Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.126
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 180(6): 1178-1197.e20, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32200800

RESUMEN

Social impairment is frequently associated with mitochondrial dysfunction and altered neurotransmission. Although mitochondrial function is crucial for brain homeostasis, it remains unknown whether mitochondrial disruption contributes to social behavioral deficits. Here, we show that Drosophila mutants in the homolog of the human CYFIP1, a gene linked to autism and schizophrenia, exhibit mitochondrial hyperactivity and altered group behavior. We identify the regulation of GABA availability by mitochondrial activity as a biologically relevant mechanism and demonstrate its contribution to social behavior. Specifically, increased mitochondrial activity causes gamma aminobutyric acid (GABA) sequestration in the mitochondria, reducing GABAergic signaling and resulting in social deficits. Pharmacological and genetic manipulation of mitochondrial activity or GABA signaling corrects the observed abnormalities. We identify Aralar as the mitochondrial transporter that sequesters GABA upon increased mitochondrial activity. This study increases our understanding of how mitochondria modulate neuronal homeostasis and social behavior under physiopathological conditions.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Ácido Aspártico/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Glucosa/metabolismo , Homeostasis , Humanos , Masculino , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Conducta Social , Transmisión Sináptica , Ácido gamma-Aminobutírico/genética
2.
Cell ; 179(7): 1483-1498.e22, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31813625

RESUMEN

Metabolism has been shown to control peripheral immunity, but little is known about its role in central nervous system (CNS) inflammation. Through a combination of proteomic, metabolomic, transcriptomic, and perturbation studies, we found that sphingolipid metabolism in astrocytes triggers the interaction of the C2 domain in cytosolic phospholipase A2 (cPLA2) with the CARD domain in mitochondrial antiviral signaling protein (MAVS), boosting NF-κB-driven transcriptional programs that promote CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis. cPLA2 recruitment to MAVS also disrupts MAVS-hexokinase 2 (HK2) interactions, decreasing HK enzymatic activity and the production of lactate involved in the metabolic support of neurons. Miglustat, a drug used to treat Gaucher and Niemann-Pick disease, suppresses astrocyte pathogenic activities and ameliorates EAE. Collectively, these findings define a novel immunometabolic mechanism that drives pro-inflammatory astrocyte activities, outlines a new role for MAVS in CNS inflammation, and identifies candidate targets for therapeutic intervention.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Astrocitos/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Fosfolipasas A2 Secretoras/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Hexoquinasa/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Fosfolipasas A2 Secretoras/genética
3.
Immunity ; 57(5): 973-986.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38697117

RESUMEN

The ubiquitin-binding endoribonuclease N4BP1 potently suppresses cytokine production by Toll-like receptors (TLRs) that signal through the adaptor MyD88 but is inactivated via caspase-8-mediated cleavage downstream of death receptors, TLR3, or TLR4. Here, we examined the mechanism whereby N4BP1 limits inflammatory responses. In macrophages, deletion of N4BP1 prolonged activation of inflammatory gene transcription at late time points after TRIF-independent TLR activation. Optimal suppression of inflammatory cytokines by N4BP1 depended on its ability to bind polyubiquitin chains, as macrophages and mice-bearing inactivating mutations in a ubiquitin-binding motif in N4BP1 displayed increased TLR-induced cytokine production. Deletion of the noncanonical IκB kinases (ncIKKs), Tbk1 and Ikke, or their adaptor Tank phenocopied N4bp1 deficiency and enhanced macrophage responses to TLR1/2, TLR7, or TLR9 stimulation. Mechanistically, N4BP1 acted in concert with the ncIKKs to limit the duration of canonical IκB kinase (IKKα/ß) signaling. Thus, N4BP1 and the ncIKKs serve as an important checkpoint against over-exuberant innate immune responses.


Asunto(s)
Endorribonucleasas , Quinasa I-kappa B , Inflamación , Macrófagos , Ratones Noqueados , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Receptores Toll-Like , Animales , Ratones , Inflamación/inmunología , Inflamación/metabolismo , Receptores Toll-Like/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Ubiquitina/metabolismo , Citocinas/metabolismo , Ratones Endogámicos C57BL , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética
4.
Immunity ; 57(7): 1603-1617.e7, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38761804

RESUMEN

Recent evidence reveals hyper T follicular helper (Tfh) cell responses in systemic lupus erythematosus (SLE); however, molecular mechanisms responsible for hyper Tfh cell responses and whether they cause SLE are unclear. We found that SLE patients downregulated both ubiquitin ligases, casitas B-lineage lymphoma (CBL) and CBLB (CBLs), in CD4+ T cells. T cell-specific CBLs-deficient mice developed hyper Tfh cell responses and SLE, whereas blockade of Tfh cell development in the mutant mice was sufficient to prevent SLE. ICOS was upregulated in SLE Tfh cells, whose signaling increased BCL6 by attenuating BCL6 degradation via chaperone-mediated autophagy (CMA). Conversely, CBLs restrained BCL6 expression by ubiquitinating ICOS. Blockade of BCL6 degradation was sufficient to enhance Tfh cell responses. Thus, the compromised expression of CBLs is a prevalent risk trait shared by SLE patients and causative to hyper Tfh cell responses and SLE. The ICOS-CBLs axis may be a target to treat SLE.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteína Coestimuladora de Linfocitos T Inducibles , Lupus Eritematoso Sistémico , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-6 , Proteínas Proto-Oncogénicas c-cbl , Células T Auxiliares Foliculares , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/genética , Animales , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-cbl/deficiencia , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Ratones , Humanos , Células T Auxiliares Foliculares/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteolisis , Ubiquitinación , Femenino , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Autofagia/inmunología
5.
Cell ; 175(2): 387-399.e17, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30270043

RESUMEN

HIV-1 broadly neutralizing antibodies (bnAbs) are difficult to induce with vaccines but are generated in ∼50% of HIV-1-infected individuals. Understanding the molecular mechanisms of host control of bnAb induction is critical to vaccine design. Here, we performed a transcriptome analysis of blood mononuclear cells from 47 HIV-1-infected individuals who made bnAbs and 46 HIV-1-infected individuals who did not and identified in bnAb individuals upregulation of RAB11FIP5, encoding a Rab effector protein associated with recycling endosomes. Natural killer (NK) cells had the highest differential expression of RAB11FIP5, which was associated with greater dysregulation of NK cell subsets in bnAb subjects. NK cells from bnAb individuals had a more adaptive/dysfunctional phenotype and exhibited impaired degranulation and cytokine production that correlated with RAB11FIP5 transcript levels. Moreover, RAB11FIP5 overexpression modulated the function of NK cells. These data suggest that NK cells and Rab11 recycling endosomal transport are involved in regulation of HIV-1 bnAb development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Anticuerpos Neutralizantes/inmunología , Infecciones por VIH/inmunología , Vacunas contra el SIDA/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Adulto , Linfocitos B/inmunología , Línea Celular , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica/métodos , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/fisiopatología , VIH-1/patogenicidad , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/fisiología , Masculino , Persona de Mediana Edad
6.
Immunity ; 56(9): 2006-2020.e6, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37473759

RESUMEN

Anti-interleukin-17 (IL-17) therapy has been used in various autoimmune diseases. However, the efficacy is unexpectedly limited in several IL-17-associated diseases, and the mechanism of limited efficacy remains unclear. Here, we show that a molecular complex containing the adaptor molecule Act1 and tyrosine phosphatase SHP2 mediated autonomous IL-17R signaling that accelerated and sustained inflammation. SHP2, aberrantly augmented in various autoimmune diseases, was induced by IL-17A itself in astrocytes and keratinocytes, sustaining chemokine production even upon anti-IL-17 therapies. Mechanistically, SHP2 directly interacted with and dephosphorylated Act1, which replaced Act1-TRAF5 complexes and induced IL-17-independent activation of IL-17R signaling. Genetic or pharmacologic inactivation of SHP2, or blocking Act1-SHP2 interaction, paralyzed both IL-17-induced and IL-17-independent signaling and attenuated primary or relapsing experimental autoimmune encephalomyelitis. Therefore, Act1-SHP2 complexes mediate an alternative pathway for autonomous activation of IL-17R signaling, targeting which could be a therapeutic option for IL-17-related diseases in addition to current antibody therapies.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Receptores de Interleucina-17 , Animales , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inflamación , Progresión de la Enfermedad
7.
Nat Immunol ; 20(12): 1681-1691, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31636462

RESUMEN

Much attention has focused on commensal bacteria in health and disease, but the role of commensal viruses is understudied. Although metagenomic analysis shows that the intestine of healthy humans and animals harbors various commensal viruses and the dysbiosis of these viruses can be associated with inflammatory diseases, there is still a lack of causal data and underlying mechanisms to understand the physiological role of commensal viruses in intestinal homeostasis. In the present study, we show that commensal viruses are essential for the homeostasis of intestinal intraepithelial lymphocytes (IELs). Mechanistically, the cytosolic viral RNA-sensing receptor RIG-I in antigen-presenting cells can recognize commensal viruses and maintain IELs via a type I interferon-independent, but MAVS-IRF1-IL-15 axis-dependent, manner. The recovery of IELs by interleukin-15 administration reverses the susceptibility of commensal virus-depleted mice to dextran sulfate sodium-induced colitis. Collectively, our results indicate that commensal viruses maintain the IELs and consequently sustain intestinal homeostasis via noncanonical RIG-I signaling.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Infecciones por Caliciviridae/inmunología , Colitis/inmunología , Proteína 58 DEAD Box/metabolismo , Intestinos/inmunología , Linfocitos Intraepiteliales/inmunología , Norovirus/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Infecciones por Caliciviridae/virología , Células Cultivadas , Colitis/inducido químicamente , Colitis/virología , Proteína 58 DEAD Box/genética , Sulfato de Dextran , Susceptibilidad a Enfermedades , Homeostasis , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Interleucina-15/metabolismo , Intestinos/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Simbiosis/inmunología
8.
Nat Immunol ; 20(2): 141-151, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643265

RESUMEN

Rheumatoid arthritis is characterized by progressive joint inflammation and affects ~1% of the human population. We noted single-nucleotide polymorphisms (SNPs) in the apoptotic cell-engulfment genes ELMO1, DOCK2, and RAC1 linked to rheumatoid arthritis. As ELMO1 promotes cytoskeletal reorganization during engulfment, we hypothesized that ELMO1 loss would worsen inflammatory arthritis. Surprisingly, Elmo1-deficient mice showed reduced joint inflammation in acute and chronic arthritis models. Genetic and cell-biology studies revealed that ELMO1 associates with receptors linked to neutrophil function in arthritis and regulates activation and early neutrophil recruitment to the joints, without general inhibition of inflammatory responses. Further, neutrophils from the peripheral blood of human donors that carry the SNP in ELMO1 associated with arthritis display increased migratory capacity, whereas ELMO1 knockdown reduces human neutrophil migration to chemokines linked to arthritis. These data identify 'noncanonical' roles for ELMO1 as an important cytoplasmic regulator of specific neutrophil receptors and promoter of arthritis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Neutrófilos/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis/inmunología , Artritis Experimental/diagnóstico , Artritis Experimental/genética , Artritis Experimental/patología , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Quimiotaxis/genética , Quimiotaxis/inmunología , Colágeno/inmunología , Complemento C5a/inmunología , Complemento C5a/metabolismo , Citoplasma/inmunología , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Voluntarios Sanos , Humanos , Microscopía Intravital , Articulaciones/citología , Articulaciones/inmunología , Leucotrieno B4/inmunología , Leucotrieno B4/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/metabolismo , Polimorfismo de Nucleótido Simple , Proteómica , Índice de Severidad de la Enfermedad , Transducción de Señal/inmunología , Imagen de Lapso de Tiempo
9.
Cell ; 164(5): 896-910, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26919428

RESUMEN

Nuclear factor κB (NF-κB), a key activator of inflammation, primes the NLRP3-inflammasome for activation by inducing pro-IL-1ß and NLRP3 expression. NF-κB, however, also prevents excessive inflammation and restrains NLRP3-inflammasome activation through a poorly defined mechanism. We now show that NF-κB exerts its anti-inflammatory activity by inducing delayed accumulation of the autophagy receptor p62/SQSTM1. External NLRP3-activating stimuli trigger a form of mitochondrial (mt) damage that is caspase-1- and NLRP3-independent and causes release of direct NLRP3-inflammasome activators, including mtDNA and mtROS. Damaged mitochondria undergo Parkin-dependent ubiquitin conjugation and are specifically recognized by p62, which induces their mitophagic clearance. Macrophage-specific p62 ablation causes pronounced accumulation of damaged mitochondria and excessive IL-1ß-dependent inflammation, enhancing macrophage death. Therefore, the "NF-κB-p62-mitophagy" pathway is a macrophage-intrinsic regulatory loop through which NF-κB restrains its own inflammation-promoting activity and orchestrates a self-limiting host response that maintains homeostasis and favors tissue repair.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Choque Térmico/metabolismo , Inflamasomas/metabolismo , Mitocondrias/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Choque Térmico/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1 , Ubiquitina-Proteína Ligasas/metabolismo
10.
Cell ; 167(1): 187-202.e17, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662089

RESUMEN

Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Carcinoma/genética , Predisposición Genética a la Enfermedad , Inflamasomas/metabolismo , Queratosis/genética , Neoplasias Cutáneas/genética , Proteínas Adaptadoras Transductoras de Señales/química , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis/química , Carcinoma/patología , Cromosomas Humanos Par 17/genética , Epidermis/patología , Mutación de Línea Germinal , Humanos , Hiperplasia/genética , Hiperplasia/patología , Inflamasomas/genética , Interleucina-1/metabolismo , Queratosis/patología , Proteínas NLR , Comunicación Paracrina , Linaje , Dominios Proteicos , Pirina/química , Transducción de Señal , Neoplasias Cutáneas/patología , Síndrome
11.
Mol Cell ; 83(23): 4370-4385.e9, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38016475

RESUMEN

Targeting epigenetic regulators to potentiate anti-PD-1 immunotherapy converges on the activation of type I interferon (IFN-I) response, mimicking cellular response to viral infection, but how its strength and duration are regulated to impact combination therapy efficacy remains largely unknown. Here, we show that mitochondrial CPT1A downregulation following viral infection restrains, while its induction by epigenetic perturbations sustains, a double-stranded RNA-activated IFN-I response. Mechanistically, CPT1A recruits the endoplasmic reticulum-localized ZDHHC4 to catalyze MAVS Cys79-palmitoylation, which promotes MAVS stabilization and activation by inhibiting K48- but facilitating K63-linked ubiquitination. Further elevation of CPT1A incrementally increases MAVS palmitoylation and amplifies the IFN-I response, which enhances control of viral infection and epigenetic perturbation-induced antitumor immunity. Moreover, CPT1A chemical inducers augment the therapeutic effect of combined epigenetic treatment with PD-1 blockade in refractory tumors. Our study identifies CPT1A as a stabilizer of MAVS activation, and its link to epigenetic perturbation can be exploited for cancer immunotherapy.


Asunto(s)
Interferón Tipo I , Virosis , Humanos , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Lipoilación , Epigénesis Genética , Inmunidad Innata
12.
Mol Cell ; 83(16): 3027-3040.e11, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37541260

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient levels. Dysregulation of mTORC1 results in a broad spectrum of diseases. Glucose is the primary energy supply of cells, and therefore, glucose levels must be accurately conveyed to mTORC1 through highly responsive signaling mechanisms to control mTORC1 activity. Here, we report that glucose-induced mTORC1 activation is regulated by O-GlcNAcylation of Raptor, a core component of mTORC1, in HEK293T cells. Mechanistically, O-GlcNAcylation of Raptor at threonine 700 facilitates the interactions between Raptor and Rag GTPases and promotes the translocation of mTOR to the lysosomal surface, consequently activating mTORC1. In addition, we show that AMPK-mediated phosphorylation of Raptor suppresses Raptor O-GlcNAcylation and inhibits Raptor-Rags interactions. Our findings reveal an exquisitely controlled mechanism, which suggests how glucose coordinately regulates cellular anabolism and catabolism.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Complejos Multiproteicos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células HEK293 , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejos Multiproteicos/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Fosforilación
13.
Immunity ; 54(12): 2877-2892.e7, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34852217

RESUMEN

Adjuvants are critical for improving the quality and magnitude of adaptive immune responses to vaccination. Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have shown great efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanism of action of this vaccine platform is not well-characterized. Using influenza virus and SARS-CoV-2 mRNA and protein subunit vaccines, we demonstrated that our LNP formulation has intrinsic adjuvant activity that promotes induction of strong T follicular helper cell, germinal center B cell, long-lived plasma cell, and memory B cell responses that are associated with durable and protective antibodies in mice. Comparative experiments demonstrated that this LNP formulation outperformed a widely used MF59-like adjuvant, AddaVax. The adjuvant activity of the LNP relies on the ionizable lipid component and on IL-6 cytokine induction but not on MyD88- or MAVS-dependent sensing of LNPs. Our study identified LNPs as a versatile adjuvant that enhances the efficacy of traditional and next-generation vaccine platforms.


Asunto(s)
Linfocitos B/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , SARS-CoV-2/fisiología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas de ARNm/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adyuvantes Inmunológicos , Animales , Células HEK293 , Humanos , Inmunidad Humoral , Interleucina-6/genética , Interleucina-6/metabolismo , Liposomas/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Subunidades de Proteína/genética , Vacunas de ARNm/genética
14.
Mol Cell ; 82(2): 479-491.e7, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34963054

RESUMEN

Genetically encoded biosensors are powerful tools to monitor cellular behavior, but the difficulty in generating appropriate reporters for chromatin factors hampers our ability to dissect epigenetic pathways. Here, we present TRACE (transgene reporters across chromatin environments), a high-throughput, genome-wide technique to generate fluorescent human reporter cell lines responsive to manipulation of epigenetic factors. By profiling GFP expression from a large pool of individually barcoded lentiviral integrants in the presence and absence of a perturbation, we identify reporters responsive to pharmacological inhibition of the histone lysine demethylase LSD1 and genetic ablation of the PRC2 subunit SUZ12. Furthermore, by manipulating the HIV-1 host factor LEDGF through targeted deletion or fusion to chromatin reader domains, we alter lentiviral integration site preferences, thus broadening the types of chromatin examined by TRACE. The phenotypic reporters generated through TRACE will allow the genetic interrogation of a broad range of epigenetic pathways, furthering our mechanistic understanding of chromatin biology.


Asunto(s)
Técnicas Biosensibles , Epigénesis Genética , Genes Reporteros , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Lentivirus/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ensamble y Desensamble de Cromatina , Epigenoma , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Lentivirus/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células THP-1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Mol Cell ; 82(3): 585-597.e11, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120648

RESUMEN

Cullin-RING E3 ligases (CRLs) are essential ubiquitylation enzymes that combine a catalytic core built around cullin scaffolds with ∼300 exchangeable substrate adaptors. To ensure robust signal transduction, cells must constantly form new CRLs by pairing substrate-bound adaptors with their cullins, but how this occurs at the right time and place is still poorly understood. Here, we show that formation of individual CRL complexes is a tightly regulated process. Using CUL3KLHL12 as a model, we found that its co-adaptor PEF1-ALG2 initiates CRL3 formation by releasing KLHL12 from an assembly inhibitor at the endoplasmic reticulum, before co-adaptor monoubiquitylation stabilizes the enzyme for substrate modification. As the co-adaptor also helps recruit substrates, its role in CRL assembly couples target recognition to ubiquitylation. We propose that regulators dedicated to specific CRLs, such as assembly inhibitors or co-adaptors, cooperate with target-agnostic adaptor exchange mechanisms to establish E3 ligase complexes that control metazoan development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Cullin/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Cullin/genética , Células HEK293 , Humanos , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
16.
Nat Immunol ; 18(6): 694-704, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28369050

RESUMEN

The transcription factor STAT5 has a critical role in B cell acute lymphoblastic leukemia (B-ALL). How STAT5 mediates this effect is unclear. Here we found that activation of STAT5 worked together with defects in signaling components of the precursor to the B cell antigen receptor (pre-BCR), including defects in BLNK, BTK, PKCß, NF-κB1 and IKAROS, to initiate B-ALL. STAT5 antagonized the transcription factors NF-κB and IKAROS by opposing regulation of shared target genes. Super-enhancers showed enrichment for STAT5 binding and were associated with an opposing network of transcription factors, including PAX5, EBF1, PU.1, IRF4 and IKAROS. Patients with a high ratio of active STAT5 to NF-κB or IKAROS had more-aggressive disease. Our studies indicate that an imbalance of two opposing transcriptional programs drives B-ALL and suggest that restoring the balance of these pathways might inhibit B-ALL.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Linfocitos B , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción Ikaros/genética , Receptores de Células Precursoras de Linfocitos B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factor de Transcripción STAT5/metabolismo , Agammaglobulinemia Tirosina Quinasa , Animales , Inmunoprecipitación de Cromatina , Citometría de Flujo , Humanos , Factores Reguladores del Interferón/genética , Ratones , Reacción en Cadena de la Polimerasa Multiplex , Subunidad p50 de NF-kappa B/genética , Factor de Transcripción PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Pronóstico , Proteína Quinasa C beta/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Tasa de Supervivencia , Transactivadores/genética
17.
Nat Immunol ; 18(2): 225-235, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28024153

RESUMEN

The mechanisms by which human immunodeficiency virus 1 (HIV-1) avoids immune surveillance by dendritic cells (DCs), and thereby prevents protective adaptive immune responses, remain poorly understood. Here we showed that HIV-1 actively arrested antiviral immune responses by DCs, which contributed to efficient HIV-1 replication in infected individuals. We identified the RNA helicase DDX3 as an HIV-1 sensor that bound abortive HIV-1 RNA after HIV-1 infection and induced DC maturation and type I interferon responses via the signaling adaptor MAVS. Notably, HIV-1 recognition by the C-type lectin receptor DC-SIGN activated the mitotic kinase PLK1, which suppressed signaling downstream of MAVS, thereby interfering with intrinsic host defense during HIV-1 infection. Finally, we showed that PLK1-mediated suppression of DDX3-MAVS signaling was a viral strategy that accelerated HIV-1 replication in infected individuals.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Dendríticas/virología , Infecciones por VIH/inmunología , VIH-1/fisiología , Evasión Inmune , Inmunidad , Macrófagos/virología , Proteínas Adaptadoras Transductoras de Señales/genética , Extractos Celulares , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Estudios de Cohortes , ARN Helicasas DEAD-box/metabolismo , Células Dendríticas/inmunología , Regulación Viral de la Expresión Génica , Células HEK293 , Infecciones por VIH/virología , Interacciones Huésped-Patógeno/genética , Humanos , Interferón beta/sangre , Macrófagos/inmunología , Polimorfismo de Nucleótido Simple , ARN Viral/inmunología , ARN Viral/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Carga Viral/genética
18.
Nat Immunol ; 18(7): 800-812, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28504697

RESUMEN

An imbalance in the lineages of immunosuppressive regulatory T cells (Treg cells) and the inflammatory TH17 subset of helper T cells leads to the development of autoimmune and/or inflammatory disease. Here we found that TAZ, a coactivator of TEAD transcription factors of Hippo signaling, was expressed under TH17 cell-inducing conditions and was required for TH17 differentiation and TH17 cell-mediated inflammatory diseases. TAZ was a critical co-activator of the TH17-defining transcription factor RORγt. In addition, TAZ attenuated Treg cell development by decreasing acetylation of the Treg cell master regulator Foxp3 mediated by the histone acetyltransferase Tip60, which targeted Foxp3 for proteasomal degradation. In contrast, under Treg cell-skewing conditions, TEAD1 expression and sequestration of TAZ from the transcription factors RORγt and Foxp3 promoted Treg cell differentiation. Furthermore, deficiency in TAZ or overexpression of TEAD1 induced Treg cell differentiation, whereas expression of a transgene encoding TAZ or activation of TAZ directed TH17 cell differentiation. Our results demonstrate a pivotal role for TAZ in regulating the differentiation of Treg cells and TH17 cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Diferenciación Celular/inmunología , Colitis/inmunología , Citocinas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Artritis Reumatoide/inmunología , Estudios de Casos y Controles , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Citometría de Flujo , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Células HEK293 , Células HeLa , Histona Acetiltransferasas/metabolismo , Humanos , Immunoblotting , Lisina Acetiltransferasa 5 , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Microscopía Fluorescente , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT3/metabolismo , Síndrome de Sjögren/inmunología , Proteínas Smad/inmunología , Proteínas Smad/metabolismo , Factores de Transcripción de Dominio TEA , Transactivadores/metabolismo , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
19.
Nat Immunol ; 18(7): 733-743, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28481329

RESUMEN

The transcription regulator YAP controls organ size by regulating cell growth, proliferation and apoptosis. However, whether YAP has a role in innate antiviral immunity is largely unknown. Here we found that YAP negatively regulated an antiviral immune response. YAP deficiency resulted in enhanced innate immunity, a diminished viral load, and morbidity in vivo. YAP blocked dimerization of the transcription factor IRF3 and impeded translocation of IRF3 to the nucleus after viral infection. Notably, virus-activated kinase IKKɛ phosphorylated YAP at Ser403 and thereby triggered degradation of YAP in lysosomes and, consequently, relief of YAP-mediated inhibition of the cellular antiviral response. These findings not only establish YAP as a modulator of the activation of IRF3 but also identify a previously unknown regulatory mechanism independent of the kinases Hippo and LATS via which YAP is controlled by the innate immune pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Fibroblastos/inmunología , Quinasa I-kappa B/metabolismo , Inmunidad Innata/inmunología , Lisosomas/metabolismo , Macrófagos/inmunología , Fosfoproteínas/inmunología , Infecciones por Rhabdoviridae/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular , Quimiocina CCL5/genética , Quimiocina CCL5/inmunología , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Técnica del Anticuerpo Fluorescente , Edición Génica , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/genética , Interferón beta/inmunología , Pulmón/inmunología , Pulmón/patología , Ratones , Microscopía Confocal , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Células RAW 264.7 , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones por Rhabdoviridae/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/inmunología , Vesiculovirus , Carga Viral , Proteínas Señalizadoras YAP
20.
Immunity ; 52(3): 475-486.e5, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32164878

RESUMEN

Cytosolic DNA acts as a universal danger-associated molecular pattern (DAMP) signal; however, the mechanisms of self-DNA release into the cytosol and its role in inflammatory tissue injury are not well understood. We found that the internalized bacterial endotoxin lipopolysaccharide (LPS) activated the pore-forming protein Gasdermin D, which formed mitochondrial pores and induced mitochondrial DNA (mtDNA) release into the cytosol of endothelial cells. mtDNA was recognized by the DNA sensor cGAS and generated the second messenger cGAMP, which suppressed endothelial cell proliferation by downregulating YAP1 signaling. This indicated that the surviving endothelial cells in the penumbrium of the inflammatory injury were compromised in their regenerative capacity. In an experimental model of inflammatory lung injury, deletion of cGas in mice restored endothelial regeneration. The results suggest that targeting the endothelial Gasdermin D activated cGAS-YAP signaling pathway could serve as a potential strategy for restoring endothelial function after inflammatory injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular/genética , ADN Mitocondrial/genética , Células Endoteliales/metabolismo , Inflamación/genética , Nucleotidiltransferasas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , ADN Mitocondrial/metabolismo , Células Endoteliales/citología , Células HEK293 , Humanos , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Transducción de Señal , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA