Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105782, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395304

RESUMEN

Intracellular vesicle fusion is driven by the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and their cofactors, including Sec1/Munc18 (SM), α-SNAP, and NSF. α-SNAP and NSF play multiple layers of regulatory roles in the SNARE assembly, disassembling the cis-SNARE complex and the prefusion SNARE complex. How SM proteins coupled with NSF and α-SNAP regulate SNARE-dependent membrane fusion remains incompletely understood. Munc18c, an SM protein involved in the exocytosis of the glucose transporter GLUT4, binds and activates target (t-) SNAREs to accelerate the fusion reaction through a SNARE-like peptide (SLP). Here, using an in vitro reconstituted system, we discovered that α-SNAP blocks the GLUT4 SNAREs-mediated membrane fusion. Munc18c interacts with t-SNAREs to displace α-SNAP, which overcomes the fusion inhibition. Furthermore, Munc18c shields the trans-SNARE complex from NSF/α-SNAP-mediated disassembly and accelerates SNARE-dependent fusion kinetics in the presence of NSF and α-SNAP. The SLP in domain 3a is indispensable in Munc18c-assisted resistance to NSF and α-SNAP. Together, our findings demonstrate that Munc18c protects the prefusion SNARE complex from α-SNAP and NSF, promoting SNARE-dependent membrane fusion through its SLP.


Asunto(s)
Fusión de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Fusión de Membrana/fisiología , Proteínas Munc18/metabolismo , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Orgánulos/metabolismo , Péptidos/metabolismo , Proteínas SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Animales , Ratones
2.
PLoS Genet ; 17(4): e1009505, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33886546

RESUMEN

The development of male and female gametophytes is a pre-requisite for successful reproduction of angiosperms. Factors mediating vesicular trafficking are among the key regulators controlling gametophytic development. Fusion between vesicles and target membranes requires the assembly of a fusogenic soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) complex, whose disassembly in turn ensures the recycle of individual SNARE components. The disassembly of post-fusion SNARE complexes is controlled by the AAA+ ATPase N-ethylmaleimide-sensitive factor (Sec18/NSF) and soluble NSF attachment protein (Sec17/α-SNAP) in yeast and metazoans. Although non-canonical α-SNAPs have been functionally characterized in soybeans, the biological function of canonical α-SNAPs has yet to be demonstrated in plants. We report here that the canonical α-SNAP in Arabidopsis is essential for male and female gametophytic development. Functional loss of the canonical α-SNAP in Arabidopsis results in gametophytic lethality by arresting the first mitosis during gametogenesis. We further show that Arabidopsis α-SNAP encodes two isoforms due to alternative splicing. Both isoforms interact with the Arabidopsis homolog of NSF whereas have distinct subcellular localizations. The presence of similar alternative splicing of human α-SNAP indicates that functional distinction of two α-SNAP isoforms is evolutionarily conserved.


Asunto(s)
Arabidopsis/genética , Gametogénesis/genética , Desarrollo de la Planta/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Empalme Alternativo/genética , Arabidopsis/crecimiento & desarrollo , Células Germinativas de las Plantas/crecimiento & desarrollo , Mitosis/genética , Proteínas Sensibles a N-Etilmaleimida/genética , Isoformas de Proteínas/genética
3.
Bull Exp Biol Med ; 175(6): 810-813, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37979021

RESUMEN

In the cerebellum, hippocampus, and prefrontal cortex of mature male Wistar rats with trained spatial navigational skill in the Morris water maze, the transcriptional activity the NAPA gene that regulates the transport and secretion of synaptic vesicles, release of neurotransmitters, and protein degradation was determined by real-time PCR. Animals subjected to forced swimming in a time-matched regime (active control) and naïve rats were used as the comparison groups. Suppression of NAPA gene activity was found in the hippocampus and cerebellum of the active control group, while navigation skill training led to a significant increase in gene expression in all brain structures under study. The findings suggest the existence of specific mechanisms regulating NAPA gene activity during the formation of spatial memory and adaptive behavior under stress conditions.


Asunto(s)
Encéfalo , Memoria Espacial , Animales , Masculino , Ratas , Encéfalo/metabolismo , Expresión Génica , Hipocampo/metabolismo , Aprendizaje por Laberinto/fisiología , Ratas Wistar , Memoria Espacial/fisiología , Natación , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética
4.
Phytopathology ; 112(11): 2383-2390, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35439035

RESUMEN

The rhg1-a GmSNAP18 (an α-SNAP) and Rhg4 GmSHMT08 are two major cloned genes conferring soybean cyst nematode resistance in Peking-type soybeans, but the application of α-SNAPs and SHMTs in cyst nematode management remains elusive. In this study, GmSNAP18 and GmSHMT08, together with their orthologs in Arabidopsis, AtSNAP2 (an α-SNAP) and AtSHMT4, were individually transformed into Arabidopsis Col-0 to generate the transgenic lines, and the growth of transgenic plants, beet cyst nematode (BCN) infection phenotypes, and AtSNAP2, AtSHMT4, and AtPR1 expression patterns were analyzed using Arabidopsis-BCN compatible interaction system, in addition with protein-protein interaction assay. Pulldown and BiFC assays revealed that GmSNAP18 and GmSHMT08 interacted with AtSHMT4 and AtSNAP2, respectively. Plant root growth was not impacted by overexpression of GmSNAP18 and AtSNAP2. However, overexpression of GmSHMT08 and AtSHMT4 both increased plant height, additionally, overexpression of GmSHMT08 decreased rosette leaf size. Overexpression of GmSNAP18 and GmSHMT08 both suppressed AtPR1 expression and significantly enhanced BCN susceptibility, while overexpression of AtSNAP2 and AtSHMT4 both substantially boosted AtPR1 expression and remarkably enhanced BCN resistance, in transgenic Arabidopsis. Overexpression of GmSNAP18 reduced, while overexpression of AtSNAP2 unaltered AtSHMT4 expression. Overexpression of GmSHMT08 and AtSHMT4 both suppressed AtSNAP2 expression in transgenic Arabidopsis. Thus, different expression patterns of AtPR1 and AtSHMT4 are likely associated with opposite BCN infection phenotypes of Arabidopsis between overexpressing GmSNAP18 and AtSNAP2, and between overexpressing GmSHMT08 and AtSHMT4; and boosted AtPR1 expression are required for enhanced BCN resistance in Arabidopsis. All these results establish a basis for extension of α-SNAPs and SHMTs in cyst nematode management.


Asunto(s)
Arabidopsis , Beta vulgaris , Quistes , Infecciones por Nematodos , Tylenchoidea , Animales , Arabidopsis/genética , Tylenchoidea/genética , Enfermedades de las Plantas/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Glycine max/genética , Plantas Modificadas Genéticamente/genética , Fenotipo
5.
Proc Natl Acad Sci U S A ; 116(28): 13952-13957, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235584

RESUMEN

R-SNAREs (soluble N-ethylmaleimide-sensitive factor receptor), Q-SNAREs, and Sec1/Munc18 (SM)-family proteins are essential for membrane fusion in exocytic and endocytic trafficking. The yeast vacuolar tethering/SM complex HOPS (homotypic fusion and vacuole protein sorting) increases the fusion of membranes bearing R-SNARE to those with 3Q-SNAREs far more than it enhances their trans-SNARE pairings. We now report that the fusion of these proteoliposomes is also supported by GST-PX or GST-FYVE, recombinant dimeric proteins which tether by binding the phosphoinositides in both membranes. GST-PX is purely a tether, as it supports fusion without SNARE recognition. GST-PX tethering supports the assembly of new, active SNARE complexes rather than enhancing the function of the fusion-inactive SNARE complexes which had spontaneously formed in the absence of a tether. When SNAREs are more disassembled, as by Sec17, Sec18, and ATP (adenosine triphosphate), HOPS is required, and GST-PX does not suffice. We propose a working model where tethering orients SNARE domains for parallel, active assembly.


Asunto(s)
Adenosina Trifosfatasas/química , Glutatión Peroxidasa/química , Proteínas de la Fusión de la Membrana/química , Proteínas R-SNARE/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/química , Proteínas de Transporte Vesicular/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/química , Endocitosis/genética , Exocitosis/genética , Glutatión Peroxidasa/genética , Fusión de Membrana/genética , Proteínas de la Fusión de la Membrana/genética , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Multimerización de Proteína/genética , Transporte de Proteínas/genética , Proteínas R-SNARE/genética , Proteínas Recombinantes/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Vacuolas/química , Vacuolas/genética , Proteínas de Transporte Vesicular/genética
6.
Mol Plant Microbe Interact ; 34(12): 1433-1445, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34343024

RESUMEN

Soybean cyst nematode (SCN) is the most economically damaging pathogen of soybean and host resistance is a core management strategy. The SCN resistance quantitative trait locus cqSCN-006, introgressed from the wild relative Glycine soja, provides intermediate resistance against nematode populations, including those with increased virulence on the heavily used rhg1-b resistance locus. cqSCN-006 was previously fine-mapped to a genome interval on chromosome 15. The present study determined that Glyma.15G191200 at cqSCN-006, encoding a γ-SNAP, contributes to SCN resistance. CRISPR/Cas9-mediated disruption of the cqSCN-006 allele reduced SCN resistance in transgenic roots. There are no encoded amino acid polymorphisms between resistant and susceptible alleles. However, other cqSCN-006-specific DNA polymorphisms in the Glyma.15G191200 promoter and gene body were identified, and we observed differing induction of γ-SNAP protein abundance at SCN infection sites between resistant and susceptible roots. We identified alternative RNA splice forms transcribed from the Glyma.15G191200 γ-SNAP gene and observed differential expression of the splice forms 2 days after SCN infection. Heterologous overexpression of γ-SNAPs in plant leaves caused moderate necrosis, suggesting that careful regulation of this protein is required for cellular homeostasis. Apparently, certain G. soja evolved quantitative SCN resistance through altered regulation of γ-SNAP. Previous work has demonstrated SCN resistance impacts of the soybean α-SNAP proteins encoded by Glyma.18G022500 (Rhg1) and Glyma.11G234500. The present study shows that a different type of SNAP protein can also impact SCN resistance. Little is known about γ-SNAPs in any system, but the present work suggests a role for γ-SNAPs during susceptible responses to cyst nematodes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Quistes , Nematodos , Tylenchoidea , Animales , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Glycine max/genética
7.
BMC Pulm Med ; 21(1): 197, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112136

RESUMEN

BACKGROUND: Hereditary hemorrhagic telangiectasia (HHT) is a disease characterized by arteriovenous malformations in the skin and mucous membranes. We enrolled a large pedigree comprising 32 living members, and screened for mutations responsible for HHT. METHODS: We performed whole-exome sequencing to identify novel mutations in the pedigree after excluding three previously reported HHT-related genes using Sanger sequencing. We then performed in silico functional analysis of candidate mutations that were obtained using a variant filtering strategy to identify mutations responsible for HHT. RESULTS: After screening the HHT-related genes, activin A receptor-like type 1 (ACVRL1), endoglin (ENG), and SMAD family member 4 (SMAD4), we did not detect any co-segregated mutations in this pedigree. Whole-exome sequencing analysis of 7 members and Sanger sequencing analysis of 16 additional members identified a mutation (c.784A > G) in the NSF attachment protein gamma (NAPG) gene that co-segregated with the disease. Functional prediction showed that the mutation was deleterious and might change the conformational stability of the NAPG protein. CONCLUSIONS: NAPG c.784A > G may potentially lead to HHT. These results expand the current understanding of the genetic contributions to HHT pathogenesis.


Asunto(s)
Familia , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Telangiectasia Hemorrágica Hereditaria/genética , China , Femenino , Humanos , Masculino , Mutación , Linaje , Secuenciación del Exoma
8.
Proc Natl Acad Sci U S A ; 115(19): E4512-E4521, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29695628

RESUMEN

N-ethylmaleimide sensitive factor (NSF) and α-soluble NSF attachment protein (α-SNAP) are essential eukaryotic housekeeping proteins that cooperatively function to sustain vesicular trafficking. The "resistance to Heterodera glycines 1" (Rhg1) locus of soybean (Glycine max) confers resistance to soybean cyst nematode, a highly damaging soybean pest. Rhg1 loci encode repeat copies of atypical α-SNAP proteins that are defective in promoting NSF function and are cytotoxic in certain contexts. Here, we discovered an unusual NSF allele (Rhg1-associated NSF on chromosome 07; NSFRAN07 ) in Rhg1+ germplasm. NSFRAN07 protein modeling to mammalian NSF/α-SNAP complex structures indicated that at least three of the five NSFRAN07 polymorphisms reside adjacent to the α-SNAP binding interface. NSFRAN07 exhibited stronger in vitro binding with Rhg1 resistance-type α-SNAPs. NSFRAN07 coexpression in planta was more protective against Rhg1 α-SNAP cytotoxicity, relative to WT NSFCh07 Investigation of a previously reported segregation distortion between chromosome 18 Rhg1 and a chromosome 07 interval now known to contain the Glyma.07G195900 NSF gene revealed 100% coinheritance of the NSFRAN07 allele with disease resistance Rhg1 alleles, across 855 soybean accessions and in all examined Rhg1+ progeny from biparental crosses. Additionally, we show that some Rhg1-mediated resistance is associated with depletion of WT α-SNAP abundance via selective loss of WT α-SNAP loci. Hence atypical coevolution of the soybean SNARE-recycling machinery has balanced the acquisition of an otherwise disruptive housekeeping protein, enabling a valuable disease resistance trait. Our findings further indicate that successful engineering of Rhg1-related resistance in plants will require a compatible NSF partner for the resistance-conferring α-SNAP.


Asunto(s)
Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Glycine max/crecimiento & desarrollo , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Nematodos/fisiología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Animales , Interacciones Huésped-Parásitos , Proteínas Sensibles a N-Etilmaleimida/genética , Enfermedades de las Plantas/parasitología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/parasitología , Polimorfismo de Nucleótido Simple , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Glycine max/genética , Glycine max/parasitología
9.
J Biol Chem ; 294(46): 17168-17185, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31515268

RESUMEN

The homeostasis of most organelles requires membrane fusion mediated by soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs). SNAREs undergo cycles of activation and deactivation as membranes move through the fusion cycle. At the top of the cycle, inactive cis-SNARE complexes on a single membrane are activated, or primed, by the hexameric ATPase associated with the diverse cellular activities (AAA+) protein, N-ethylmaleimide-sensitive factor (NSF/Sec18), and its co-chaperone α-SNAP/Sec17. Sec18-mediated ATP hydrolysis drives the mechanical disassembly of SNAREs into individual coils, permitting a new cycle of fusion. Previously, we found that Sec18 monomers are sequestered away from SNAREs by binding phosphatidic acid (PA). Sec18 is released from the membrane when PA is hydrolyzed to diacylglycerol by the PA phosphatase Pah1. Although PA can inhibit SNARE priming, it binds other proteins and thus cannot be used as a specific tool to further probe Sec18 activity. Here, we report the discovery of a small-molecule compound, we call IPA (inhibitor of priming activity), that binds Sec18 with high affinity and blocks SNARE activation. We observed that IPA blocks SNARE priming and competes for PA binding to Sec18. Molecular dynamics simulations revealed that IPA induces a more rigid NSF/Sec18 conformation, which potentially disables the flexibility required for Sec18 to bind to PA or to activate SNAREs. We also show that IPA more potently and specifically inhibits NSF/Sec18 activity than does N-ethylmaleimide, requiring the administration of only low micromolar concentrations of IPA, demonstrating that this compound could help to further elucidate SNARE-priming dynamics.


Asunto(s)
Adenosina Trifosfatasas/genética , Etilmaleimida/metabolismo , Ácidos Fosfatidicos/química , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequeñas/química , Proteínas de Transporte Vesicular/genética , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/genética , Adenosina Trifosfatasas/química , Fusión de Membrana/efectos de los fármacos , Fusión de Membrana/genética , Lípidos de la Membrana/química , Lípidos de la Membrana/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Simulación de Dinámica Molecular , Proteínas Sensibles a N-Etilmaleimida/química , Proteínas Sensibles a N-Etilmaleimida/genética , Ácidos Fosfatidicos/antagonistas & inhibidores , Proteínas SNARE/química , Proteínas SNARE/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/química , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Vacuolas/genética , Proteínas de Transporte Vesicular/química
10.
PLoS Genet ; 13(4): e1006698, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28403141

RESUMEN

The cellular machinery required for the fusion of constitutive secretory vesicles with the plasma membrane in metazoans remains poorly defined. To address this problem we have developed a powerful, quantitative assay for measuring secretion and used it in combination with combinatorial gene depletion studies in Drosophila cells. This has allowed us to identify at least three SNARE complexes mediating Golgi to PM transport (STX1, SNAP24/29 and Syb; STX1, SNAP24/29 and YKT6; STX4, SNAP24 and Syb). RNAi mediated depletion of YKT6 and VAMP3 in mammalian cells also blocks constitutive secretion suggesting that YKT6 has an evolutionarily conserved role in this process. The unexpected role of YKT6 in plasma membrane fusion may in part explain why RNAi and gene disruption studies have failed to produce the expected phenotypes in higher eukaryotes.


Asunto(s)
Membrana Celular/genética , Proteínas de Drosophila/genética , Proteínas R-SNARE/genética , Proteínas SNARE/genética , Proteína 3 de Membrana Asociada a Vesículas/genética , Animales , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Heterocigoto , Humanos , Fusión de Membrana/genética , Transporte de Proteínas/genética , Proteínas R-SNARE/metabolismo , Interferencia de ARN , Proteínas SNARE/metabolismo , Toxina Shiga I/genética , Toxina Shiga I/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(48): 12749-12754, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29138318

RESUMEN

Autophagy, a unique intracellular membrane-trafficking pathway, is initiated by the formation of an isolation membrane (phagophore) that engulfs cytoplasmic constituents, leading to generation of the autophagosome, a double-membrane vesicle, which is targeted to the lysosome. The outer autophagosomal membrane consequently fuses with the lysosomal membrane. Multiple membrane-fusion events mediated by SNARE molecules have been postulated to promote autophagy. αSNAP, the adaptor molecule for the SNARE-priming enzyme N-ethylmaleimide-sensitive factor (NSF) is known to be crucial for intracellular membrane fusion processes, but its role in autophagy remains unclear. Here we demonstrated that knockdown of αSNAP leads to inhibition of autophagy, manifested by an accumulation of sealed autophagosomes located in close proximity to lysosomes but not fused with them. Under these conditions, moreover, association of both Atg9 and the autophagy-related SNARE protein syntaxin17 with the autophagosome remained unaffected. Finally, our results suggested that under starvation conditions, the levels of αSNAP, although low, are nevertheless sufficient to partially promote the SNARE priming required for autophagy. Taken together, these findings indicate that while autophagosomal-lysosomal membrane fusion is sensitive to inhibition of SNARE priming, the initial stages of autophagosome biogenesis and autophagosome expansion remain resistant to its loss.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas Qa-SNARE/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Proteínas de Transporte Vesicular/genética , Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Biogénesis de Organelos , Proteínas Qa-SNARE/antagonistas & inhibidores , Proteínas Qa-SNARE/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Proteínas de Transporte Vesicular/metabolismo
12.
J Fish Biol ; 97(6): 1794-1807, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32920827

RESUMEN

The expression of synaptic vesicle exocytosis-regulator SNARE complex component genes (snap25, stx1 and vamp2) was examined in the olfactory nervous system during seaward and homeward migration by pink salmon (Oncorhynchus gorbuscha). The expression levels of snares in the olfactory organ were higher in seaward fry than in feeding and homeward adults, reflecting the development of the olfactory nervous system. The expression of snap25a, b and stx1a was upregulated or stable in the adult olfactory bulb and telencephalon. This upregulated expression suggested alterations in olfactory neuronal plasticity that may be related to the discrimination of natal rivers. The expression of stx1b was downregulated in the adult olfactory bulb, but remained stable in the adult telencephalon. The expression of vamp2 was initially strong in seaward fry, but was downregulated in adults in both the olfactory bulb and telencephalon. Pink salmon has the lowest diversity of maturation age, the largest population, and the most evolutional position in Pacific salmon (genus Oncorhynchus). The expression of snares in the olfactory center of pink salmon reflected the timing of sexual maturation and homeward migration. The present results and our previous studies indicate that snares show distinct expression patterns between two salmon species that depend on physiological and ecological features of migration.


Asunto(s)
Migración Animal/fisiología , Encéfalo/fisiología , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica , Salmón/genética , Olfato/genética , Animales , Toxina Shiga I/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Proteína 2 de Membrana Asociada a Vesículas/genética
13.
Proc Natl Acad Sci U S A ; 113(47): E7375-E7382, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27821740

RESUMEN

α-SNAP [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein] and NSF proteins are conserved across eukaryotes and sustain cellular vesicle trafficking by mediating disassembly and reuse of SNARE protein complexes, which facilitate fusion of vesicles to target membranes. However, certain haplotypes of the Rhg1 (resistance to Heterodera glycines 1) locus of soybean possess multiple repeat copies of an α-SNAP gene (Glyma.18G022500) that encodes atypical amino acids at a highly conserved functional site. These Rhg1 loci mediate resistance to soybean cyst nematode (SCN; H. glycines), the most economically damaging pathogen of soybeans worldwide. Rhg1 is widely used in agriculture, but the mechanisms of Rhg1 disease resistance have remained unclear. In the present study, we found that the resistance-type Rhg1 α-SNAP is defective in interaction with NSF. Elevated in planta expression of resistance-type Rhg1 α-SNAPs depleted the abundance of SNARE-recycling 20S complexes, disrupted vesicle trafficking, induced elevated abundance of NSF, and caused cytotoxicity. Soybean, due to ancient genome duplication events, carries other loci that encode canonical (wild-type) α-SNAPs. Expression of these α-SNAPs counteracted the cytotoxicity of resistance-type Rhg1 α-SNAPs. For successful growth and reproduction, SCN dramatically reprograms a set of plant root cells and must sustain this sedentary feeding site for 2-4 weeks. Immunoblots and electron microscopy immunolocalization revealed that resistance-type α-SNAPs specifically hyperaccumulate relative to wild-type α-SNAPs at the nematode feeding site, promoting the demise of this biotrophic interface. The paradigm of disease resistance through a dysfunctional variant of an essential gene may be applicable to other plant-pathogen interactions.


Asunto(s)
Resistencia a la Enfermedad , Glycine max/metabolismo , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Mutación , Nematodos/fisiología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Glycine max/genética , Glycine max/parasitología
14.
Proc Natl Acad Sci U S A ; 113(38): 10536-41, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601655

RESUMEN

Neurotransmission is achieved by soluble NSF attachment protein receptor (SNARE)-driven fusion of readily releasable vesicles that are docked and primed at the presynaptic plasma membrane. After neurotransmission, the readily releasable pool of vesicles must be refilled in less than 100 ms for subsequent release. Here we show that the initial association of SNARE complexes, SNAREpins, is far too slow to support this rapid refilling owing to an inherently high activation energy barrier. Our data suggest that acceleration of this process, i.e., lowering of the barrier, is physiologically necessary and can be achieved by molecular factors. Furthermore, under zero force, a low second energy barrier transiently traps SNAREpins in a half-zippered state similar to the partial assembly that engages calcium-sensitive regulatory machinery. This result suggests that the barrier must be actively raised in vivo to generate a sufficient pause in the zippering process for the regulators to set in place. We show that the heights of the activation energy barriers can be selectively changed by molecular factors. Thus, it is possible to modify, both in vitro and in vivo, the lifespan of each metastable state. This controllability provides a simple model in which vesicle docking/priming, an intrinsically slow process, can be substantially accelerated. It also explains how the machinery that regulates vesicle fusion can be set in place while SNAREpins are trapped in a half-zippered state.


Asunto(s)
Complejos Multiproteicos/genética , Proteínas SNARE/genética , Transmisión Sináptica/genética , Proteína 2 de Membrana Asociada a Vesículas/genética , Animales , Fenómenos Biofísicos , Fusión de Membrana/genética , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Ratas , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
15.
J Cell Sci ; 128(15): 2781-94, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26101353

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that reside in the target membranes and transport vesicles assemble into specific SNARE complexes to drive membrane fusion. N-ethylmaleimide-sensitive factor (NSF) and its attachment protein, α-SNAP (encoded by NAPA), catalyze disassembly of the SNARE complexes in the secretory and endocytic pathways to recycle them for the next round of fusion events. γ-SNAP (encoded by NAPG) is a SNAP isoform, but its function in SNARE-mediated membrane trafficking remains unknown. Here, we show that γ-SNAP regulates the endosomal trafficking of epidermal growth factor (EGF) receptor (EGFR) and transferrin. Immunoprecipitation and mass spectrometry analyses revealed that γ-SNAP interacts with a limited range of SNAREs, including endosomal ones. γ-SNAP, as well as α-SNAP, mediated the disassembly of endosomal syntaxin-7-containing SNARE complexes. Overexpression and small interfering (si)RNA-mediated depletion of γ-SNAP changed the morphologies and intracellular distributions of endosomes. Moreover, the depletion partially suppressed the exit of EGFR and transferrin from EEA1-positive early endosomes to delay their degradation and uptake. Taken together, our findings suggest that γ-SNAP is a unique SNAP that functions in a limited range of organelles - including endosomes - and their trafficking pathways.


Asunto(s)
Endocitosis/fisiología , Receptores ErbB/metabolismo , Transporte de Proteínas/fisiología , Proteínas Qa-SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Membrana Celular/metabolismo , Endosomas/metabolismo , Células Hep G2 , Humanos , Fusión de Membrana/fisiología , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño , Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
16.
J Biol Chem ; 289(4): 2424-39, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24311785

RESUMEN

Integrin-based adhesion to the extracellular matrix (ECM) plays critical roles in controlling differentiation, survival, and motility of epithelial cells. Cells attach to the ECM via dynamic structures called focal adhesions (FA). FA undergo constant remodeling mediated by vesicle trafficking and fusion. A soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is an essential mediator of membrane fusion; however, its roles in regulating ECM adhesion and cell motility remain unexplored. In this study, we found that siRNA-mediated knockdown of αSNAP induced detachment of intestinal epithelial cells, whereas overexpression of αSNAP increased ECM adhesion and inhibited cell invasion. Loss of αSNAP impaired Golgi-dependent glycosylation and trafficking of ß1 integrin and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin resulting in FA disassembly. These effects of αSNAP depletion on ECM adhesion were independent of apoptosis and NSF. In agreement with our previous reports that Golgi fragmentation mediates cellular effects of αSNAP knockdown, we found that either pharmacologic or genetic disruption of the Golgi recapitulated all the effects of αSNAP depletion on ECM adhesion. Furthermore, our data implicates ß1 integrin, FAK, and paxillin in mediating the observed pro-adhesive effects of αSNAP. These results reveal novel roles for αSNAP in regulating ECM adhesion and motility of epithelial cells.


Asunto(s)
Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Animales , Bovinos , Adhesión Celular/fisiología , Línea Celular , Células Epiteliales/citología , Matriz Extracelular/genética , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Técnicas de Silenciamiento del Gen , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Integrina beta1/genética , Paxillin/genética , Paxillin/metabolismo , Fosforilación/fisiología , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética
17.
Acta Biochim Biophys Sin (Shanghai) ; 47(3): 156-63, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25630652

RESUMEN

Intracellular vesicular transport is shown to be dysfunctional in pulmonary arterial hypertension (PAH). However, the expression of intracellular vesicular transport proteins in PAH remains unclear. To elucidate the possible role of these proteins in the development of PAH, the changes in the expressions of N-ethyl-maleimide-sensitive factor (NSF), α-soluble NSF attachment protein (α-SNAP), synaptosome-associated membrane protein 23 (SNAP23), type 2 bone morphogenetic receptor (BMPR2), caveolin-1 (cav-1), and endothelial nitric oxide synthase (eNOS) were examined in lung tissues of monocrotaline (MCT)-treated rats by real-time polymerase chain reaction and western blot analysis. In addition, caspase-3, also examined by western blot analysis, was used as an indicator of apoptosis. Our data showed that during the development of PAH, the expressions of NSF, α-SNAP, and SNAP23 were significantly increased before pulmonary arterial pressure started to increase and then significantly decreased after PAH was established. The expressions of BMPR2 and eNOS were similar to those of NSF, α-SNAP, and SNAP23; however, the expression of cav-1 was down-regulated after MCT treatment. Caspase-3 expression was increased after exposure to MCT. In conclusion, the expressions of NSF, α-SNAP, and SNPA23 changed greatly during the onset of PAH, which was accompanied by abnormal expressions of BMPR2, cav-1, and eNOS, as well as an increase in apoptosis. Thus, changes in NSF, α-SNAP, and SNAP23 expressions appear to be mechanistically associated with the development of PAH in MCT-treated rats.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Caspasa 3/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/genética , Masculino , Monocrotalina/toxicidad , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Proteínas de Transporte Vesicular/genética
18.
J Biol Chem ; 288(34): 24984-91, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23836889

RESUMEN

Vesicle trafficking in eukaryotic cells is facilitated by SNARE-mediated membrane fusion. The ATPase NSF (N-ethylmaleimide-sensitive factor) and the adaptor protein α-SNAP (soluble NSF attachment protein) disassemble all SNARE complexes formed throughout different pathways, but the effect of SNARE sequence and domain variation on the poorly understood disassembly mechanism is unknown. By measuring SNARE-stimulated ATP hydrolysis rates, Michaelis-Menten constants for disassembly, and SNAP-SNARE binding constants for four different ternary SNARE complexes and one binary complex, we found a conserved mechanism, not influenced by N-terminal SNARE domains. α-SNAP and the ternary SNARE complex form a 1:1 complex as revealed by multiangle light scattering. We propose a model of NSF-mediated disassembly in which the reaction is initiated by a 1:1 interaction between α-SNAP and the ternary SNARE complex, followed by NSF binding. Subsequent additional α-SNAP binding events may occur as part of a processive disassembly mechanism.


Asunto(s)
Modelos Químicos , Complejos Multiproteicos/química , Proteínas Sensibles a N-Etilmaleimida/química , Proteínas SNARE/química , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/química , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Cricetinae , Cricetulus , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Unión Proteica , Ratas , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo
19.
J Biol Chem ; 287(8): 5928-41, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22194596

RESUMEN

Intracellular trafficking represents a key mechanism that regulates cell fate by participating in either prodeath or prosurvival signaling. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is a well known component of vesicle trafficking machinery that mediates intermembrane fusion. αSNAP increases cell resistance to cytotoxic stimuli, although mechanisms of its prosurvival function are poorly understood. In this study, we found that either siRNA-mediated knockdown of αSNAP or expression of its dominant negative mutant induced epithelial cell apoptosis. Apoptosis was not caused by activation of the major prodeath regulators Bax and p53 and was independent of a key αSNAP binding partner, NSF. Instead, death of αSNAP-depleted cells was accompanied by down-regulation of the antiapoptotic Bcl-2 protein; it was mimicked by inhibition and attenuated by overexpression of Bcl-2. Knockdown of αSNAP resulted in impairment of Golgi to endoplasmic reticulum (ER) trafficking and fragmentation of the Golgi. Moreover, pharmacological disruption of ER-Golgi transport by brefeldin A and eeyarestatin 1 or siRNA-mediated depletion of an ER/Golgi-associated p97 ATPase recapitulated the effects of αSNAP inhibition by decreasing Bcl-2 level and triggering apoptosis. These results reveal a novel role for αSNAP in promoting epithelial cell survival by unique mechanisms involving regulation of Bcl-2 expression and Golgi biogenesis.


Asunto(s)
Apoptosis/genética , Regulación hacia Abajo/genética , Células Epiteliales/citología , Aparato de Golgi/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/deficiencia , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Adenosina Trifosfatasas/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación hacia Abajo/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Inhibidores Enzimáticos/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Aparato de Golgi/efectos de los fármacos , Células HCT116 , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , ARN Interferente Pequeño/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo
20.
Nat Commun ; 14(1): 7629, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993454

RESUMEN

Plant-parasitic nematodes are one of the most economically impactful pests in agriculture resulting in billions of dollars in realized annual losses worldwide. Soybean cyst nematode (SCN) is the number one biotic constraint on soybean production making it a priority for the discovery, validation and functional characterization of native plant resistance genes and genetic modes of action that can be deployed to improve soybean yield across the globe. Here, we present the discovery and functional characterization of a soybean resistance gene, GmSNAP02. We use unique bi-parental populations to fine-map the precise genomic location, and a combination of whole genome resequencing and gene fragment PCR amplifications to identify and confirm causal haplotypes. Lastly, we validate our candidate gene using CRISPR-Cas9 genome editing and observe a gain of resistance in edited plants. This demonstrates that the GmSNAP02 gene confers a unique mode of resistance to SCN through loss-of-function mutations that implicate GmSNAP02 as a nematode virulence target. We highlight the immediate impact of utilizing GmSNAP02 as a genome-editing-amenable target to diversify nematode resistance in commercially available cultivars.


Asunto(s)
Glycine max , Nematodos , Animales , Glycine max/genética , Glycine max/parasitología , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Nematodos/genética , Genes de Plantas , Análisis de Secuencia de ADN , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Resistencia a la Enfermedad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA