Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 730
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(4): 786-802.e28, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36754049

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that results from many diverse genetic causes. Although therapeutics specifically targeting known causal mutations may rescue individual types of ALS, these approaches cannot treat most cases since they have unknown genetic etiology. Thus, there is a pressing need for therapeutic strategies that rescue multiple forms of ALS. Here, we show that pharmacological inhibition of PIKFYVE kinase activates an unconventional protein clearance mechanism involving exocytosis of aggregation-prone proteins. Reducing PIKFYVE activity ameliorates ALS pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of ALS including C9ORF72, TARDBP, FUS, and sporadic. These findings highlight a potential approach for mitigating ALS pathogenesis that does not require stimulating macroautophagy or the ubiquitin-proteosome system.


Asunto(s)
Esclerosis Amiotrófica Lateral , Fosfatidilinositol 3-Quinasas , Animales , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras , Mutación , Proteína FUS de Unión a ARN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Modelos Animales de Enfermedad
2.
Annu Rev Biochem ; 87: 351-390, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29195049

RESUMEN

In this review, we describe speculative ideas and early stage research concerning the flow of genetic information from the nuclear residence of genes to the disparate, cytoplasmic sites of protein synthesis. We propose that this process of information transfer is meticulously guided by transient structures formed from protein segments of low sequence complexity/intrinsic disorder. These low complexity domains are ubiquitously associated with regulatory proteins that control gene expression and RNA biogenesis, but they are also found in the central channel of nuclear pores, the nexus points of intermediate filament assembly, and the locations of action of other well-studied cellular proteins and pathways. Upon being organized into localized cellular positions via mechanisms utilizing properly folded protein domains, thereby facilitating elevated local concentration, certain low complexity domains adopt cross-ß interactions that are both structurally specific and labile to disassembly. These weakly tethered assemblies, we propose, are built to relay the passage of genetic information from one site to another within a cell, ensuring that the process is of extreme fidelity.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Biológicos , Animales , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Expresión Génica , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Humanos , Hidrogeles , Proteínas Intrínsecamente Desordenadas/química , Modelos Moleculares , Mutación , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
3.
Cell ; 173(3): 549-553, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677508

RESUMEN

Nuclear import receptors are central players in transporting protein cargoes into the nucleus. Moving beyond this role, four newly published articles describe a function in regulating supramolecular assemblies by fine-tuning the phase separating properties of RNA-binding proteins, which has implications for a variety of devastating neurodegenerative disorders.


Asunto(s)
Transporte Activo de Núcleo Celular , Carioferinas/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Esclerosis Amiotrófica Lateral/terapia , Animales , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Biológicos , Enfermedades Neurodegenerativas/terapia , Proteoma , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo
4.
Cell ; 173(3): 720-734.e15, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677515

RESUMEN

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular ß-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


Asunto(s)
Arginina/química , Chaperonas Moleculares/química , Proteína FUS de Unión a ARN/química , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Cationes , Metilación de ADN , Demencia Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Proteína FUS de Unión a ARN/metabolismo , Tirosina/química , Xenopus laevis
5.
Cell ; 171(3): 615-627.e16, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28942918

RESUMEN

Polymerization and phase separation of proteins containing low-complexity (LC) domains are important factors in gene expression, mRNA processing and trafficking, and localization of translation. We have used solid-state nuclear magnetic resonance methods to characterize the molecular structure of self-assembling fibrils formed by the LC domain of the fused in sarcoma (FUS) RNA-binding protein. From the 214-residue LC domain of FUS (FUS-LC), a segment of only 57 residues forms the fibril core, while other segments remain dynamically disordered. Unlike pathogenic amyloid fibrils, FUS-LC fibrils lack hydrophobic interactions within the core and are not polymorphic at the molecular structural level. Phosphorylation of core-forming residues by DNA-dependent protein kinase blocks binding of soluble FUS-LC to FUS-LC hydrogels and dissolves phase-separated, liquid-like FUS-LC droplets. These studies offer a structural basis for understanding LC domain self-assembly, phase separation, and regulation by post-translational modification.


