Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.549
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(9): 1817-1818, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37116466

RESUMEN

Proper regulation of protein degradation is essential for cell physiology. In the current issue of Cell, Baek et al. elucidated how a large class of ubiquitin ligase, known as CRL, is assembled and disassembled through a key regulator, CAND1.


Asunto(s)
Factores de Transcripción , Ubiquitina-Proteína Ligasas , Proteínas Cullin/metabolismo , Proteolisis , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Cell ; 186(9): 1895-1911.e21, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37028429

RESUMEN

Cells respond to environmental cues by remodeling their inventories of multiprotein complexes. Cellular repertoires of SCF (SKP1-CUL1-F box protein) ubiquitin ligase complexes, which mediate much protein degradation, require CAND1 to distribute the limiting CUL1 subunit across the family of ∼70 different F box proteins. Yet, how a single factor coordinately assembles numerous distinct multiprotein complexes remains unknown. We obtained cryo-EM structures of CAND1-bound SCF complexes in multiple states and correlated mutational effects on structures, biochemistry, and cellular assays. The data suggest that CAND1 clasps idling catalytic domains of an inactive SCF, rolls around, and allosterically rocks and destabilizes the SCF. New SCF production proceeds in reverse, through SKP1-F box allosterically destabilizing CAND1. The CAND1-SCF conformational ensemble recycles CUL1 from inactive complexes, fueling mixing and matching of SCF parts for E3 activation in response to substrate availability. Our data reveal biogenesis of a predominant family of E3 ligases, and the molecular basis for systemwide multiprotein complex assembly.


Asunto(s)
Proteínas Cullin , Proteínas F-Box , Proteínas Ligasas SKP Cullina F-box , Factores de Transcripción , Humanos , Proteínas Cullin/química , Proteínas Cullin/metabolismo , Proteínas F-Box/metabolismo , Conformación Molecular , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
Annu Rev Biochem ; 90: 403-429, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33823649

RESUMEN

Cullin-RING ubiquitin ligases (CRLs) are dynamic modular platforms that regulate myriad biological processes through target-specific ubiquitylation. Our knowledge of this system emerged from the F-box hypothesis, posited a quarter century ago: Numerous interchangeable F-box proteins confer specific substrate recognition for a core CUL1-based RING E3 ubiquitin ligase. This paradigm has been expanded through the evolution of a superfamily of analogous modular CRLs, with five major families and over 200 different substrate-binding receptors in humans. Regulation is achieved by numerous factors organized in circuits that dynamically control CRL activation and substrate ubiquitylation. CRLs also serve as a vast landscape for developing small molecules that reshape interactions and promote targeted ubiquitylation-dependent turnover of proteins of interest. Here, we review molecular principles underlying CRL function, the role of allosteric and conformational mechanisms in controlling substrate timing and ubiquitylation, and how the dynamics of substrate receptor interchange drives the turnover of selected target proteins to promote cellular decision-making.


Asunto(s)
Proteínas Cullin/química , Proteínas Cullin/metabolismo , Proteínas F-Box/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas F-Box/química , Retroalimentación Fisiológica , Interacciones Huésped-Patógeno/fisiología , Humanos , Proteína NEDD8/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
4.
Cell ; 171(6): 1326-1339.e14, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29103612

RESUMEN

SCF (Skp1-Cullin-F-box) ubiquitin ligases comprise several dozen modular enzymes that have diverse roles in biological regulation. SCF enzymes share a common catalytic core containing Cul1⋅Rbx1, which is directed toward different substrates by a variable substrate receptor (SR) module comprising 1 of 69 F-box proteins bound to Skp1. Despite the broad cellular impact of SCF enzymes, important questions remain about the architecture and regulation of the SCF repertoire, including whether SRs compete for Cul1 and, if so, how this competition is managed. Here, we devise methods that preserve the in vivo assemblages of SCF complexes and apply quantitative mass spectrometry to perform a census of these complexes (the "SCFome") in various states. We show that Nedd8 conjugation and the SR exchange factor Cand1 have a profound effect on shaping the SCFome. Together, these factors enable rapid remodeling of SCF complexes to promote biased assembly of SR modules bound to substrate.


Asunto(s)
Proteínas Ligasas SKP Cullina F-box/química , Proteínas Portadoras/metabolismo , Línea Celular , Cromatografía de Afinidad , Proteínas Cullin/metabolismo , Humanos , Espectrometría de Masas , Proteína NEDD8/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo
5.
Mol Cell ; 84(7): 1304-1320.e16, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38382526

RESUMEN

Cullin-RING ligases (CRLs) ubiquitylate specific substrates selected from other cellular proteins. Substrate discrimination and ubiquitin transferase activity were thought to be strictly separated. Substrates are recognized by substrate receptors, such as Fbox or BCbox proteins. Meanwhile, CRLs employ assorted ubiquitin-carrying enzymes (UCEs, which are a collection of E2 and ARIH-family E3s) specialized for either initial substrate ubiquitylation (priming) or forging poly-ubiquitin chains. We discovered specific human CRL-UCE pairings governing substrate priming. The results reveal pairing of CUL2-based CRLs and UBE2R-family UCEs in cells, essential for efficient PROTAC-induced neo-substrate degradation. Despite UBE2R2's intrinsic programming to catalyze poly-ubiquitylation, CUL2 employs this UCE for geometrically precise PROTAC-dependent ubiquitylation of a neo-substrate and for rapid priming of substrates recruited to diverse receptors. Cryo-EM structures illuminate how CUL2-based CRLs engage UBE2R2 to activate substrate ubiquitylation. Thus, pairing with a specific UCE overcomes E2 catalytic limitations to drive substrate ubiquitylation and targeted protein degradation.


Asunto(s)
Proteínas Cullin , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Poliubiquitina/metabolismo , Proteínas Portadoras/metabolismo
6.
Cell ; 166(5): 1198-1214.e24, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27565346

RESUMEN

Hundreds of human cullin-RING E3 ligases (CRLs) modify thousands of proteins with ubiquitin (UB) to achieve vast regulation. Current dogma posits that CRLs first catalyze UB transfer from an E2 to their client substrates and subsequent polyubiquitylation from various linkage-specific E2s. We report an alternative E3-E3 tagging cascade: many cellular NEDD8-modified CRLs associate with a mechanistically distinct thioester-forming RBR-type E3, ARIH1, and rely on ARIH1 to directly add the first UB and, in some cases, multiple additional individual monoubiquitin modifications onto CRL client substrates. Our data define ARIH1 as a component of the human CRL system, demonstrate that ARIH1 can efficiently and specifically mediate monoubiquitylation of several CRL substrates, and establish principles for how two distinctive E3s can reciprocally control each other for simultaneous and joint regulation of substrate ubiquitylation. These studies have broad implications for CRL-dependent proteostasis and mechanisms of E3-mediated UB ligation.


Asunto(s)
Proteínas Portadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo , Proteínas Portadoras/genética , Proteínas Cullin/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Mutación , Proteína NEDD8 , Poliubiquitina/metabolismo , Proteómica , Especificidad por Sustrato , Enzimas Ubiquitina-Conjugadoras/metabolismo
7.
Cell ; 167(2): 525-538.e14, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716508

RESUMEN

The ubiquitin ligase CUL3 is an essential regulator of neural crest specification whose aberrant activation has been linked to autism, schizophrenia, and hypertension. CUL3 exerts its roles by pairing with ∼90 distinct substrate adaptors, yet how the different CUL3-complexes are activated is poorly understood. Here, we show that CUL3 and its adaptor KLHL12 require two calcium-binding proteins, PEF1 and ALG2, for recognition of their substrate SEC31. PEF1 and ALG2 form a target-specific co-adaptor that translates a transient rise in cytosolic calcium levels into more persistent SEC31 ubiquitylation, which in turn triggers formation of large COPII coats and promotes collagen secretion. As calcium also instructs chondrocyte differentiation and collagen synthesis, calcium-dependent control of CUL3KLHL12 integrates collagen secretion into broader programs of craniofacial bone formation. Our work, therefore, identifies both calcium and CUL3 co-adaptors as important regulators of ubiquitylation events that control human development.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Colágeno/metabolismo , Células HEK293 , Humanos , Especificidad por Sustrato , Ubiquitinación , Proteínas de Transporte Vesicular/metabolismo
8.
Mol Cell ; 83(13): 2159-2160, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37419088

RESUMEN

Most methods for targeted protein degradation (TPD) deliver targets to E3 ubiquitin ligases, leading to proteasomal degradation. In this issue of Molecular Cell, Shaaban et al.1 illuminate cullin-RING ubiquitin ligase (CRL) modulation by CAND1, which can be utilized for TPD.


Asunto(s)
Proteínas Cullin , Ubiquitina-Proteína Ligasas , Proteolisis , Microscopía por Crioelectrón , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo
9.
Mol Cell ; 83(13): 2332-2346.e8, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37339624

RESUMEN

Modular SCF (SKP1-CUL1-Fbox) ubiquitin E3 ligases orchestrate multiple cellular pathways in eukaryotes. Their variable SKP1-Fbox substrate receptor (SR) modules enable regulated substrate recruitment and subsequent proteasomal degradation. CAND proteins are essential for the efficient and timely exchange of SRs. To gain structural understanding of the underlying molecular mechanism, we reconstituted a human CAND1-driven exchange reaction of substrate-bound SCF alongside its co-E3 ligase DCNL1 and visualized it by cryo-EM. We describe high-resolution structural intermediates, including a ternary CAND1-SCF complex, as well as conformational and compositional intermediates representing SR- or CAND1-dissociation. We describe in molecular detail how CAND1-induced conformational changes in CUL1/RBX1 provide an optimized DCNL1-binding site and reveal an unexpected dual role for DCNL1 in CAND1-SCF dynamics. Moreover, a partially dissociated CAND1-SCF conformation accommodates cullin neddylation, leading to CAND1 displacement. Our structural findings, together with functional biochemical assays, help formulate a detailed model for CAND-SCF regulation.


Asunto(s)
Proteínas Cullin , Proteínas Ligasas SKP Cullina F-box , Humanos , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Cullin/metabolismo , Factores de Transcripción/metabolismo , Proteínas Portadoras/metabolismo
10.
Mol Cell ; 82(3): 585-597.e11, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120648

RESUMEN

Cullin-RING E3 ligases (CRLs) are essential ubiquitylation enzymes that combine a catalytic core built around cullin scaffolds with ∼300 exchangeable substrate adaptors. To ensure robust signal transduction, cells must constantly form new CRLs by pairing substrate-bound adaptors with their cullins, but how this occurs at the right time and place is still poorly understood. Here, we show that formation of individual CRL complexes is a tightly regulated process. Using CUL3KLHL12 as a model, we found that its co-adaptor PEF1-ALG2 initiates CRL3 formation by releasing KLHL12 from an assembly inhibitor at the endoplasmic reticulum, before co-adaptor monoubiquitylation stabilizes the enzyme for substrate modification. As the co-adaptor also helps recruit substrates, its role in CRL assembly couples target recognition to ubiquitylation. We propose that regulators dedicated to specific CRLs, such as assembly inhibitors or co-adaptors, cooperate with target-agnostic adaptor exchange mechanisms to establish E3 ligase complexes that control metazoan development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Cullin/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Cullin/genética , Células HEK293 , Humanos , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
11.
Cell ; 157(7): 1671-84, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949976

RESUMEN

Most E3 ligases use a RING domain to activate a thioester-linked E2∼ubiquitin-like protein (UBL) intermediate and promote UBL transfer to a remotely bound target protein. Nonetheless, RING E3 mechanisms matching a specific UBL and acceptor lysine remain elusive, including for RBX1, which mediates NEDD8 ligation to cullins and >10% of all ubiquitination. We report the structure of a trapped RING E3-E2∼UBL-target intermediate representing RBX1-UBC12∼NEDD8-CUL1-DCN1, which reveals the mechanism of NEDD8 ligation and how a particular UBL and acceptor lysine are matched by a multifunctional RING E3. Numerous mechanisms specify cullin neddylation while preventing noncognate ubiquitin ligation. Notably, E2-E3-target and RING-E2∼UBL modules are not optimized to function independently, but instead require integration by the UBL and target for maximal reactivity. The UBL and target regulate the catalytic machinery by positioning the RING-E2∼UBL catalytic center, licensing the acceptor lysine, and influencing E2 reactivity, thereby driving their specific coupling by a multifunctional RING E3.


Asunto(s)
Ubiquitinas/química , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Dominio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Proteínas Cullin/química , Proteínas Cullin/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteína NEDD8 , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo
12.
Mol Cell ; 81(21): 4413-4424.e5, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34480849

RESUMEN

Based on in vitro studies, it has been demonstrated that the DSIF complex, composed of SPT4 and SPT5, regulates the elongation stage of transcription catalyzed by RNA polymerase II (RNA Pol II). The precise cellular function of SPT5 is not clear, because conventional gene depletion strategies for SPT5 result in loss of cellular viability. Using an acute inducible protein depletion strategy to circumvent this issue, we report that SPT5 loss triggers the ubiquitination and proteasomal degradation of the core RNA Pol II subunit RPB1, a process that we show to be evolutionarily conserved from yeast to human cells. RPB1 degradation requires the E3 ligase Cullin 3, the unfoldase VCP/p97, and a novel form of CDK9 kinase complex. Our study demonstrates that SPT5 stabilizes RNA Pol II specifically at promoter-proximal regions, permitting RNA Pol II release from promoters into gene bodies and providing mechanistic insight into the cellular function of SPT5 in safeguarding accurate gene expression.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas Nucleares/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Factores de Elongación Transcripcional/metabolismo , Animales , Supervivencia Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cullin/química , Fibroblastos/metabolismo , Humanos , Ácidos Indolacéticos/química , Ratones , Ubiquitina-Proteína Ligasas Nedd4/química , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/química , Proteoma , Proteómica/métodos , Ubiquitina-Proteína Ligasas/química , Proteína que Contiene Valosina/química , Proteína que Contiene Valosina/metabolismo
13.
EMBO J ; 43(6): 1089-1109, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360992

RESUMEN

Cullin-RING E3 ubiquitin ligase (CRL) family members play critical roles in numerous biological processes and diseases including cancer and Alzheimer's disease. Oligomerization of CRLs has been reported to be crucial for the regulation of their activities. However, the structural basis for its regulation and mechanism of its oligomerization are not fully known. Here, we present cryo-EM structures of oligomeric CRL2FEM1B in its unneddylated state, neddylated state in complex with BEX2 as well as neddylated state in complex with FNIP1/FLCN. These structures reveal that asymmetric dimerization of N8-CRL2FEM1B is critical for the ubiquitylation of BEX2 while FNIP1/FLCN is ubiquitylated by monomeric CRL2FEM1B. Our data present an example of the asymmetric homo-dimerization of CRL. Taken together, this study sheds light on the ubiquitylation strategy of oligomeric CRL2FEM1B according to substrates with different scales.


Asunto(s)
Ubiquitina-Proteína Ligasas , Humanos , Proteínas Cullin/metabolismo , Neoplasias/metabolismo , Proteínas del Tejido Nervioso , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
14.
Cell ; 153(1): 206-15, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23453757

RESUMEN

The modular SCF (Skp1, cullin, and F box) ubiquitin ligases feature a large family of F box protein substrate receptors that enable recognition of diverse targets. However, how the repertoire of SCF complexes is sustained remains unclear. Real-time measurements of formation and disassembly indicate that SCF(Fbxw7) is extraordinarily stable, but, in the Nedd8-deconjugated state, the cullin-binding protein Cand1 augments its dissociation by one-million-fold. Binding and ubiquitylation assays show that Cand1 is a protein exchange factor that accelerates the rate at which Cul1-Rbx1 equilibrates with multiple F box protein-Skp1 modules. Depletion of Cand1 from cells impedes recruitment of new F box proteins to pre-existing Cul1 and profoundly alters the cellular landscape of SCF complexes. We suggest that catalyzed protein exchange may be a general feature of dynamic macromolecular machines and propose a hypothesis for how substrates, Nedd8, and Cand1 collaborate to regulate the cellular repertoire of SCF complexes.


Asunto(s)
Proteínas Ligasas SKP Cullina F-box/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Proteínas Cullin/metabolismo , Escherichia coli/genética , Proteínas F-Box/metabolismo , Humanos , Espectrometría de Masas , Proteínas Ligasas SKP Cullina F-box/química
15.
Cell ; 155(4): 817-29, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209620

RESUMEN

Nucleosome assembly following DNA replication and gene transcription is important to maintain genome stability and epigenetic information. Newly synthesized histones H3-H4 first bind histone chaperone Asf1 and are then transferred to other chaperones for nucleosome assembly. However, it is unknown how H3-H4 is transferred from the Asf1-H3-H4 complex to other chaperones because Asf1 binds H3-H4 with high affinity. Here, we show that yeast Rtt101(Mms1) E3 ubiquitin ligase preferentially binds and ubiquitylates new histone H3 acetylated at lysine 56. Inactivation of Rtt101 or mutating H3 lysine residues ubiquitylated by the Rtt101(Mms1) ligase impairs nucleosome assembly and promotes Asf1-H3 interactions. Similar phenotypes occur in human cells in which the ortholog of Rtt101(Mms1), Cul4A(DDB1), is depleted. These results indicate that the transfer of H3-H4 from the Asf1-H3-H4 complex to other histone chaperones is regulated by a conserved E3 ligase and provide evidence for crosstalk between histone acetylation and ubiquitylation in nucleosome assembly.


Asunto(s)
Proteínas Cullin/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Acetilación , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/química , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Ubiquitinación
16.
Mol Cell ; 77(5): 1092-1106.e9, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31973889

RESUMEN

Co-opting Cullin4 RING ubiquitin ligases (CRL4s) to inducibly degrade pathogenic proteins is emerging as a promising therapeutic strategy. Despite intense efforts to rationally design degrader molecules that co-opt CRL4s, much about the organization and regulation of these ligases remains elusive. Here, we establish protein interaction kinetics and estimation of stoichiometries (PIKES) analysis, a systematic proteomic profiling platform that integrates cellular engineering, affinity purification, chemical stabilization, and quantitative mass spectrometry to investigate the dynamics of interchangeable multiprotein complexes. Using PIKES, we show that ligase assemblies of Cullin4 with individual substrate receptors differ in abundance by up to 200-fold and that Cand1/2 act as substrate receptor exchange factors. Furthermore, degrader molecules can induce the assembly of their cognate CRL4, and higher expression of the associated substrate receptor enhances degrader potency. Beyond the CRL4 network, we show how PIKES can reveal systems level biochemistry for cellular protein networks important to drug development.


Asunto(s)
Cromatografía Líquida de Alta Presión , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Células HEK293 , Humanos , Cinética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Mapas de Interacción de Proteínas , Proteolisis , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética
17.
Trends Biochem Sci ; 48(1): 82-95, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36041947

RESUMEN

The COP9 signalosome (CSN) is a universal regulator of Cullin-RING ubiquitin ligases (CRLs) - a family of modular enzymes that control various cellular processes via timely degradation of key signaling proteins. The CSN, with its eight-subunit architecture, employs multisite binding of CRLs and inactivates CRLs by removing a small ubiquitin-like modifier named neural precursor cell-expressed, developmentally downregulated 8 (Nedd8). Besides the active site of the catalytic subunit CSN5, two allosteric sites are present in the CSN, one of which recognizes the substrate recognition module and the presence of CRL substrates, and the other of which can 'glue' the CSN-CRL complex by recruitment of inositol hexakisphosphate. In this review, we present recent findings on the versatile regulation of CSN-CRL complexes.


Asunto(s)
Proteínas Cullin , Complejos Multiproteicos , Complejos Multiproteicos/química , Proteínas Cullin/metabolismo , Complejo del Señalosoma COP9/metabolismo , Ubiquitina , Dominio Catalítico , Péptido Hidrolasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
18.
EMBO J ; 42(17): e112847, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37365982

RESUMEN

The paralogs CUL4A and CUL4B assemble cullin-RING E3 ubiquitin ligase (CRL) complexes regulating multiple chromatin-associated cellular functions. Although they are structurally similar, we found that the unique N-terminal extension of CUL4B is heavily phosphorylated during mitosis, and the phosphorylation pattern is perturbed in the CUL4B-P50L mutation causing X-linked intellectual disability (XLID). Phenotypic characterization and mutational analysis revealed that CUL4B phosphorylation is required for efficient progression through mitosis, controlling spindle positioning and cortical tension. While CUL4B phosphorylation triggers chromatin exclusion, it promotes binding to actin regulators and to two previously unrecognized CUL4B-specific substrate receptors (DCAFs), LIS1 and WDR1. Indeed, co-immunoprecipitation experiments and biochemical analysis revealed that LIS1 and WDR1 interact with DDB1, and their binding is enhanced by the phosphorylated N-terminal domain of CUL4B. Finally, a human forebrain organoid model demonstrated that CUL4B is required to develop stable ventricular structures that correlate with onset of forebrain differentiation. Together, our study uncovers previously unrecognized DCAFs relevant for mitosis and brain development that specifically bind CUL4B, but not the CUL4B-P50L patient mutant, by a phosphorylation-dependent mechanism.


Asunto(s)
Mitosis , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Cromatina , Encéfalo/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo
19.
EMBO J ; 42(17): e114931, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37528760

RESUMEN

The CUL4 paralogs CUL4A and CUL4B assemble into structurally similar multisubunit ubiquitin E3 ligases (CRL4A/B) that regulate diverse aspects of cell biology. New work in this issue of The EMBO Journal shows that the longer N-terminal tail of CUL4B tells these molecular twins apart, by promoting the formation of paralog-specific CRL4B complexes that control cytoskeletal processes during mitosis and brain development.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Mitosis , Encéfalo/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Ubiquitinación
20.
EMBO J ; 42(21): e113499, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37728254

RESUMEN

The occurrence of plant disease is determined by interactions among host, pathogen, and environment. Air humidity shapes various aspects of plant physiology and high humidity has long been known to promote numerous phyllosphere diseases. However, the molecular basis of how high humidity interferes with plant immunity to favor disease has remained elusive. Here we show that high humidity is associated with an "immuno-compromised" status in Arabidopsis plants. Furthermore, accumulation and signaling of salicylic acid (SA), an important defense hormone, are significantly inhibited under high humidity. NPR1, an SA receptor and central transcriptional co-activator of SA-responsive genes, is less ubiquitinated and displays a lower promoter binding affinity under high humidity. The cellular ubiquitination machinery, particularly the Cullin 3-based E3 ubiquitin ligase mediating NPR1 protein ubiquitination, is downregulated under high humidity. Importantly, under low humidity the Cullin 3a/b mutant plants phenocopy the low SA gene expression and disease susceptibility that is normally observed under high humidity. Our study uncovers a mechanism by which high humidity dampens a major plant defense pathway and provides new insights into the long-observed air humidity influence on diseases.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , Humedad , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Arabidopsis/metabolismo , Plantas/metabolismo , Factores de Transcripción/metabolismo , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA