join unresected ends1,2. BRCA1-mutant cancers show minimal resection of double-strand breaks, which renders them deficient in homology-directed repair and sensitive to inhibitors of poly(ADP-ribose) polymerase 1 (PARP1)3-8. When BRCA1 is absent, the resection of double-strand breaks is thought to be prevented by 53BP1, RIF1 and the REV7-SHLD1-SHLD2-SHLD3 (shieldin) complex, and loss of these factors diminishes sensitivity to PARP1 inhibitors4,6-9. Here we address the mechanism by which 53BP1-RIF1-shieldin regulates the generation of recombinogenic 3' overhangs. We report that CTC1-STN1-TEN1 (CST)10, a complex similar to replication protein A that functions as an accessory factor of polymerase-α (Polα)-primase11, is a downstream effector in the 53BP1 pathway. CST interacts with shieldin and localizes with Polα to sites of DNA damage in a 53BP1- and shieldin-dependent manner. As with loss of 53BP1, RIF1 or shieldin, the depletion of CST leads to increased resection. In BRCA1-deficient cells, CST blocks RAD51 loading and promotes the efficacy of PARP1 inhibitors. In addition, Polα inhibition diminishes the effect of PARP1 inhibitors. These data suggest that CST-Polα-mediated fill-in helps to control the repair of double-strand breaks by 53BP1, RIF1 and shieldin.
Asunto(s)
Roturas del ADN de Doble Cadena , ADN Polimerasa I/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Animales , Proteína BRCA1/deficiencia , Línea Celular , ADN Primasa/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Humanos , Ratones , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Reparación del ADN por Recombinación , Telómero/genética , Telómero/metabolismoRESUMEN
Limited DNA end resection is the key to impaired homologous recombination in BRCA1-mutant cancer cells. Here, using a loss-of-function CRISPR screen, we identify DYNLL1 as an inhibitor of DNA end resection. The loss of DYNLL1 enables DNA end resection and restores homologous recombination in BRCA1-mutant cells, thereby inducing resistance to platinum drugs and inhibitors of poly(ADP-ribose) polymerase. Low BRCA1 expression correlates with increased chromosomal aberrations in primary ovarian carcinomas, and the junction sequences of somatic structural variants indicate diminished homologous recombination. Concurrent decreases in DYNLL1 expression in carcinomas with low BRCA1 expression reduced genomic alterations and increased homology at lesions. In cells, DYNLL1 limits nucleolytic degradation of DNA ends by associating with the DNA end-resection machinery (MRN complex, BLM helicase and DNA2 endonuclease). In vitro, DYNLL1 binds directly to MRE11 to limit its end-resection activity. Therefore, we infer that DYNLL1 is an important anti-resection factor that influences genomic stability and responses to DNA-damaging chemotherapy.
Asunto(s)
Proteína BRCA1/deficiencia , Dineínas Citoplasmáticas/metabolismo , ADN/metabolismo , Genes BRCA1 , Proteína Homóloga de MRE11/metabolismo , Reparación del ADN por Recombinación , Proteína BRCA1/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Aberraciones Cromosómicas , Daño del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Edición Génica , Inestabilidad Genómica/efectos de los fármacos , Recombinación Homóloga/efectos de los fármacos , Humanos , Mutación , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Platino (Metal)/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Unión Proteica , Reparación del ADN por Recombinación/efectos de los fármacos , Factores de Transcripción/metabolismoRESUMEN
The observation that BRCA1- and BRCA2-deficient cells are sensitive to inhibitors of poly(ADP-ribose) polymerase (PARP) has spurred the development of cancer therapies that use these inhibitors to target deficiencies in homologous recombination1. The cytotoxicity of PARP inhibitors depends on PARP trapping, the formation of non-covalent protein-DNA adducts composed of inhibited PARP1 bound to DNA lesions of unclear origins1-4. To address the nature of such lesions and the cellular consequences of PARP trapping, we undertook three CRISPR (clustered regularly interspersed palindromic repeats) screens to identify genes and pathways that mediate cellular resistance to olaparib, a clinically approved PARP inhibitor1. Here we present a high-confidence set of 73 genes, which when mutated cause increased sensitivity to PARP inhibitors. In addition to an expected enrichment for genes related to homologous recombination, we discovered that mutations in all three genes encoding ribonuclease H2 sensitized cells to PARP inhibition. We establish that the underlying cause of the PARP-inhibitor hypersensitivity of cells deficient in ribonuclease H2 is impaired ribonucleotide excision repair5. Embedded ribonucleotides, which are abundant in the genome of cells deficient in ribonucleotide excision repair, are substrates for cleavage by topoisomerase 1, resulting in PARP-trapping lesions that impede DNA replication and endanger genome integrity. We conclude that genomic ribonucleotides are a hitherto unappreciated source of PARP-trapping DNA lesions, and that the frequent deletion of RNASEH2B in metastatic prostate cancer and chronic lymphocytic leukaemia could provide an opportunity to exploit these findings therapeutically.
Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Edición Génica , Neoplasias/genética , Neoplasias/patología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Ribonucleótidos/genética , Animales , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Línea Celular , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Femenino , Genes BRCA1 , Genoma/genética , Células HeLa , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/enzimología , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/deficiencia , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Ribonucleasa H/deficiencia , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Mutaciones Letales Sintéticas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.
Asunto(s)
Aminoquinolinas/farmacología , Antineoplásicos/farmacología , Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , Biomarcadores de Tumor/deficiencia , G-Cuádruplex/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Ácidos Picolínicos/farmacología , Animales , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores de Tumor/genética , Proliferación Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Masculino , Ratones Desnudos , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Interferencia de ARN , Telómero/efectos de los fármacos , Telómero/genética , Telómero/metabolismo , Factores de Tiempo , Transfección , Carga Tumoral/efectos de los fármacos , Proteína 1 de Unión al Supresor Tumoral P53 , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
More than 20% of metastatic prostate cancer carries genomic defects involving DNA damage repair pathways, mainly in homologous recombination repair-related genes. The recent approval of olaparib has paved the way to precision medicine for the treatment of metastatic prostate cancer with PARP inhibitors in this subset of patients, especially in the case of BRCA1 or BRCA2 pathogenic/likely pathogenic variants. In face of this new therapeutic opportunity, many issues remain unsolved. This narrative review aims to describe the relationship between homologous recombination repair deficiency and prostate cancer, the techniques used to determine homologous recombination repair status in prostate cancer, the crosstalk between homologous recombination repair and the androgen receptor pathway, the current evidence on PARP inhibitors activity in metastatic prostate cancer also in homologous recombination repair-proficient tumors, as well as emerging mechanisms of resistance to PARP inhibitors. The possibility of combination therapies including a PARP inhibitor is an attractive option, and more robust data are awaited from ongoing phase II and phase III trials outlined in this manuscript.
Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias de la Próstata , Reparación del ADN por Recombinación , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteína BRCA2/genética , Proteína BRCA2/deficiencia , Metástasis de la Neoplasia , Proteína BRCA1/genética , Proteína BRCA1/deficiencia , Ftalazinas/uso terapéutico , Ftalazinas/farmacología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , PiperazinasRESUMEN
Cockayne syndrome group B (CSB) protein has been implicated in the repair of a variety of DNA lesions that induce replication stress. However, little is known about its role at stalled replication forks. Here, we report that CSB is recruited to stalled forks in a manner dependent upon its T1031 phosphorylation by CDK. While dispensable for MRE11 association with stalled forks in wild-type cells, CSB is required for further accumulation of MRE11 at stalled forks in BRCA1/2-deficient cells. CSB promotes MRE11-mediated fork degradation in BRCA1/2-deficient cells. CSB possesses an intrinsic ATP-dependent fork reversal activity in vitro, which is activated upon removal of its N-terminal region that is known to autoinhibit CSB's ATPase domain. CSB functions similarly to fork reversal factors SMARCAL1, ZRANB3 and HLTF to regulate slowdown in fork progression upon exposure to replication stress, indicative of a role of CSB in fork reversal in vivo. Furthermore, CSB not only acts epistatically with MRE11 to facilitate fork restart but also promotes RAD52-mediated break-induced replication repair of double-strand breaks arising from cleavage of stalled forks by MUS81 in BRCA1/2-deficient cells. Loss of CSB exacerbates chemosensitivity in BRCA1/2-deficient cells, underscoring an important role of CSB in the treatment of cancer lacking functional BRCA1/2.
Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN , ADN/genética , Proteína Homóloga de MRE11/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteína BRCA1/deficiencia , Proteína BRCA1/metabolismo , Proteína BRCA2/deficiencia , Proteína BRCA2/metabolismo , Línea Celular , Línea Celular Tumoral , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN/genética , Células HCT116 , Células HEK293 , Humanos , Proteína Homóloga de MRE11/metabolismo , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Interferencia de ARNRESUMEN
Understanding chemoresistance mechanisms in BRCA-deficient cells will allow for identification of biomarkers for predicting tumor response to therapy, as well as the design of novel therapeutic approaches targeting this chemoresistance. Here, we show that the protein MED12, a component of the Mediator transcription regulation complex, plays an unexpected role in regulating chemosensitivity in BRCA-deficient cells. We found that loss of MED12 confers resistance to cisplatin and PARP inhibitors in both BRCA1- and BRCA2-deficient cells, which is associated with restoration of both homologous recombination and replication fork stability. Surprisingly, MED12-controlled chemosensitivity does not involve a function of the Mediator complex, but instead reflects a distinct role of MED12 in suppression of the TGFß pathway. Importantly, we show that ectopic activation of the TGFß pathway is enough to overcome the fork protection and DNA repair defects of BRCA-mutant cells, resulting in chemoresistance. Our work identifies the MED12-TGFß module as an important regulator of genomic stability and chemosensitivity in BRCA-deficient cells.
Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Replicación del ADN/genética , Resistencia a Antineoplásicos/genética , Complejo Mediador/genética , Factor de Crecimiento Transformador beta/genética , Antineoplásicos/farmacología , Proteína BRCA1/deficiencia , Proteína BRCA1/metabolismo , Proteína BRCA2/deficiencia , Proteína BRCA2/metabolismo , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cisplatino/farmacología , ADN/química , ADN/genética , ADN/metabolismo , Reparación del ADN , Células HeLa , Humanos , Complejo Mediador/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Interferencia de ARN , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Synthetic lethality strategies for cancer therapy exploit cancer-specific genetic defects to identify targets that are uniquely essential to the survival of tumor cells. Here we show RAD27/FEN1, which encodes flap endonuclease 1 (FEN1), a structure-specific nuclease with roles in DNA replication and repair, and has the greatest number of synthetic lethal interactions with Saccharomyces cerevisiae genome instability genes, is a druggable target for an inhibitor-based approach to kill cancers with defects in homologous recombination (HR). The vulnerability of cancers with HR defects to FEN1 loss was validated by studies showing that small-molecule FEN1 inhibitors and FEN1 small interfering RNAs (siRNAs) selectively killed BRCA1- and BRCA2-defective human cell lines. Furthermore, the differential sensitivity to FEN1 inhibition was recapitulated in mice, where a small-molecule FEN1 inhibitor reduced the growth of tumors established from drug-sensitive but not drug-resistant cancer cell lines. FEN1 inhibition induced a DNA damage response in both sensitive and resistant cell lines; however, sensitive cell lines were unable to recover and replicate DNA even when the inhibitor was removed. Although FEN1 inhibition activated caspase to higher levels in sensitive cells, this apoptotic response occurred in p53-defective cells and cell killing was not blocked by a pan-caspase inhibitor. These results suggest that FEN1 inhibitors have the potential for therapeutically targeting HR-defective cancers such as those resulting from BRCA1 and BRCA2 mutations, and other genetic defects.
Asunto(s)
Antineoplásicos/farmacología , Endonucleasas de ADN Solapado/antagonistas & inhibidores , Recombinación Homóloga/efectos de los fármacos , Neoplasias/genética , Animales , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Proteína BRCA2/deficiencia , Proteína BRCA2/genética , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Endonucleasas de ADN Solapado/genética , Inestabilidad Genómica/genética , Humanos , Ratones , Neoplasias/tratamiento farmacológico , ARN Interferente Pequeño/farmacología , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Mutaciones Letales Sintéticas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: The majority of BRCA1-mutant breast cancers are characterized by a triple-negative phenotype and a basal-like molecular subtype, associated with aggressive clinical behavior. Current treatment options are limited, highlighting the need for the development of novel targeted therapies for this tumor subtype. METHODS: Our group previously showed that EZH2 is functionally relevant in BRCA1-deficient breast tumors and blocking EZH2 enzymatic activity could be a potent treatment strategy. To validate the role of EZH2 as a therapeutic target and to identify new synergistic drug combinations, we performed a high-throughput drug combination screen in various cell lines derived from BRCA1-deficient and -proficient mouse mammary tumors. RESULTS: We identified the combined inhibition of EZH2 and the proximal DNA damage response kinase ATM as a novel synthetic lethality-based therapy for the treatment of BRCA1-deficient breast tumors. We show that the combined treatment with the EZH2 inhibitor GSK126 and the ATM inhibitor AZD1390 led to reduced colony formation, increased genotoxic stress, and apoptosis-mediated cell death in BRCA1-deficient mammary tumor cells in vitro. These findings were corroborated by in vivo experiments showing that simultaneous inhibition of EZH2 and ATM significantly increased anti-tumor activity in mice bearing BRCA1-deficient mammary tumors. CONCLUSION: Taken together, we identified a synthetic lethal interaction between EZH2 and ATM and propose this synergistic interaction as a novel molecular combination for the treatment of BRCA1-mutant breast cancer.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA1 , Neoplasias de la Mama , Proteína Potenciadora del Homólogo Zeste 2 , Indoles , Inhibidores de Proteínas Quinasas , Piridonas , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/deficiencia , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Humanos , Indoles/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Piridonas/farmacología , Mutaciones Letales SintéticasRESUMEN
To exploit vulnerabilities of tumors, it is urgent to identify associated defects in genome maintenance. One unsolved problem is the mechanism of regulation of DNA double-strand break repair by REV7 in complex with 53BP1 and RIF1, and its influence on repair pathway choice between homologous recombination and non-homologous end-joining. We searched for REV7-associated factors in human cells and found FAM35A, a previously unstudied protein with an unstructured N-terminal region and a C-terminal region harboring three OB-fold domains similar to single-stranded DNA-binding protein RPA, as novel interactor of REV7/RIF1/53BP1. FAM35A re-localized in damaged cell nuclei, and its knockdown caused sensitivity to DNA-damaging agents. In a BRCA1-mutant cell line, however, depletion of FAM35A increased resistance to camptothecin, suggesting that FAM35A participates in processing of DNA ends to allow more efficient DNA repair. We found FAM35A absent in one widely used BRCA1-mutant cancer cell line (HCC1937) with anomalous resistance to PARP inhibitors. A survey of FAM35A alterations revealed that the gene is altered at the highest frequency in prostate cancers (up to 13%) and significantly less expressed in metastatic cases, revealing promise for FAM35A as a therapeutically relevant cancer marker.