Asunto(s)
Proteína FUS de Unión a ARN/química , Secuencia de Aminoácidos , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Dominios Proteicos , Proteína FUS de Unión a ARN/metabolismo
6.
Annu Rev Biochem ; 84: 355-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25494299

RESUMEN

Members of the FET protein family, consisting of FUS, EWSR1, and TAF15, bind to RNA and contribute to the control of transcription, RNA processing, and the cytoplasmic fates of messenger RNAs in metazoa. FET proteins can also bind DNA, which may be important in transcription and DNA damage responses. FET proteins are of medical interest because chromosomal rearrangements of their genes promote various sarcomas and because point mutations in FUS or TAF15 can cause neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar dementia. Recent results suggest that both the normal and pathological effects of FET proteins are modulated by low-complexity or prion-like domains, which can form higher-order assemblies with novel interaction properties. Herein, we review FET proteins with an emphasis on how the biochemical properties of FET proteins may relate to their biological functions and to pathogenesis.


Asunto(s)
Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transporte Activo de Núcleo Celular , Animales , Reparación del ADN , Humanos , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Procesamiento Postranscripcional del ARN , Proteína FUS de Unión a ARN/química , Proteínas de Unión al ARN/química , Factores Asociados con la Proteína de Unión a TATA/química , Transcripción Genética
7.
Cell ; 162(5): 1066-77, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26317470

RESUMEN

Many proteins contain disordered regions of low-sequence complexity, which cause aging-associated diseases because they are prone to aggregate. Here, we study FUS, a prion-like protein containing intrinsically disordered domains associated with the neurodegenerative disease ALS. We show that, in cells, FUS forms liquid compartments at sites of DNA damage and in the cytoplasm upon stress. We confirm this by reconstituting liquid FUS compartments in vitro. Using an in vitro "aging" experiment, we demonstrate that liquid droplets of FUS protein convert with time from a liquid to an aggregated state, and this conversion is accelerated by patient-derived mutations. We conclude that the physiological role of FUS requires forming dynamic liquid-like compartments. We propose that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid-like compartments lie at the heart of ALS and, presumably, other age-related diseases.


Asunto(s)
Envejecimiento/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Mutación , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/genética , Envejecimiento/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Núcleo Celular/química , Citoplasma/química , Humanos , Priones/química , Agregado de Proteínas , Estructura Terciaria de Proteína , Proteína FUS de Unión a ARN/metabolismo
8.
Mol Cell ; 82(5): 969-985.e11, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182479

RESUMEN

Poly(ADP-ribose) (PAR) is an RNA-like polymer that regulates an increasing number of biological processes. Dysregulation of PAR is implicated in neurodegenerative diseases characterized by abnormal protein aggregation, including amyotrophic lateral sclerosis (ALS). PAR forms condensates with FUS, an RNA-binding protein linked with ALS, through an unknown mechanism. Here, we demonstrate that a strikingly low concentration of PAR (1 nM) is sufficient to trigger condensation of FUS near its physiological concentration (1 µM), which is three orders of magnitude lower than the concentration at which RNA induces condensation (1 µM). Unlike RNA, which associates with FUS stably, PAR interacts with FUS transiently, triggering FUS to oligomerize into condensates. Moreover, inhibition of a major PAR-synthesizing enzyme, PARP5a, diminishes FUS condensation in cells. Despite their structural similarity, PAR and RNA co-condense with FUS, driven by disparate modes of interaction with FUS. Thus, we uncover a mechanism by which PAR potently seeds FUS condensation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Poli Adenosina Difosfato Ribosa , Esclerosis Amiotrófica Lateral/genética , Humanos , Poli Adenosina Difosfato Ribosa/metabolismo , ARN/genética , Proteína FUS de Unión a ARN/metabolismo
9.
Immunity ; 53(6): 1151-1167.e6, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33159853

RESUMEN

Establishment of B-lineage-specific gene expression requires the binding of transcription factors to inaccessible chromatin of progenitors. The transcription factor EBF1 can bind genomic regions prior to the detection of chromatin accessibility in a manner dependent on EBF1's C-terminal domain (CTD) and independent of cooperating transcription factors. Here, we studied the mechanism whereby the CTD enables this pioneering function. The CTD of EBF1 was dispensable for initial chromatin targeting but stabilized occupancy via recruitment of the chromatin remodeler Brg1. We found that the CTD harbors a prion-like domain (PLD) with an ability of liquid-liquid phase separation, which was enhanced by interaction of EBF1 with the RNA-binding protein FUS. Brg1 also partitioned into phase-separated FUS condensates and coincided with EBF1 and FUS foci in pro-B cells. Heterologous PLDs conferred pioneering function on EBF1ΔCTD. Thus, the phase separation ability of EBF1 facilitates Brg1-mediated chromatin opening and the transition of naive progenitor chromatin to B-lineage-committed chromatin.


Asunto(s)
Linfocitos B/metabolismo , Cromatina/metabolismo , Priones/química , Transactivadores/metabolismo , Secuencia de Aminoácidos , Linfocitos B/citología , ADN Helicasas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Transición de Fase , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/metabolismo , Dominios Proteicos , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Transactivadores/química , Factores de Transcripción/metabolismo
10.
Cell ; 156(1-2): 170-82, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439375

RESUMEN

There are no therapies that reverse the proteotoxic misfolding events that underpin fatal neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Hsp104, a conserved hexameric AAA+ protein from yeast, solubilizes disordered aggregates and amyloid but has no metazoan homolog and only limited activity against human neurodegenerative disease proteins. Here, we reprogram Hsp104 to rescue TDP-43, FUS, and α-synuclein proteotoxicity by mutating single residues in helix 1, 2, or 3 of the middle domain or the small domain of nucleotide-binding domain 1. Potentiated Hsp104 variants enhance aggregate dissolution, restore proper protein localization, suppress proteotoxicity, and in a C. elegans PD model attenuate dopaminergic neurodegeneration. Potentiating mutations reconfigure how Hsp104 subunits collaborate, desensitize Hsp104 to inhibition, obviate any requirement for Hsp70, and enhance ATPase, translocation, and unfoldase activity. Our work establishes that disease-associated aggregates and amyloid are tractable targets and that enhanced disaggregases can restore proteostasis and mitigate neurodegeneration.


Asunto(s)
Caenorhabditis elegans , Modelos Animales de Enfermedad , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/química , Humanos , Modelos Moleculares , Mutagénesis , Neuronas/citología , Neuronas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Pliegue de Proteína , Estructura Terciaria de Proteína , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Deficiencias en la Proteostasis/terapia , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , alfa-Sinucleína/metabolismo
11.
Cell ; 155(5): 1049-1060, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24267890

RESUMEN

The low-complexity (LC) domains of the products of the fused in sarcoma (FUS), Ewings sarcoma (EWS), and TAF15 genes are translocated onto a variety of different DNA-binding domains and thereby assist in driving the formation of cancerous cells. In the context of the translocated fusion proteins, these LC sequences function as transcriptional activation domains. Here, we show that polymeric fibers formed from these LC domains directly bind the C-terminal domain (CTD) of RNA polymerase II in a manner reversible by phosphorylation of the iterated, heptad repeats of the CTD. Mutational analysis indicates that the degree of binding between the CTD and the LC domain polymers correlates with the strength of transcriptional activation. These studies offer a simple means of conceptualizing how RNA polymerase II is recruited to active genes in its unphosphorylated state and released for elongation following phosphorylation of the CTD.


Asunto(s)
ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Activación Transcripcional , Células HeLa , Humanos , Hidrogeles/química , Hidrogeles/metabolismo , Repeticiones de Microsatélite , Fosforilación , Polimerizacion , Estructura Terciaria de Proteína , Proteína EWS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo
12.
Mol Cell ; 80(4): 666-681.e8, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33159856

RESUMEN

The RNA-binding protein fused in sarcoma (FUS) can form pathogenic inclusions in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). Over 70 mutations in Fus are linked to ALS/FTLD. In patients, all Fus mutations are heterozygous, indicating that the mutant drives disease progression despite the presence of wild-type (WT) FUS. Here, we demonstrate that ALS/FTLD-linked FUS mutations in glycine (G) strikingly drive formation of droplets that do not readily interact with WT FUS, whereas arginine (R) mutants form mixed condensates with WT FUS. Remarkably, interactions between WT and G mutants are disfavored at the earliest stages of FUS nucleation. In contrast, R mutants physically interact with the WT FUS such that WT FUS recovers the mutant defects by reducing droplet size and increasing dynamic interactions with RNA. This result suggests disparate molecular mechanisms underlying ALS/FTLD pathogenesis and differing recovery potential depending on the type of mutation.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/patología , Glicina/metabolismo , Mutación , Neuroblastoma/patología , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo , ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Glicina/química , Glicina/genética , Humanos , Cuerpos de Inclusión , Neuroblastoma/genética , Neuroblastoma/metabolismo , Conformación Proteica , ARN/química , ARN/genética , Proteína FUS de Unión a ARN/genética , Células Tumorales Cultivadas
13.
Genes Dev ; 34(11-12): 785-805, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381627

RESUMEN

Dysregulation of the DNA/RNA-binding protein FUS causes certain subtypes of ALS/FTD by largely unknown mechanisms. Recent evidence has shown that FUS toxic gain of function due either to mutations or to increased expression can disrupt critical cellular processes, including mitochondrial functions. Here, we demonstrate that in human cells overexpressing wild-type FUS or expressing mutant derivatives, the protein associates with multiple mRNAs, and these are enriched in mRNAs encoding mitochondrial respiratory chain components. Notably, this sequestration leads to reduced levels of the encoded proteins, which is sufficient to bring about disorganized mitochondrial networks, reduced aerobic respiration and increased reactive oxygen species. We further show that mutant FUS associates with mitochondria and with mRNAs encoded by the mitochondrial genome. Importantly, similar results were also observed in fibroblasts derived from ALS patients with FUS mutations. Finally, we demonstrate that FUS loss of function does not underlie the observed mitochondrial dysfunction, and also provides a mechanism for the preferential sequestration of the respiratory chain complex mRNAs by FUS that does not involve sequence-specific binding. Together, our data reveal that respiratory chain complex mRNA sequestration underlies the mitochondrial defects characteristic of ALS/FTD and contributes to the FUS toxic gain of function linked to this disease spectrum.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Regulación de la Expresión Génica/genética , Mitocondrias/patología , ARN Mensajero/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Línea Celular , Respiración de la Célula/genética , Células Cultivadas , Transporte de Electrón/genética , Genoma Mitocondrial , Humanos , Mitocondrias/genética , Mutación , Agregación Patológica de Proteínas/genética , Unión Proteica/genética
14.
Mol Cell ; 73(3): 490-504.e6, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30581145

RESUMEN

Fused in sarcoma (FUS) is an RNA binding protein involved in regulating many aspects of RNA processing and linked to several neurodegenerative diseases. Transcriptomics studies indicate that FUS binds a large variety of RNA motifs, suggesting that FUS RNA binding might be quite complex. Here, we present solution structures of FUS zinc finger (ZnF) and RNA recognition motif (RRM) domains bound to RNA. These structures show a bipartite binding mode of FUS comprising of sequence-specific recognition of a NGGU motif via the ZnF and an unusual shape recognition of a stem-loop RNA via the RRM. In addition, sequence-independent interactions via the RGG repeats significantly increase binding affinity and promote destabilization of structured RNA conformation, enabling additional binding. We further show that disruption of the RRM and ZnF domains abolishes FUS function in splicing. Altogether, our results rationalize why deciphering the RNA binding mode of FUS has been so challenging.


Asunto(s)
Proteína FUS de Unión a ARN/química , ARN/química , Sitios de Unión , Células HeLa , Humanos , Modelos Moleculares , Motivos de Nucleótidos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN/genética , ARN/metabolismo , Motivo de Reconocimiento de ARN , Empalme del ARN , Estabilidad del ARN , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Relación Estructura-Actividad , Dedos de Zinc
15.
Nat Chem Biol ; 20(8): 1044-1052, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38467846

RESUMEN

Phase transitions are important to understand cell dynamics, and the maturation of liquid droplets is relevant to neurodegenerative disorders. We combined NMR and Raman spectroscopies with microscopy to follow, over a period of days to months, droplet maturation of the protein fused in sarcoma (FUS). Our study reveals that the surface of the droplets plays a critical role in this process, while RNA binding prevents it. The maturation kinetics are faster in an agarose-stabilized biphasic sample compared with a monophasic condensed sample, owing to the larger surface-to-volume ratio. In addition, Raman spectroscopy reports structural differences upon maturation between the inside and the surface of droplets, which is comprised of ß-sheet content, as revealed by solid-state NMR. In agreement with these observations, a solid crust-like shell is observed at the surface using microaspiration. Ultimately, matured droplets were converted into fibrils involving the prion-like domain as well as the first RGG motif.


Asunto(s)
Proteína FUS de Unión a ARN , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo , Humanos , Conformación Proteica en Lámina beta , Espectrometría Raman , Transición de Fase , Propiedades de Superficie , Cinética , Espectroscopía de Resonancia Magnética/métodos
16.
Mol Cell ; 69(5): 787-801.e8, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499134

RESUMEN

MicroRNA-mediated gene silencing is a fundamental mechanism in the regulation of gene expression. It remains unclear how the efficiency of RNA silencing could be influenced by RNA-binding proteins associated with the microRNA-induced silencing complex (miRISC). Here we report that fused in sarcoma (FUS), an RNA-binding protein linked to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), interacts with the core miRISC component AGO2 and is required for optimal microRNA-mediated gene silencing. FUS promotes gene silencing by binding to microRNA and mRNA targets, as illustrated by its action on miR-200c and its target ZEB1. A truncated mutant form of FUS that leads its carriers to an aggressive form of ALS, R495X, impairs microRNA-mediated gene silencing. The C. elegans homolog fust-1 also shares a conserved role in regulating the microRNA pathway. Collectively, our results suggest a role for FUS in regulating the activity of microRNA-mediated silencing.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Silenciador del Gen , MicroARNs/metabolismo , ARN de Helminto/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células HEK293 , Humanos , Ratones , MicroARNs/genética , ARN de Helminto/genética , Proteína FUS de Unión a ARN/genética
17.
Nucleic Acids Res ; 52(10): 5549-5571, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38499486

RESUMEN

Complex organisms generate differential gene expression through the same set of DNA sequences in distinct cells. The communication between chromatin and RNA regulates cellular behavior in tissues. However, little is known about how chromatin, especially histone modifications, regulates RNA polyadenylation. In this study, we found that FUS was recruited to chromatin by H3K36me3 at gene bodies. The H3K36me3 recognition of FUS was mediated by the proline residues in the ZNF domain. After these proline residues were mutated or H3K36me3 was abolished, FUS dissociated from chromatin and bound more to RNA, resulting in an increase in polyadenylation sites far from stop codons genome-wide. A proline mutation corresponding to a mutation in amyotrophic lateral sclerosis contributed to the hyperactivation of mitochondria and hyperdifferentiation in mouse embryonic stem cells. These findings reveal that FUS is an H3K36me3 reader protein that links chromatin-mediated alternative polyadenylation to human disease.


Asunto(s)
Histonas , Poliadenilación , Proteína FUS de Unión a ARN , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Diferenciación Celular/genética , Cromatina/metabolismo , Cromatina/genética , Células HEK293 , Histonas/metabolismo , Histonas/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Células Madre Embrionarias de Ratones , Mutación , Poliadenilación/genética , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Línea Celular , Dominios Proteicos
18.
Proc Natl Acad Sci U S A ; 120(20): e2215828120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155880

RESUMEN

Assemblies of multivalent RNA-binding protein fused in sarcoma (FUS) can exist in the functional liquid-like state as well as less dynamic and potentially toxic amyloid- and hydrogel-like states. How could then cells form liquid-like condensates while avoiding their transformation to amyloids? Here, we show how posttranslational phosphorylation can provide a "handle" that prevents liquid-solid transition of intracellular condensates containing FUS. Using residue-specific coarse-grained simulations, for 85 different mammalian FUS sequences, we show how the number of phosphorylation sites and their spatial arrangement affect intracluster dynamics preventing conversion to amyloids. All atom simulations further confirm that phosphorylation can effectively reduce the ß-sheet propensity in amyloid-prone fragments of FUS. A detailed evolutionary analysis shows that mammalian FUS PLDs are enriched in amyloid-prone stretches compared to control neutrally evolved sequences, suggesting that mammalian FUS proteins evolved to self-assemble. However, in stark contrast to proteins that do not phase-separate for their function, mammalian sequences have phosphosites in close proximity to these amyloid-prone regions. These results suggest that evolution uses amyloid-prone sequences in prion-like domains to enhance phase separation of condensate proteins while enriching phosphorylation sites in close proximity to safeguard against liquid-solid transitions.


Asunto(s)
Amiloide , Priones , Animales , Fosforilación , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Priones/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Dominios Proteicos , Transición de Fase , Mamíferos/metabolismo
19.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38692734

RESUMEN

Aberrant condensation and localization of the RNA-binding protein (RBP) fused in sarcoma (FUS) occur in variants of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Changes in RBP function are commonly associated with changes in axonal cytoskeletal organization and branching in neurodevelopmental disorders. Here, we asked whether branching defects also occur in vivo in a model of FUS-associated disease. We use two reported Xenopus models of ALS/FTD (of either sex), the ALS-associated mutant FUS(P525L) and a mimic of hypomethylated FUS, FUS(16R). Both mutants strongly reduced axonal complexity in vivo. We also observed an axon looping defect for FUS(P525L) in the target area, which presumably arises due to errors in stop cue signaling. To assess whether the loss of axon complexity also had a cue-independent component, we assessed axonal cytoskeletal integrity in vitro. Using a novel combination of fluorescence and atomic force microscopy, we found that mutant FUS reduced actin density in the growth cone, altering its mechanical properties. Therefore, FUS mutants may induce defects during early axonal development.


Asunto(s)
Esclerosis Amiotrófica Lateral , Axones , Demencia Frontotemporal , Mutación , Proteína FUS de Unión a ARN , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Axones/patología , Axones/metabolismo , Animales , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/metabolismo , Femenino , Masculino , Xenopus laevis , Conos de Crecimiento/metabolismo , Humanos , Modelos Animales de Enfermedad
20.
J Biol Chem ; 300(3): 105716, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311174

RESUMEN

FUS and TDP-43 are two self-adhesive aggregation-prone mRNA-binding proteins whose pathological mutations have been linked to neurodegeneration. While TDP-43 and FUS form reversible mRNA-rich compartments in the nucleus, pathological mutations promote their respective cytoplasmic aggregation in neurons with no apparent link between the two proteins except their intertwined function in mRNA processing. By combining analyses in cellular context and at high resolution in vitro, we unraveled that TDP-43 is specifically recruited in FUS assemblies to form TDP-43-rich subcompartments but without reciprocity. The presence of mRNA provides an additional scaffold to promote the mixing between TDP-43 and FUS. Accordingly, we also found that the pathological truncated form of TDP-43, TDP-25, which has an impaired RNA-binding ability, no longer mixes with FUS. Together, these results suggest that the binding of FUS along nascent mRNAs enables TDP-43, which is highly aggregation-prone, to mix with FUS phase to form mRNA-rich subcompartments. A functional link between FUS and TDP-43 may explain their common implication in amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Proteína FUS de Unión a ARN , ARN , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fragmentos de Péptidos/metabolismo , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA