Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.422
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(23): 5791-5806.e19, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34715025

RESUMEN

Dynein-decorated doublet microtubules (DMTs) are critical components of the oscillatory molecular machine of cilia, the axoneme, and have luminal surfaces patterned periodically by microtubule inner proteins (MIPs). Here we present an atomic model of the 48-nm repeat of a mammalian DMT, derived from a cryoelectron microscopy (cryo-EM) map of the complex isolated from bovine respiratory cilia. The structure uncovers principles of doublet microtubule organization and features specific to vertebrate cilia, including previously unknown MIPs, a luminal bundle of tektin filaments, and a pentameric dynein-docking complex. We identify a mechanism for bridging 48- to 24-nm periodicity across the microtubule wall and show that loss of the proteins involved causes defective ciliary motility and laterality abnormalities in zebrafish and mice. Our structure identifies candidate genes for diagnosis of ciliopathies and provides a framework to understand their functions in driving ciliary motility.


Asunto(s)
Cilios/ultraestructura , Microscopía por Crioelectrón , Mamíferos/metabolismo , Proteínas/metabolismo , Proteínas/ultraestructura , Secuencia de Aminoácidos , Animales , Bovinos , Cilios/metabolismo , Dineínas/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Proteínas de Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Moleculares , Mutación/genética , Tráquea/anatomía & histología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Cell ; 180(2): 323-339.e19, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31928845

RESUMEN

Teneurins are ancient metazoan cell adhesion receptors that control brain development and neuronal wiring in higher animals. The extracellular C terminus binds the adhesion GPCR Latrophilin, forming a trans-cellular complex with synaptogenic functions. However, Teneurins, Latrophilins, and FLRT proteins are also expressed during murine cortical cell migration at earlier developmental stages. Here, we present crystal structures of Teneurin-Latrophilin complexes that reveal how the lectin and olfactomedin domains of Latrophilin bind across a spiraling beta-barrel domain of Teneurin, the YD shell. We couple structure-based protein engineering to biophysical analysis, cell migration assays, and in utero electroporation experiments to probe the importance of the interaction in cortical neuron migration. We show that binding of Latrophilins to Teneurins and FLRTs directs the migration of neurons using a contact repulsion-dependent mechanism. The effect is observed with cell bodies and small neurites rather than their processes. The results exemplify how a structure-encoded synaptogenic protein complex is also used for repulsive cell guidance.


Asunto(s)
Proteínas del Tejido Nervioso/ultraestructura , Receptores de Péptidos/metabolismo , Tenascina/metabolismo , Animales , Adhesión Celular/fisiología , Cristalografía por Rayos X/métodos , Células HEK293 , Humanos , Células K562 , Proteínas Repetidas Ricas en Leucina , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestructura , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Ratones , Ratones Endogámicos C57BL/embriología , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Complejo GPIb-IX de Glicoproteína Plaquetaria/ultraestructura , Unión Proteica/fisiología , Proteínas/metabolismo , Proteínas/ultraestructura , Receptores de Superficie Celular/metabolismo , Receptores de Péptidos/ultraestructura , Sinapsis/metabolismo , Tenascina/ultraestructura
3.
Annu Rev Biochem ; 88: 25-33, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30986087

RESUMEN

Over the past six decades, steadily increasing progress in the application of the principles and techniques of the physical sciences to the study of biological systems has led to remarkable insights into the molecular basis of life. Of particular significance has been the way in which the determination of the structures and dynamical properties of proteins and nucleic acids has so often led directly to a profound understanding of the nature and mechanism of their functional roles. The increasing number and power of experimental and theoretical techniques that can be applied successfully to living systems is now ushering in a new era of structural biology that is leading to fundamentally new information about the maintenance of health, the origins of disease, and the development of effective strategies for therapeutic intervention. This article provides a brief overview of some of the most powerful biophysical methods in use today, along with references that provide more detailed information about recent applications of each of them. In addition, this article acts as an introduction to four authoritative reviews in this volume. The first shows the ways that a multiplicity of biophysical methods can be combined with computational techniques to define the architectures of complex biological systems, such as those involving weak interactions within ensembles of molecular components. The second illustrates one aspect of this general approach by describing how recent advances in mass spectrometry, particularly in combination with other techniques, can generate fundamentally new insights into the properties of membrane proteins and their functional interactions with lipid molecules. The third reviewdemonstrates the increasing power of rapidly evolving diffraction techniques, employing the very short bursts of X-rays of extremely high intensity that are now accessible as a result of the construction of free-electron lasers, in particular to carry out time-resolved studies of biochemical reactions. The fourth describes in detail the application of such approaches to probe the mechanism of the light-induced changes associated with bacteriorhodopsin's ability to convert light energy into chemical energy.


Asunto(s)
Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Biología Molecular/métodos , Química Analítica/historia , Microscopía por Crioelectrón/historia , Microscopía por Crioelectrón/instrumentación , Cristalografía por Rayos X/historia , Cristalografía por Rayos X/instrumentación , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Rayos Láser/historia , Espectroscopía de Resonancia Magnética/historia , Espectroscopía de Resonancia Magnética/instrumentación , Espectrometría de Masas/historia , Espectrometría de Masas/instrumentación , Biología Molecular/historia , Biología Molecular/instrumentación , Ácidos Nucleicos/química , Ácidos Nucleicos/ultraestructura , Proteínas/química , Proteínas/ultraestructura
4.
Annu Rev Biochem ; 88: 113-135, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30830798

RESUMEN

Integrative structure modeling computationally combines data from multiple sources of information with the aim of obtaining structural insights that are not revealed by any single approach alone. In the first part of this review, we survey the commonly used sources of structural information and the computational aspects of model building. Throughout the past decade, integrative modeling was applied to various biological systems, with a focus on large protein complexes. Recent progress in the field of cryo-electron microscopy (cryo-EM) has resolved many of these complexes to near-atomic resolution. In the second part of this review, we compare a range of published integrative models with their higher-resolution counterparts with the aim of critically assessing their accuracy. This comparison gives a favorable view of integrative modeling and demonstrates its ability to yield accurate and informative results. We discuss possible roles of integrative modeling in the new era of cryo-EM and highlight future challenges and directions.


Asunto(s)
Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Modelos Moleculares , Proteínas/ultraestructura , Reactivos de Enlaces Cruzados/química , Microscopía por Crioelectrón/historia , Microscopía por Crioelectrón/instrumentación , Cristalografía por Rayos X/historia , Cristalografía por Rayos X/instrumentación , Historia del Siglo XX , Historia del Siglo XXI , Espectroscopía de Resonancia Magnética/historia , Espectroscopía de Resonancia Magnética/instrumentación , Espectrometría de Masas/historia , Espectrometría de Masas/instrumentación , Conformación Proteica , Proteínas/química , Programas Informáticos
5.
Cell ; 161(3): 438-449, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910204

RESUMEN

Cryo-electron microscopy (cryo-EM) of single-particle specimens is used to determine the structure of proteins and macromolecular complexes without the need for crystals. Recent advances in detector technology and software algorithms now allow images of unprecedented quality to be recorded and structures to be determined at near-atomic resolution. However, compared with X-ray crystallography, cryo-EM is a young technique with distinct challenges. This primer explains the different steps and considerations involved in structure determination by single-particle cryo-EM to provide an overview for scientists wishing to understand more about this technique and the interpretation of data obtained with it, as well as a starting guide for new practitioners.


Asunto(s)
Microscopía por Crioelectrón/métodos , Conformación Molecular , Proteínas/ultraestructura , Algoritmos , Microscopía por Crioelectrón/instrumentación , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Conformación Proteica , Proteínas/química , Proteínas/aislamiento & purificación
6.
Nature ; 628(8007): 450-457, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408488

RESUMEN

Interpreting electron cryo-microscopy (cryo-EM) maps with atomic models requires high levels of expertise and labour-intensive manual intervention in three-dimensional computer graphics programs1,2. Here we present ModelAngelo, a machine-learning approach for automated atomic model building in cryo-EM maps. By combining information from the cryo-EM map with information from protein sequence and structure in a single graph neural network, ModelAngelo builds atomic models for proteins that are of similar quality to those generated by human experts. For nucleotides, ModelAngelo builds backbones with similar accuracy to those built by humans. By using its predicted amino acid probabilities for each residue in hidden Markov model sequence searches, ModelAngelo outperforms human experts in the identification of proteins with unknown sequences. ModelAngelo will therefore remove bottlenecks and increase objectivity in cryo-EM structure determination.


Asunto(s)
Microscopía por Crioelectrón , Aprendizaje Automático , Modelos Moleculares , Proteínas , Secuencia de Aminoácidos , Microscopía por Crioelectrón/métodos , Microscopía por Crioelectrón/normas , Cadenas de Markov , Redes Neurales de la Computación , Conformación Proteica , Proteínas/química , Proteínas/ultraestructura , Gráficos por Computador
7.
Nature ; 620(7976): 1089-1100, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37433327

RESUMEN

There has been considerable recent progress in designing new proteins using deep-learning methods1-9. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.


Asunto(s)
Aprendizaje Profundo , Proteínas , Dominio Catalítico , Microscopía por Crioelectrón , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/ultraestructura , Unión Proteica , Proteínas/química , Proteínas/metabolismo , Proteínas/ultraestructura
8.
Mol Cell ; 80(6): 938-939, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33338409

RESUMEN

The goal of structural biology is to understand biological macromolecules in as much detail as possible. Depending on the resolution of the structure obtained, insights will range from understanding interactions at the level of proteins, domains, or atoms. The three mainstay structural biology techniques are X-ray crystallography, nuclear magnetic resonance (NMR) imaging, and cryogenic electron microscopy (cryo-EM). Cryo-EM has rapidly gained popularity in recent years due to a combination of hardware and software advances, leading to the so-called Resolution Revolution (Kühlbrandt, 2014).


Asunto(s)
Microscopía por Crioelectrón , Biología Molecular/métodos , Proteínas/ultraestructura , Cristalografía por Rayos X , Imagenología Tridimensional , Programas Informáticos
9.
Nature ; 587(7835): 683-687, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208940

RESUMEN

Eukaryotic ribosomes consist of a small 40S and a large 60S subunit that are assembled in a highly coordinated manner. More than 200 factors ensure correct modification, processing and folding of ribosomal RNA and the timely incorporation of ribosomal proteins1,2. Small subunit maturation ends in the cytosol, when the final rRNA precursor, 18S-E, is cleaved at site 3 by the endonuclease NOB13. Previous structures of human 40S precursors have shown that NOB1 is kept in an inactive state by its partner PNO14. The final maturation events, including the activation of NOB1 for the decisive rRNA-cleavage step and the mechanisms driving the dissociation of the last biogenesis factors have, however, remained unresolved. Here we report five cryo-electron microscopy structures of human 40S subunit precursors, which describe the compositional and conformational progression during the final steps of 40S assembly. Our structures explain the central role of RIOK1 in the displacement and dissociation of PNO1, which in turn allows conformational changes and activation of the endonuclease NOB1. In addition, we observe two factors, eukaryotic translation initiation factor 1A domain-containing protein (EIF1AD) and leucine-rich repeat-containing protein 47 (LRRC47), which bind to late pre-40S particles near RIOK1 and the central rRNA helix 44. Finally, functional data shows that EIF1AD is required for efficient assembly factor recycling and 18S-E processing. Our results thus enable a detailed understanding of the last steps in 40S formation in human cells and, in addition, provide evidence for principal differences in small ribosomal subunit formation between humans and the model organism Saccharomyces cerevisiae.


Asunto(s)
Microscopía por Crioelectrón , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Activación Enzimática , Células HeLa , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/ultraestructura , Proteínas/química , Proteínas/metabolismo , Proteínas/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Saccharomyces cerevisiae/química
10.
PLoS Comput Biol ; 20(7): e1012180, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39008528

RESUMEN

Converting cryo-electron microscopy (cryo-EM) data into high-quality structural models is a challenging problem of outstanding importance. Current refinement methods often generate unbalanced models in which physico-chemical quality is sacrificed for excellent fit to the data. Furthermore, these techniques struggle to represent the conformational heterogeneity averaged out in low-resolution regions of density maps. Here we introduce EMMIVox, a Bayesian inference approach to determine single-structure models as well as structural ensembles from cryo-EM maps. EMMIVox automatically balances experimental information with accurate physico-chemical models of the system and the surrounding environment, including waters, lipids, and ions. Explicit treatment of data correlation and noise as well as inference of accurate B-factors enable determination of structural models and ensembles with both excellent fit to the data and high stereochemical quality, thus outperforming state-of-the-art refinement techniques. EMMIVox represents a flexible approach to determine high-quality structural models that will contribute to advancing our understanding of the molecular mechanisms underlying biological functions.


Asunto(s)
Teorema de Bayes , Microscopía por Crioelectrón , Modelos Moleculares , Microscopía por Crioelectrón/métodos , Biología Computacional/métodos , Conformación Proteica , Algoritmos , Proteínas/química , Proteínas/ultraestructura
11.
Nature ; 569(7756): 438-442, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068697

RESUMEN

Symmetrical protein cages have evolved to fulfil diverse roles in nature, including compartmentalization and cargo delivery1, and have inspired synthetic biologists to create novel protein assemblies via the precise manipulation of protein-protein interfaces. Despite the impressive array of protein cages produced in the laboratory, the design of inducible assemblies remains challenging2,3. Here we demonstrate an ultra-stable artificial protein cage, the assembly and disassembly of which can be controlled by metal coordination at the protein-protein interfaces. The addition of a gold (I)-triphenylphosphine compound to a cysteine-substituted, 11-mer protein ring triggers supramolecular self-assembly, which generates monodisperse cage structures with masses greater than 2 MDa. The geometry of these structures is based on the Archimedean snub cube and is, to our knowledge, unprecedented. Cryo-electron microscopy confirms that the assemblies are held together by 120 S-Aui-S staples between the protein oligomers, and exist in two chiral forms. The cage shows extreme chemical and thermal stability, yet it readily disassembles upon exposure to reducing agents. As well as gold, mercury(II) is also found to enable formation of the protein cage. This work establishes an approach for linking protein components into robust, higher-order structures, and expands the design space available for supramolecular assemblies to include previously unexplored geometries.


Asunto(s)
Oro/química , Proteínas/química , Microscopía por Crioelectrón , Cisteína/química , Mercurio/química , Modelos Moleculares , Proteínas/ultraestructura
13.
Nature ; 567(7746): 127-131, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30814734

RESUMEN

The GABAB (γ-aminobutyric acid type B) receptor is one of the principal inhibitory neurotransmitter receptors in the brain, and it signals through heterotrimeric G proteins to activate a variety of effectors, including G-protein-coupled inwardly rectifying potassium channels (GIRKs)1,2. GABAB-receptor signalling is tightly regulated by auxiliary subunits called KCTDs, which control the kinetics of GIRK activation and desensitization3-5. However, the mechanistic basis for KCTD modulation of GABAB signalling remains incompletely understood. Here, using a combination of X-ray crystallography, electron microscopy, and functional and biochemical experiments, we reveal the molecular details of KCTD binding to both GABAB receptors and G-protein ßγ subunits. KCTDs associate with the receptor by forming an asymmetric pentameric ring around a region of the receptor carboxy-terminal tail, while a second KCTD domain, H1, engages in a symmetric interaction with five copies of Gßγ in which the G-protein subunits also interact directly with one another. We further show that KCTD binding to Gßγ is highly cooperative, defining a model in which KCTD proteins cooperatively strip G proteins from GIRK channels to induce rapid desensitization following receptor activation. These results provide a framework for understanding the molecular basis for the precise temporal control of GABAB signalling by KCTD proteins.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Proteínas del Tejido Nervioso/química , Proteínas/química , Receptores de GABA-B/química , Receptores de GABA-B/metabolismo , Transducción de Señal , Cristalografía por Rayos X , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/ultraestructura , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/ultraestructura , Humanos , Microscopía Electrónica , Modelos Biológicos , Modelos Moleculares , Proteínas del Tejido Nervioso/ultraestructura , Unión Proteica , Dominios Proteicos , Proteínas/metabolismo , Proteínas/ultraestructura , Receptores de GABA-B/ultraestructura
14.
Annu Rev Biochem ; 78: 723-42, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19489732

RESUMEN

Single-particle electron microscopy (EM) can provide structural information for a large variety of biological molecules, ranging from small proteins to large macromolecular assemblies, without the need to produce crystals. The year 2008 has become a landmark year for single-particle EM as for the first time density maps have been produced at a resolution that made it possible to trace protein backbones or even to build atomic models. In this review, we highlight some of the recent successes achieved by single-particle EM and describe the individual steps involved in producing a density map by this technique. We also discuss some of the remaining challenges and areas, in which further advances would have a great impact on the results that can be achieved by single-particle EM.


Asunto(s)
Microscopía Electrónica/métodos , Humanos , Microscopía Electrónica/instrumentación , Complejos Multiproteicos/ultraestructura , Proteínas/ultraestructura , Virus/ultraestructura
16.
Nature ; 558(7709): 254-259, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29769723

RESUMEN

Volume-regulated anion channels are activated in response to hypotonic stress. These channels are composed of closely related paralogues of the leucine-rich repeat-containing protein 8 (LRRC8) family that co-assemble to form hexameric complexes. Here, using cryo-electron microscopy and X-ray crystallography, we determine the structure of a homomeric channel of the obligatory subunit LRRC8A. This protein conducts ions and has properties in common with endogenous heteromeric channels. Its modular structure consists of a transmembrane pore domain followed by a cytoplasmic leucine-rich repeat domain. The transmembrane domain, which is structurally related to connexin proteins, is wide towards the cytoplasm but constricted on the outside by a structural unit that acts as a selectivity filter. An excess of basic residues in the filter and throughout the pore attracts anions by electrostatic interaction. Our work reveals the previously unknown architecture of volume-regulated anion channels and their mechanism of selective anion conduction.


Asunto(s)
Microscopía por Crioelectrón , Activación del Canal Iónico , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura , Proteínas/química , Proteínas/ultraestructura , Animales , Membrana Celular/metabolismo , Conexinas/química , Cristalografía por Rayos X , Citoplasma/metabolismo , Células HEK293 , Humanos , Proteínas Repetidas Ricas en Leucina , Proteínas de la Membrana/metabolismo , Ratones , Modelos Moleculares , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas/metabolismo , Electricidad Estática , Relación Estructura-Actividad
17.
Nature ; 557(7703): 62-67, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29695864

RESUMEN

Gasdermins mediate inflammatory cell death after cleavage by caspases or other, unknown enzymes. The cleaved N-terminal fragments bind to acidic membrane lipids to form pores, but the mechanism of pore formation remains unresolved. Here we present the cryo-electron microscopy structures of the 27-fold and 28-fold single-ring pores formed by the N-terminal fragment of mouse GSDMA3 (GSDMA3-NT) at 3.8 and 4.2 Å resolutions, and of a double-ring pore at 4.6 Å resolution. In the 27-fold pore, a 108-stranded anti-parallel ß-barrel is formed by two ß-hairpins from each subunit capped by a globular domain. We identify a positively charged helix that interacts with the acidic lipid cardiolipin. GSDMA3-NT undergoes radical conformational changes upon membrane insertion to form long, membrane-spanning ß-strands. We also observe an unexpected additional symmetric ring of GSDMA3-NT subunits that does not insert into the membrane in the double-ring pore, which may represent a pre-pore state of GSDMA3-NT. These structures provide a basis that explains the activities of several mutant gasdermins, including defective mutants that are associated with cancer.


Asunto(s)
Microscopía por Crioelectrón , Proteínas/química , Proteínas/ultraestructura , Animales , Membrana Celular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lípidos de la Membrana/metabolismo , Ratones , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/ultraestructura , Mutación , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/ultraestructura , Neoplasias/genética , Perforina/química , Perforina/metabolismo , Proteínas de Unión a Fosfato , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas/genética , Proteínas/metabolismo , Relación Estructura-Actividad
18.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074752

RESUMEN

Protein nanomaterial design is an emerging discipline with applications in medicine and beyond. A long-standing design approach uses genetic fusion to join protein homo-oligomer subunits via α-helical linkers to form more complex symmetric assemblies, but this method is hampered by linker flexibility and a dearth of geometric solutions. Here, we describe a general computational method for rigidly fusing homo-oligomer and spacer building blocks to generate user-defined architectures that generates far more geometric solutions than previous approaches. The fusion junctions are then optimized using Rosetta to minimize flexibility. We apply this method to design and test 92 dihedral symmetric protein assemblies using a set of designed homodimers and repeat protein building blocks. Experimental validation by native mass spectrometry, small-angle X-ray scattering, and negative-stain single-particle electron microscopy confirms the assembly states for 11 designs. Most of these assemblies are constructed from designed ankyrin repeat proteins (DARPins), held in place on one end by α-helical fusion and on the other by a designed homodimer interface, and we explored their use for cryogenic electron microscopy (cryo-EM) structure determination by incorporating DARPin variants selected to bind targets of interest. Although the target resolution was limited by preferred orientation effects and small scaffold size, we found that the dual anchoring strategy reduced the flexibility of the target-DARPIN complex with respect to the overall assembly, suggesting that multipoint anchoring of binding domains could contribute to cryo-EM structure determination of small proteins.


Asunto(s)
Nanoestructuras/química , Ingeniería de Proteínas , Proteínas/química , Repetición de Anquirina , Nanoestructuras/ultraestructura , Conformación Proteica en Hélice alfa , Proteínas/genética , Proteínas/ultraestructura
19.
Mol Cell ; 58(4): 677-89, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000851

RESUMEN

3D cryo-electron microscopy (cryo-EM) is an expanding structural biology technique that has recently undergone a quantum leap progression in its achievable resolution and its applicability to the study of challenging biological systems. Because crystallization is not required, only small amounts of sample are needed, and because images can be classified in a computer, the technique has the potential to deal with compositional and conformational mixtures. Therefore, cryo-EM can be used to investigate complete and fully functional macromolecular complexes in different functional states, providing a richness of biological insight. In this review, we underlie some of the principles behind the cryo-EM methodology of single particle analysis and discuss some recent results of its application to challenging systems of paramount biological importance. We place special emphasis on new methodological developments that are leading to an explosion of new studies, many of which are reaching resolutions that could only be dreamed of just a couple of years ago.


Asunto(s)
Microscopía por Crioelectrón/métodos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/ultraestructura , Conformación Molecular , Conformación Proteica , Animales , Humanos , Microtúbulos/química , Microtúbulos/ultraestructura , Modelos Moleculares , Proteínas/química , Proteínas/ultraestructura , Reproducibilidad de los Resultados
20.
Proc Natl Acad Sci U S A ; 117(49): 31149-31156, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229587

RESUMEN

Protein design provides a stringent test for our understanding of protein folding. We previously described principles for designing ideal protein structures stabilized by consistent local and nonlocal interactions, based on a set of rules relating local backbone structures to tertiary packing motifs. The principles have made possible the design of protein structures having various topologies with high thermal stability. Whereas nonlocal interactions such as tight hydrophobic core packing have traditionally been considered to be crucial for protein folding and stability, the rules proposed by our previous studies suggest the importance of local backbone structures to protein folding. In this study, we investigated the robustness of folding of de novo designed proteins to the reduction of the hydrophobic core, by extensive mutation of large hydrophobic residues (Leu, Ile) to smaller ones (Val) for one of the designs. Surprisingly, even after 10 Leu and Ile residues were mutated to Val, this mutant with the core mostly filled with Val was found to not be in a molten globule state and fold into the same backbone structure as the original design, with high stability. These results indicate the importance of local backbone structures to the folding ability and high thermal stability of designed proteins and suggest a method for engineering thermally stabilized natural proteins.


Asunto(s)
Conformación Proteica , Ingeniería de Proteínas , Pliegue de Proteína , Proteínas/ultraestructura , Secuencia de Aminoácidos/genética , Sustitución de Aminoácidos/genética , Interacciones Hidrofóbicas e Hidrofílicas , Mutación/genética , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA