Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 969
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 20(2): 141-151, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643265

RESUMEN

Rheumatoid arthritis is characterized by progressive joint inflammation and affects ~1% of the human population. We noted single-nucleotide polymorphisms (SNPs) in the apoptotic cell-engulfment genes ELMO1, DOCK2, and RAC1 linked to rheumatoid arthritis. As ELMO1 promotes cytoskeletal reorganization during engulfment, we hypothesized that ELMO1 loss would worsen inflammatory arthritis. Surprisingly, Elmo1-deficient mice showed reduced joint inflammation in acute and chronic arthritis models. Genetic and cell-biology studies revealed that ELMO1 associates with receptors linked to neutrophil function in arthritis and regulates activation and early neutrophil recruitment to the joints, without general inhibition of inflammatory responses. Further, neutrophils from the peripheral blood of human donors that carry the SNP in ELMO1 associated with arthritis display increased migratory capacity, whereas ELMO1 knockdown reduces human neutrophil migration to chemokines linked to arthritis. These data identify 'noncanonical' roles for ELMO1 as an important cytoplasmic regulator of specific neutrophil receptors and promoter of arthritis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Neutrófilos/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis/inmunología , Artritis Experimental/diagnóstico , Artritis Experimental/genética , Artritis Experimental/patología , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Quimiotaxis/genética , Quimiotaxis/inmunología , Colágeno/inmunología , Complemento C5a/inmunología , Complemento C5a/metabolismo , Citoplasma/inmunología , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Voluntarios Sanos , Humanos , Microscopía Intravital , Articulaciones/citología , Articulaciones/inmunología , Leucotrieno B4/inmunología , Leucotrieno B4/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/metabolismo , Polimorfismo de Nucleótido Simple , Proteómica , Índice de Severidad de la Enfermedad , Transducción de Señal/inmunología , Imagen de Lapso de Tiempo
2.
PLoS Biol ; 22(2): e3002488, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38349934

RESUMEN

Bacteria live in social communities, where the ability to sense and respond to interspecies and environmental signals is critical for survival. We previously showed the pathogen Pseudomonas aeruginosa detects secreted peptides from bacterial competitors and navigates through interspecies signal gradients using pilus-based motility. Yet, it was unknown whether P. aeruginosa utilizes a designated chemosensory system for this behavior. Here, we performed a systematic genetic analysis of a putative pilus chemosensory system, followed by high-speed live-imaging and single-cell tracking, to reveal behaviors of mutants that retain motility but are blind to interspecies signals. The enzymes predicted to methylate (PilK) and demethylate (ChpB) the putative pilus chemoreceptor, PilJ, are necessary for cells to control the direction of migration. While these findings implicate PilJ as a bona fide chemoreceptor, such function had yet to be experimentally defined, as full-length PilJ is essential for motility. Thus, we constructed systematic genetic modifications of PilJ and found that without the predicted ligand binding domains or predicted methylation sites, cells lose the ability to detect competitor gradients, despite retaining pilus-mediated motility. Chemotaxis trajectory analysis revealed that increased probability and size of P. aeruginosa pilus-mediated steps towards S. aureus peptides, versus steps away, determines motility bias in wild type cells. However, PilJ mutants blind to interspecies signals take less frequent steps towards S. aureus or steps of equal size towards and away. Collectively, this work uncovers the chemosensory nature of PilJ, provides insight into how cell movements are biased during pilus-based chemotaxis, and identifies chemotactic interactions necessary for bacterial survival in polymicrobial communities, revealing putative pathways where therapeutic intervention might disrupt bacterial communication.


Asunto(s)
Quimiotaxis , Staphylococcus aureus , Quimiotaxis/genética , Staphylococcus aureus/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Movimiento Celular , Péptidos/metabolismo , Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/metabolismo
3.
Annu Rev Genet ; 52: 43-63, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30476447

RESUMEN

Neural crest cells are a transient embryonic cell population that migrate collectively to various locations throughout the embryo to contribute a number of cell types to several organs. After induction, the neural crest delaminates and undergoes an epithelial-to-mesenchymal transition before migrating through intricate yet characteristic paths. The neural crest exhibits a variety of migratory behaviors ranging from sheet-like mass migration in the cephalic regions to chain migration in the trunk. During their journey, neural crest cells rely on a range of signals both from their environment and within the migrating population for navigating through the embryo as a collective. Here we review these interactions and mechanisms, including chemotactic cues of neural crest cells' migration.


Asunto(s)
Movimiento Celular/genética , Quimiotaxis/genética , Desarrollo Embrionario/genética , Cresta Neural/crecimiento & desarrollo , Animales , Linaje de la Célula/genética , Cresta Neural/citología
4.
Nucleic Acids Res ; 52(3): 1188-1206, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38084916

RESUMEN

Defective DNA damage signalling and repair is a hallmark of age-related and genetic neurodegenerative disease. One mechanism implicated in disease progression is DNA damage-driven neuroinflammation, which is largely mediated by tissue-resident immune cells, microglia. Here, we utilise human microglia-like cell models of persistent DNA damage and ATM kinase deficiency to investigate how genome instability shapes microglial function. We demonstrate that upon DNA damage the cytosolic DNA sensing cGAS-STING axis drives chronic inflammation and a robust chemokine response, exemplified by production of CCL5 and CXCL10. Transcriptomic analyses revealed that cell migratory pathways were highly enriched upon IFN-ß treatment of human iPSC-derived microglia, indicating that the chemokine response to DNA damage mirrors type I interferon signalling. Furthermore, we find that STING deletion leads to a defect in microglial chemotaxis under basal conditions and upon ATM kinase loss. Overall, this work provides mechanistic insights into cGAS-STING-dependent neuroinflammatory mechanisms and consequences of genome instability in the central nervous system.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Transducción de Señal , Humanos , Quimiocinas , Quimiotaxis/genética , Microglía/metabolismo , Enfermedades Neurodegenerativas/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo
5.
Mol Microbiol ; 121(5): 850-864, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38323722

RESUMEN

The diarrheal disease cholera is caused by the versatile and responsive bacterium Vibrio cholerae, which is capable of adapting to environmental changes. Among others, the alternative sigma factor RpoS activates response pathways, including regulation of motility- and chemotaxis-related genes under nutrient-poor conditions in V. cholerae. Although RpoS has been well characterised, links between RpoS and other regulatory networks remain unclear. In this study, we identified the ArcAB two-component system to control rpoS transcription and RpoS protein stability in V. cholerae. In a manner similar to that seen in Escherichia coli, the ArcB kinase not only activates the response regulator ArcA but also RssB, the anti-sigma factor of RpoS. Our results demonstrated that, in V. cholerae, RssB is phosphorylated by ArcB, which subsequently activates RpoS proteolysis. Furthermore, ArcA acts as a repressor of rpoS transcription. Additionally, we determined that the cysteine residue at position 180 of ArcB is crucial for signal recognition and activity. Thus, our findings provide evidence linking RpoS response to the anoxic redox control system ArcAB in V. cholerae.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Factor sigma , Vibrio cholerae , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Quimiotaxis/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Redes Reguladoras de Genes , Fosforilación , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factor sigma/metabolismo , Factor sigma/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
6.
Mol Microbiol ; 122(4): 429-446, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39081077

RESUMEN

Sinorhizobium meliloti senses nutrients and compounds exuded from alfalfa host roots and coordinates an excitation, termination, and adaptation pathway during chemotaxis. We investigated the role of the novel S. meliloti chemotaxis protein CheT. While CheT and the Escherichia coli phosphatase CheZ share little sequence homology, CheT is predicted to possess an α-helix with a DXXXQ phosphatase motif. Phosphorylation assays demonstrated that CheT dephosphorylates the phosphate-sink response regulator, CheY1~P by enhancing its decay two-fold but does not affect the motor response regulator CheY2~P. Isothermal Titration Calorimetry (ITC) experiments revealed that CheT binds to a phosphomimic of CheY1~P with a KD of 2.9 µM, which is 25-fold stronger than its binding to CheY1. Dissimilar chemotaxis phenotypes of the ΔcheT mutant and cheT DXXXQ phosphatase mutants led to the hypothesis that CheT exerts additional function(s). A screen for potential binding partners of CheT revealed that it forms a complex with the methyltransferase CheR. ITC experiments confirmed CheT/CheR binding with a KD of 19 µM, and a SEC-MALS analysis determined a 1:1 and 2:1 CheT/CheR complex formation. Although they did not affect each other's enzymatic activity, CheT binding to CheY1~P and CheR may serve as a link between signal termination and sensory adaptation.


Asunto(s)
Proteínas Bacterianas , Quimiotaxis , Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/fisiología , Quimiotaxis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fosforilación , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transducción de Señal , Escherichia coli/genética , Escherichia coli/metabolismo , Medicago sativa/microbiología , Adaptación Fisiológica , Unión Proteica
7.
Proc Natl Acad Sci U S A ; 119(37): e2110342119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067284

RESUMEN

To swim and navigate, motile bacteria synthesize a complex motility machinery involving flagella, motors, and a sensory system. A myriad of studies has elucidated the molecular processes involved, but less is known about the coordination of motility expression with cellular physiology: In Escherichia coli, motility genes are strongly up-regulated in nutrient-poor conditions compared to nutrient-replete conditions; yet a quantitative link to cellular motility has not been developed. Here, we systematically investigated gene expression, swimming behavior, cell growth, and available proteomics data across a broad spectrum of exponential growth conditions. Our results suggest that cells up-regulate the expression of motility genes at slow growth to compensate for reduction in cell size, such that the number of flagella per cell is maintained across conditions. The observed four or five flagella per cell is the minimum number needed to keep the majority of cells motile. This simple regulatory objective allows E. coli cells to remain motile across a broad range of growth conditions, while keeping the biosynthetic and energetic demands to establish and drive the motility machinery at the minimum needed. Given the strong reduction in flagella synthesis resulting from cell size increases at fast growth, our findings also provide a different physiological perspective on bacterial cell size control: A larger cell size at fast growth is an efficient strategy to increase the allocation of cellular resources to the synthesis of those proteins required for biomass synthesis and growth, while maintaining processes such as motility that are only needed on a per-cell basis.


Asunto(s)
Quimiotaxis , Proteínas de Escherichia coli , Escherichia coli , Quimiotaxis/genética , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Expresión Génica , Regulación Bacteriana de la Expresión Génica
8.
Genes Dev ; 31(8): 774-786, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28465358

RESUMEN

Gliomas harboring mutations in isocitrate dehydrogenase 1/2 (IDH1/2) have the CpG island methylator phenotype (CIMP) and significantly longer patient survival time than wild-type IDH1/2 (wtIDH1/2) tumors. Although there are many factors underlying the differences in survival between these two tumor types, immune-related differences in cell content are potentially important contributors. In order to investigate the role of IDH mutations in immune response, we created a syngeneic pair mouse model for mutant IDH1 (muIDH1) and wtIDH1 gliomas and demonstrated that muIDH1 mice showed many molecular and clinical similarities to muIDH1 human gliomas, including a 100-fold higher concentration of 2-hydroxygluratate (2-HG), longer survival time, and higher CpG methylation compared with wtIDH1. Also, we showed that IDH1 mutations caused down-regulation of leukocyte chemotaxis, resulting in repression of the tumor-associated immune system. Given that significant infiltration of immune cells such as macrophages, microglia, monocytes, and neutrophils is linked to poor prognosis in many cancer types, these reduced immune infiltrates in muIDH1 glioma tumors may contribute in part to the differences in aggressiveness of the two glioma types.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Glioma/genética , Glioma/inmunología , Sistema Inmunológico/fisiopatología , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Animales , Neoplasias Encefálicas/enzimología , Quimiotaxis/genética , Metilación de ADN , Modelos Animales de Enfermedad , Glioma/enzimología , Humanos , Antígenos Comunes de Leucocito/metabolismo , Leucocitos/patología , Ratones , Mutación , Infiltración Neutrófila/genética , Neutrófilos/patología
9.
EMBO J ; 39(20): e104862, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32853409

RESUMEN

Genetic variation in LRRK2 associates with the susceptibility to Parkinson's disease, Crohn's disease, and mycobacteria infection. High expression of LRRK2 and its substrate Rab10 occurs in phagocytic cells in the immune system. In mouse and human primary macrophages, dendritic cells, and microglia-like cells, we find that Rab10 specifically regulates a specialized form of endocytosis known as macropinocytosis, without affecting phagocytosis or clathrin-mediated endocytosis. LRRK2 phosphorylates cytoplasmic PI(3,4,5)P3-positive GTP-Rab10, before EEA1 and Rab5 recruitment to early macropinosomes occurs. Macropinosome cargo in macrophages includes CCR5, CD11b, and MHCII, and LRRK2-phosphorylation of Rab10 potently blocks EHBP1L1-mediated recycling tubules and cargo turnover. EHBP1L1 overexpression competitively inhibits LRRK2-phosphorylation of Rab10, mimicking the effects of LRRK2 kinase inhibition in promoting cargo recycling. Both Rab10 knockdown and LRRK2 kinase inhibition potently suppress the maturation of macropinosome-derived CCR5-loaded signaling endosomes that are critical for CCL5-induced immunological responses that include Akt activation and chemotaxis. These data support a novel signaling axis in the endolysosomal system whereby LRRK2-mediated Rab10 phosphorylation stalls vesicle fast recycling to promote PI3K-Akt immunological responses.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Macrófagos/metabolismo , Fagocitos/inmunología , Pinocitosis/genética , Proteínas de Unión al GTP rab/metabolismo , Animales , Membrana Celular/metabolismo , Quimiocina CCL5/farmacología , Quimiotaxis/genética , Células Dendríticas/metabolismo , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Macrófagos/efectos de los fármacos , Masculino , Espectrometría de Masas , Ratones , Ratones Transgénicos , Microglía/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Mutación , Fagocitos/efectos de los fármacos , Fagocitos/metabolismo , Fosforilación , Pinocitosis/efectos de los fármacos , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Proteínas de Unión al GTP rab/genética
10.
J Transl Med ; 22(1): 840, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267037

RESUMEN

BACKGROUND: The tumor microenvironment (TME) exerts profound effects on tumor progression and therapeutic efficacy. In hepatocellular carcinoma (HCC), the TME is enriched with cancer-associated fibroblasts (CAFs), which secrete a plethora of cytokines, chemokines, and growth factors that facilitate tumor cell proliferation and invasion. However, the intricate architecture of the TME in HCC, as well as the mechanisms driving interactions between tumor cells and CAFs, remains largely enigmatic. METHODS: We analyzed 10 spatial transcriptomics and 12 single-cell transcriptomics samples sourced from public databases, complemented by 20 tumor tissue samples from liver cancer patients obtained in a clinical setting. RESULTS: Our findings reveal that tumor cells exhibiting high levels of SPP1 are preferentially localized adjacent to hepatic stellate cells (HSCs). The SPP1 secreted by these tumor cells interacts with the CD44 receptor on HSCs, thereby activating the PI3K/AKT signaling pathway, which promotes the differentiation of HSCs into CAFs. Notably, blockade of the CD44 receptor effectively abrogates this interaction. Furthermore, in vivo studies demonstrate that silencing SPP1 expression in tumor cells significantly impairs HSC differentiation into CAFs, leading to a reduction in tumor volume and collagen deposition within the tumor stroma. CONCLUSIONS: This study delineates the SPP1-CD44 signaling axis as a pivotal mechanism underpinning the interaction between tumor cells and CAFs. Targeting this pathway holds potential to mitigate liver fibrosis and offers novel therapeutic perspectives for liver cancer management.


Asunto(s)
Carcinoma Hepatocelular , Quimiotaxis , Células Estrelladas Hepáticas , Neoplasias Hepáticas , Transcriptoma , Microambiente Tumoral , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Humanos , Transcriptoma/genética , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Animales , Quimiotaxis/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Línea Celular Tumoral , Transducción de Señal , Receptores de Hialuranos/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Diferenciación Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Regulación Neoplásica de la Expresión Génica
11.
BMC Cancer ; 24(1): 1244, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379856

RESUMEN

As frontline cells, the precise recruitment of neutrophils is crucial for resolving inflammation and maintaining the homeostasis of the organism. Increasing evidence suggests the pivotal role of neutrophil chemotaxis in cancer progression and metastasis. Here, we collected clinical data and peripheral blood samples from patients with tumours to examine the alterations in the neutrophil quantity and chemotactic function using the Cell Chemotaxis Analysis Platform (CCAP). Transcriptome sequencing data of pan-cancer were obtained from The Cancer Genome Atlas (TCGA). Using the least absolute shrinkage and selection operator (LASSO) Cox regression model, we selected a total of 29 genes from 155 neutrophil- and chemotaxis-related genes to construct the ChemoScore model. Meanwhile, nomogram-based comprehensive model was established for clinical application. Furthermore, immunofluorescence (IF) staining was employed to assess the relationship between the neutrophils infiltrating and the survival outcomes of tumours. In this observational study, the chemotactic function of neutrophils was notably diminished in patients. The establishment and validation of ChemoScore suggested neutrophil chemotaxis to be a risk factor in most tumours, whereby higher scores were associated with poorer survival outcomes and were correlated with various immune cells and malignant biological processes. Moreover, IF staining of tumour tissue substantiated the adverse correlation between neutrophil infiltration and the survival of patients with lung adenocarcinoma (P = 0.0002) and colon adenocarcinoma (P = 0.0472). Taken together, patients with tumours demonstrated a decrease in chemotactic function. ChemoScore potentially prognosticates the survival of patients with tumours. Neutrophil chemotaxis provides novel directions and theoretical foundations for anti-tumour treatment.


Asunto(s)
Neutrófilos , Humanos , Neutrófilos/metabolismo , Pronóstico , Femenino , Masculino , Nomogramas , Neoplasias/genética , Neoplasias/patología , Neoplasias/mortalidad , Persona de Mediana Edad , Quimiotaxis/genética , Anciano , Infiltración Neutrófila , Quimiotaxis de Leucocito/genética , Biomarcadores de Tumor/genética
12.
Exp Cell Res ; 433(2): 113823, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37890607

RESUMEN

Breast carcinoma (BC) is one of the most common malignant cancers in females, and metastasis remains the leading cause of death in these patients. Chemotaxis plays an important role in cancer cell metastasis and the mechanism of breast cancer chemotaxis has become a central issue in contemporary research. PKCζ, a member of the atypical PKC family, has been reported to be an essential component of the EGF-stimulated chemotactic signaling pathway. However, the molecular mechanism through which PKCζ regulates chemotaxis remains unclear. Here, we used a proteomic approach to identify PKCζ-interacting proteins in breast cancer cells and identified VASP as a potential binding partner. Intriguingly, stimulation with EGF enhanced this interaction and induced the translocalization of PKCζ and VASP to the cell membrane. Further experiments showed that PKCζ catalyzes the phosphorylation of VASP at Ser157, which is critical for the biological function of VASP in regulating chemotaxis and actin polymerization in breast cancer cells. Furthermore, in PKCζ knockdown BC cells, the enrichment of VASP at the leading edge was reduced, and its interaction with profilin1 was attenuated, thereby reducing the chemotaxis and overall motility of breast cancer cells after EGF treatment. In functional assays, PKCζ promoted chemotaxis and motility of BC cells through VASP. Our findings demonstrate that PKCζ, a new kinase of VASP, plays an important role in promoting breast cancer metastasis and provides a theoretical basis for expanding new approaches to tumor biotherapy.


Asunto(s)
Neoplasias de la Mama , Quimiotaxis , Proteína Quinasa C , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Quimiotaxis/genética , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteómica
13.
Cell Mol Biol Lett ; 29(1): 84, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822246

RESUMEN

BACKGROUND: Canine mammary tumors (CMTs) in intact female dogs provide a natural model for investigating metastatic human cancers. Our prior research identified elevated expression of Anterior Gradient 2 (AGR2), a protein disulfide isomerase (PDI) primarily found in the endoplasmic reticulum (ER), in CMT tissues, highly associated with CMT progression. We further demonstrated that increased AGR2 expression actively influences the extracellular microenvironment, promoting chemotaxis in CMT cells. Unraveling the underlying mechanisms is crucial for assessing the potential of therapeutically targeting AGR2 as a strategy to inhibit a pro-metastatic microenvironment and impede tumor metastasis. METHODS: To identify the AGR2-modulated secretome, we employed proteomics analysis of the conditioned media (CM) from two CMT cell lines ectopically expressing AGR2, compared with corresponding vector-expressing controls. AGR2-regulated release of 14-3-3ε (gene: YWHAE) and α-actinin 4 (gene: ACTN4) was validated through ectopic expression, knockdown, and knockout of the AGR2 gene in CMT cells. Extracellular vesicles derived from CMT cells were isolated using either differential ultracentrifugation or size exclusion chromatography. The roles of 14-3-3ε and α-actinin 4 in the chemotaxis driven by the AGR2-modulated CM were investigated through gene knockdown, antibody-mediated interference, and recombinant protein supplement. Furthermore, the clinical relevance of the release of 14-3-3ε and α-actinin 4 was assessed using CMT tissue-immersed saline and sera from CMT-afflicted dogs. RESULTS: Proteomics analysis of the AGR2-modulated secretome revealed increased abundance in 14-3-3ε and α-actinin 4. Ectopic expression of AGR2 significantly increased the release of 14-3-3ε and α-actinin 4 in the CM. Conversely, knockdown or knockout of AGR2 expression remarkably reduced their release. Silencing 14-3-3ε or α-actinin 4 expression diminished the chemotaxis driven by AGR2-modulated CM. Furthermore, AGR2 controls the release of 14-3-3ε and α-actinin 4 primarily via non-vesicular routes, responding to the endoplasmic reticulum (ER) stress and autophagy activation. Knockout of AGR2 resulted in increased α-actinin 4 accumulation and impaired 14-3-3ε translocation in autophagosomes. Depletion of extracellular 14-3-3ε or α-actinin 4 reduced the chemotaxis driven by AGR2-modulated CM, whereas supplement with recombinant 14-3-3ε in the CM enhanced the CM-driven chemotaxis. Notably, elevated levels of 14-3-3ε or α-actinin 4 were observed in CMT tissue-immersed saline compared with paired non-tumor samples and in the sera of CMT dogs compared with healthy dogs. CONCLUSION: This study elucidates AGR2's pivotal role in orchestrating unconventional secretion of 14-3-3ε and α-actinin 4 from CMT cells, thereby contributing to paracrine-mediated chemotaxis. The insight into the intricate interplay between AGR2-involved ER stress, autophagy, and unconventional secretion provides a foundation for refining strategies aimed at impeding metastasis in both canine mammary tumors and potentially human cancers.


Asunto(s)
Proteínas 14-3-3 , Actinina , Autofagia , Quimiotaxis , Estrés del Retículo Endoplásmico , Neoplasias Mamarias Animales , Mucoproteínas , Animales , Perros , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Femenino , Actinina/metabolismo , Actinina/genética , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Línea Celular Tumoral , Quimiotaxis/genética , Autofagia/genética , Estrés del Retículo Endoplásmico/genética , Mucoproteínas/genética , Mucoproteínas/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética
14.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33947812

RESUMEN

Various microorganisms and some mammalian cells are able to swim in viscous fluids by performing nonreciprocal body deformations, such as rotating attached flagella or by distorting their entire body. In order to perform chemotaxis (i.e., to move toward and to stay at high concentrations of nutrients), they adapt their swimming gaits in a nontrivial manner. Here, we propose a computational model, which features autonomous shape adaptation of microswimmers moving in one dimension toward high field concentrations. As an internal decision-making machinery, we use artificial neural networks, which control the motion of the microswimmer. We present two methods to measure chemical gradients, spatial and temporal sensing, as known for swimming mammalian cells and bacteria, respectively. Using the genetic algorithm NeuroEvolution of Augmenting Topologies, surprisingly simple neural networks evolve. These networks control the shape deformations of the microswimmers and allow them to navigate in static and complex time-dependent chemical environments. By introducing noisy signal transmission in the neural network, the well-known biased run-and-tumble motion emerges. Our work demonstrates that the evolution of a simple and interpretable internal decision-making machinery coupled to the environment allows navigation in diverse chemical landscapes. These findings are of relevance for intracellular biochemical sensing mechanisms of single cells or for the simple nervous system of small multicellular organisms such as Caenorhabditis elegans.


Asunto(s)
Quimiotaxis/genética , Quimiotaxis/fisiología , Aprendizaje/fisiología , Natación/fisiología , Algoritmos , Animales , Caenorhabditis elegans/fisiología , Simulación por Computador , Flagelos/fisiología , Aprendizaje Automático , Modelos Biológicos , Movimiento (Física) , Redes Neurales de la Computación
15.
PLoS Genet ; 17(6): e1009624, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34153031

RESUMEN

Vibrio cholerae is the causative agent of cholera, a notorious diarrheal disease that is typically transmitted via contaminated drinking water. The current pandemic agent, the El Tor biotype, has undergone several genetic changes that include horizontal acquisition of two genomic islands (VSP-I and VSP-II). VSP presence strongly correlates with pandemicity; however, the contribution of these islands to V. cholerae's life cycle, particularly the 26-kb VSP-II, remains poorly understood. VSP-II-encoded genes are not expressed under standard laboratory conditions, suggesting that their induction requires an unknown signal from the host or environment. One signal that bacteria encounter under both host and environmental conditions is metal limitation. While studying V. cholerae's zinc-starvation response in vitro, we noticed that a mutant constitutively expressing zinc starvation genes (Δzur) congregates at the bottom of a culture tube when grown in a nutrient-poor medium. Using transposon mutagenesis, we found that flagellar motility, chemotaxis, and VSP-II encoded genes were required for congregation. The VSP-II genes encode an AraC-like transcriptional activator (VerA) and a methyl-accepting chemotaxis protein (AerB). Using RNA-seq and lacZ transcriptional reporters, we show that VerA is a novel Zur target and an activator of the nearby AerB chemoreceptor. AerB interfaces with the chemotaxis system to drive oxygen-dependent congregation and energy taxis. Importantly, this work suggests a functional link between VSP-II, zinc-starved environments, and energy taxis, yielding insights into the role of VSP-II in a metal-limited host or aquatic reservoir.


Asunto(s)
Quimiotaxis/genética , Regulación Bacteriana de la Expresión Génica , Islas Genómicas , Proteínas Represoras/genética , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad , Zinc/deficiencia , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cólera/microbiología , Cólera/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Reporteros , Genoma Bacteriano , Humanos , Operón Lac , Oxígeno/metabolismo , Oxígeno/farmacología , Pandemias , Proteínas Represoras/metabolismo , Transcripción Genética , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/metabolismo , Zinc/farmacología
16.
Genes Dev ; 30(18): 2093-2105, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27798850

RESUMEN

Glucocorticoid (GC) receptor (GR) has been shown recently to bind a subset of mRNAs and elicit rapid mRNA degradation. However, the molecular details of GR-mediated mRNA decay (GMD) remain unclear. Here, we demonstrate that GMD triggers rapid degradation of target mRNAs in a translation-independent and exon junction complex-independent manner, confirming that GMD is mechanistically distinct from nonsense-mediated mRNA decay (NMD). Efficient GMD requires PNRC2 (proline-rich nuclear receptor coregulatory protein 2) binding, helicase ability, and ATM-mediated phosphorylation of UPF1 (upstream frameshift 1). We also identify two GMD-specific factors: an RNA-binding protein, YBX1 (Y-box-binding protein 1), and an endoribonuclease, HRSP12 (heat-responsive protein 12). In particular, using HRSP12 variants, which are known to disrupt trimerization of HRSP12, we show that HRSP12 plays an essential role in the formation of a functionally active GMD complex. Moreover, we determine the hierarchical recruitment of GMD factors to target mRNAs. Finally, our genome-wide analysis shows that GMD targets a variety of transcripts, implicating roles in a wide range of cellular processes, including immune responses.


Asunto(s)
Monocitos/metabolismo , Estabilidad del ARN/fisiología , Receptores de Glucocorticoides/metabolismo , Adenosina Trifosfatasas/metabolismo , Quimiocina CCL2/metabolismo , Quimiotaxis/genética , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Monocitos/enzimología , Monocitos/inmunología , Fosforilación , Polimerizacion , ARN Helicasas , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Ribonucleasas/metabolismo , Transactivadores/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo
17.
Infect Immun ; 91(4): e0000823, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36939335

RESUMEN

The bacterial chemotaxis regulatory circuit mainly consists of coupling protein CheW, sensor histidine kinase CheA, and response regulator CheY. Most bacteria, such as Escherichia coli, have a single gene encoding each of these proteins. Interestingly, the Lyme disease pathogen, Borreliella burgdorferi, has multiple chemotaxis proteins, e.g., two CheA, three CheW, and three CheY proteins. The genes encoding these proteins mainly reside in two operons: cheW2-cheA1-cheB2-cheY2 (A-I) and cheA2-cheW3-cheX-cheY3 (A-II). Previous studies demonstrate that all the genes in A-II are essential for the chemotaxis of B. burgdorferi; however, the role of those genes in A-I remains unknown. This study aimed to fill this gap using the CheW2 gene, the first gene in A-I, as a surrogate. We first mapped the transcription start site of A-I upstream of cheW2 and identified a σ70-like promoter (PW2) and two binding sites (BS1 and BS2) of BosR, an unorthodox Fur/Per homolog. We then demonstrated that BosR binds to PW2 via BS1 and BS2 and that deletion of bosR significantly represses the expression of cheW2 and other genes in A-I, implying that BosR is a positive regulator of A-I. Deletion of cheW2 has no impact on the chemotaxis of B. burgdorferi in vitro but abrogates its ability to evade host adaptive immunity, because the mutant can establish systemic infection only in SCID mice and not in immunocompetent BALB/c mice. This report substantiates the previous proposition that A-I is not implicated in chemotaxis; rather, it may function as a signaling transduction pathway to regulate B. burgdorferi virulence gene expression.


Asunto(s)
Borrelia burgdorferi , Quimiotaxis , Animales , Ratones , Quimiotaxis/genética , Virulencia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ratones SCID , Borrelia burgdorferi/fisiología , Escherichia coli/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo
18.
Environ Microbiol ; 25(7): 1265-1280, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36826469

RESUMEN

Aquatic bacteria frequently are divided into lifestyle categories oligotroph or copiotroph. Oligotrophs have proportionately fewer transcriptional regulatory genes than copiotrophs and are generally non-motile/chemotactic. We hypothesized that the absence of chemotaxis/motility in oligotrophs prevents them from occupying nutrient patches long enough to benefit from transcriptional regulation. We first confirmed that marine oligotrophs are generally reduced in genes for transcriptional regulation and motility/chemotaxis. Next, using a non-motile oligotroph (Ca. Pelagibacter st. HTCC7211), a motile copiotroph (Alteromonas macleodii st. HOT1A3), and [14 C]l-alanine, we confirmed that l-alanine catabolism is not transcriptionally regulated in HTCC7211 but is in HOT1A3. We then found that HOT1A3 took 2.5-4 min to initiate l-alanine oxidation at patch l-alanine concentrations, compared to <30 s for HTCC7211. By modelling cell trajectories, we predicted that, in most scenarios, non-motile cells spend <2 min in patches, compared to >4 min for chemotactic/motile cells. Thus, the time necessary for transcriptional regulation to initiate prevents transcriptional regulation from being beneficial for non-motile oligotrophs. This is supported by a mechanistic model we developed, which predicted that HTCC7211 cells with transcriptional regulation of l-alanine metabolism would produce 12% of their standing ATP stock upon encountering an l-alanine patch, compared to 880% in HTCC7211 cells without transcriptional regulation.


Asunto(s)
Alphaproteobacteria , Bacterias , Bacterias/genética , Quimiotaxis/genética , Oxidación-Reducción
19.
Nat Immunol ; 12(2): 167-77, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21217759

RESUMEN

Mouse CCL8 is a CC chemokine of the monocyte chemoattractant protein (MCP) family whose biological activity and receptor usage have remained elusive. Here we show that CCL8 is highly expressed in the skin, where it serves as an agonist for the chemokine receptor CCR8 but not for CCR2. This distinguishes CCL8 from all other MCP chemokines. CCL8 responsiveness defined a population of highly differentiated, CCR8-expressing inflammatory T helper type 2 (T(H)2) cells enriched for interleukin (IL)-5. Ccr8- and Ccl8-deficient mice had markedly less eosinophilic inflammation than wild-type or Ccr4-deficient mice in a model of chronic atopic dermatitis. Adoptive transfer studies established CCR8 as a key regulator of T(H)2 cell recruitment into allergen-inflamed skin. In humans, CCR8 expression also defined an IL-5-enriched T(H)2 cell subset. The CCL8-CCR8 chemokine axis is therefore a crucial regulator of T(H)2 cell homing that drives IL-5-mediated chronic allergic inflammation.


Asunto(s)
Quimiocina CCL1/metabolismo , Quimiocina CCL8/metabolismo , Dermatitis Atópica/inmunología , Piel/patología , Células Th2/metabolismo , Traslado Adoptivo , Animales , Señalización del Calcio/inmunología , Células Cultivadas , Quimiocina CCL1/genética , Quimiocina CCL1/inmunología , Quimiocina CCL8/genética , Quimiocina CCL8/inmunología , Quimiotaxis/genética , Quimiotaxis/inmunología , Clonación Molecular , Modelos Animales de Enfermedad , Humanos , Interleucina-5/inmunología , Interleucina-5/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Mensajeros de Linfocitos/inmunología , Células Th2/inmunología , Células Th2/patología
20.
PLoS Biol ; 18(3): e3000661, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32196484

RESUMEN

Some of the densest microbial ecosystems in nature thrive within the intestines of humans and other animals. To protect mucosal tissues and maintain immune tolerance, animal hosts actively sequester bacteria within the intestinal lumen. In response, numerous bacterial pathogens and pathobionts have evolved strategies to subvert spatial restrictions, thereby undermining immune homeostasis. However, in many cases, it is unclear how escaping host spatial control benefits gut bacteria and how changes in intestinal biogeography are connected to inflammation. A better understanding of these processes could uncover new targets for treating microbiome-mediated inflammatory diseases. To this end, we investigated the spatial organization and dynamics of bacterial populations within the intestine using larval zebrafish and live imaging. We discovered that a proinflammatory Vibrio symbiont native to zebrafish governs its own spatial organization using swimming motility and chemotaxis. Surprisingly, we found that Vibrio's motile behavior does not enhance its growth rate but rather promotes its persistence by enabling it to counter intestinal flow. In contrast, Vibrio mutants lacking motility traits surrender to host spatial control, becoming aggregated and entrapped within the lumen. Consequently, nonmotile and nonchemotactic mutants are susceptible to intestinal expulsion and experience large fluctuations in absolute abundance. Further, we found that motile Vibrio cells induce expression of the proinflammatory cytokine tumor necrosis factor alpha (TNFα) in gut-associated macrophages and the liver. Using inducible genetic switches, we demonstrate that swimming motility can be manipulated in situ to modulate the spatial organization, persistence, and inflammatory activity of gut bacterial populations. Together, our findings suggest that host spatial control over resident microbiota plays a broader role in regulating the abundance and persistence of gut bacteria than simply protecting mucosal tissues. Moreover, we show that intestinal flow and bacterial motility are potential targets for therapeutically managing bacterial spatial organization and inflammatory activity within the gut.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Motilidad Gastrointestinal/fisiología , Intestinos/patología , Locomoción/fisiología , Animales , Animales Modificados Genéticamente , Quimiotaxis/genética , Quimiotaxis/fisiología , Inflamación , Intestinos/microbiología , Locomoción/genética , Macrófagos/metabolismo , Interacciones Microbianas , Mutación , Factor de Necrosis Tumoral alfa/metabolismo , Vibrio/genética , Vibrio/fisiología , Pez Cebra/microbiología , Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA