Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.746
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(2): 377-394.e21, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32976798

RESUMEN

We employed scRNA sequencing to extensively characterize the cellular landscape of human liver from development to disease. Analysis of ∼212,000 cells representing human fetal, hepatocellular carcinoma (HCC), and mouse liver revealed remarkable fetal-like reprogramming of the tumor microenvironment. Specifically, the HCC ecosystem displayed features reminiscent of fetal development, including re-emergence of fetal-associated endothelial cells (PLVAP/VEGFR2) and fetal-like (FOLR2) tumor-associated macrophages. In a cross-species comparative analysis, we discovered remarkable similarity between mouse embryonic, fetal-liver, and tumor macrophages. Spatial transcriptomics further revealed a shared onco-fetal ecosystem between fetal liver and HCC. Furthermore, gene regulatory analysis, spatial transcriptomics, and in vitro functional assays implicated VEGF and NOTCH signaling in maintaining onco-fetal ecosystem. Taken together, we report a shared immunosuppressive onco-fetal ecosystem in fetal liver and HCC. Our results unravel a previously unexplored onco-fetal reprogramming of the tumor ecosystem, provide novel targets for therapeutic interventions in HCC, and open avenues for identifying similar paradigms in other cancers and disease.


Asunto(s)
Carcinoma Hepatocelular/patología , Células Endoteliales/metabolismo , Microambiente Tumoral/genética , Adulto , Animales , Carcinoma Hepatocelular/genética , Línea Celular , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Receptor 2 de Folato/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Hígado/patología , Neoplasias Hepáticas/genética , Macrófagos/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Transcriptoma/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
2.
Immunity ; 56(10): 2311-2324.e6, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37643615

RESUMEN

Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.


Asunto(s)
Migración Transendotelial y Transepitelial , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Ratones , Adhesión Celular , Movimiento Celular , Endotelio Vascular , Mecanotransducción Celular , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Cell ; 167(1): 275-284.e6, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662093

RESUMEN

The VEGF-A isoforms play a crucial role in vascular development, and the VEGF signaling pathway is a clinically validated therapeutic target for several pathological conditions. Alternative mRNA splicing leads to the generation of multiple VEGF-A isoforms, including VEGF165. A recent study reported the presence of another isoform, VEGF-Ax, arising from programmed readthrough translation. Compared to VEGF165, VEGF-Ax has a 22-amino-acid extension in the COOH terminus and has been reported to function as a negative regulator of VEGF signaling in endothelial cells, with potent anti-angiogenic effects. Here, we show that, contrary to the earlier report, VEGF-Ax stimulates endothelial cell mitogenesis, angiogenesis, as well as vascular permeability. Accordingly, VEGF-Ax induces phosphorylation of key tyrosine residues in VEGFR-2. Notably, VEGF-Ax was less potent than VEGF165, consistent with its impaired binding to the VEGF co-receptor neuropilin-1.


Asunto(s)
Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular , Empalme Alternativo , Secuencia de Aminoácidos , Inductores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/farmacología , Animales , Permeabilidad Capilar/genética , Permeabilidad Capilar/fisiología , Quimiotaxis/efectos de los fármacos , Clonación Molecular , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Cobayas , Células HEK293 , Humanos , Ratones , Mitógenos/farmacología , Mitosis/efectos de los fármacos , Mitosis/fisiología , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Neuropilina-1/metabolismo , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Tirosina/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
4.
Cell ; 159(3): 584-96, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417109

RESUMEN

Vascular and nervous systems, two major networks in mammalian bodies, show a high degree of anatomical parallelism and functional crosstalk. During development, neurons guide and attract blood vessels, and consequently this parallelism is established. Here, we identified a noncanonical neurovascular interaction in eye development and disease. VEGFR2, a critical endothelial receptor for VEGF, was more abundantly expressed in retinal neurons than in endothelial cells, including endothelial tip cells. Genetic deletion of VEGFR2 in neurons caused misdirected angiogenesis toward neurons, resulting in abnormally increased vascular density around neurons. Further genetic experiments revealed that this misdirected angiogenesis was attributable to an excessive amount of VEGF protein around neurons caused by insufficient engulfment of VEGF by VEGFR2-deficient neurons. Moreover, absence of neuronal VEGFR2 caused misdirected regenerative angiogenesis in ischemic retinopathy. Thus, this study revealed neurovascular crosstalk and unprecedented cellular regulation of VEGF: retinal neurons titrate VEGF to limit neuronal vascularization. PAPERFLICK:


Asunto(s)
Neovascularización Fisiológica , Neuronas/metabolismo , Retina/crecimiento & desarrollo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Endocitosis , Técnicas de Sustitución del Gen , Ratones , Ratones Noqueados , Neurogénesis , Retina/metabolismo , Retina/patología , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
Cell ; 151(5): 1083-96, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23178125

RESUMEN

The origins and developmental mechanisms of coronary arteries are incompletely understood. We show here by fate mapping, clonal analysis, and immunohistochemistry that endocardial cells generate the endothelium of coronary arteries. Dye tracking, live imaging, and tissue transplantation also revealed that ventricular endocardial cells are not terminally differentiated; instead, they are angiogenic and form coronary endothelial networks. Myocardial Vegf-a or endocardial Vegfr-2 deletion inhibited coronary angiogenesis and arterial formation by ventricular endocardial cells. In contrast, lineage and knockout studies showed that endocardial cells make a small contribution to the coronary veins, the formation of which is independent of myocardial-to-endocardial Vegf signaling. Thus, contrary to the current view of a common source for the coronary vessels, our findings indicate that the coronary arteries and veins have distinct origins and are formed by different mechanisms. This information may help develop better cell therapies for coronary artery disease.


Asunto(s)
Vasos Coronarios/embriología , Células Endoteliales/citología , Miocardio/citología , Neovascularización Fisiológica , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Diferenciación Celular , Vasos Coronarios/citología , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Ratones , Miocardio/metabolismo , Factores de Transcripción NFATC/metabolismo
6.
Nature ; 589(7842): 437-441, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33299176

RESUMEN

The formation of arteries is thought to occur by the induction of a highly conserved arterial genetic programme in a subset of vessels that will later experience an increase in oxygenated blood flow1,2. The initial steps of arterial specification require both the VEGF and Notch signalling pathways3-5. Here, we combine inducible genetic mosaics and transcriptomics to modulate and define the function of these signalling pathways in cell proliferation, arteriovenous differentiation and mobilization. We show that endothelial cells with high levels of VEGF or Notch signalling are intrinsically biased to mobilize and form arteries; however, they are not genetically pre-determined, and can also form veins. Mechanistically, we found that increased levels of VEGF and Notch signalling in pre-arterial capillaries suppresses MYC-dependent metabolic and cell-cycle activities, and promotes the incorporation of endothelial cells into arteries. Mosaic lineage-tracing studies showed that endothelial cells that lack the Notch-RBPJ transcriptional activator complex rarely form arteries; however, these cells regained the ability to form arteries when the function of MYC was suppressed. Thus, the development of arteries does not require the direct induction of a Notch-dependent arterial differentiation programme, but instead depends on the timely suppression of endothelial cell-cycle progression and metabolism, a process that precedes arterial mobilization and complete differentiation.


Asunto(s)
Arterias/citología , Arterias/crecimiento & desarrollo , Proliferación Celular , Células Endoteliales/citología , Endotelio Vascular/citología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/genética , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Masculino , Ratones , Mosaicismo , Mutación , Fenotipo , Proteínas Proto-Oncogénicas c-myc/deficiencia , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Notch/deficiencia , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/citología
7.
Nat Immunol ; 15(1): 54-62, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24270517

RESUMEN

miR-126 is a microRNA expressed predominately by endothelial cells and controls angiogenesis. We found miR-126 was required for the innate response to pathogen-associated nucleic acids and that miR-126-deficient mice had greater susceptibility to infection with pseudotyped HIV. Profiling of miRNA indicated that miR-126 had high and specific expression by plasmacytoid dendritic cells (pDCs). Moreover, miR-126 controlled the survival and function of pDCs and regulated the expression of genes encoding molecules involved in the innate response, including Tlr7, Tlr9 and Nfkb1, as well as Kdr, which encodes the growth factor receptor VEGFR2. Deletion of Kdr in DCs resulted in reduced production of type I interferon, which supports the proposal of a role for VEGFR2 in miR-126 regulation of pDCs. Our studies identify the miR-126-VEGFR2 axis as an important regulator of the innate response that operates through multiscale control of pDCs.


Asunto(s)
Células Dendríticas/inmunología , Inmunidad Innata/inmunología , MicroARNs/inmunología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/inmunología , Animales , Células Dendríticas/metabolismo , Citometría de Flujo , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Inmunidad Innata/genética , Immunoblotting , Interferón-alfa/sangre , Interferón-alfa/inmunología , Interferón-alfa/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/inmunología , Subunidad p50 de NF-kappa B/metabolismo , Ácidos Nucleicos/inmunología , Ácidos Nucleicos/metabolismo , Oligodesoxirribonucleótidos/genética , Oligodesoxirribonucleótidos/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/metabolismo , Transcriptoma/inmunología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
8.
Circ Res ; 134(10): e112-e132, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38618720

RESUMEN

BACKGROUND: The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease arising from defective morphogenesis of pharyngeal arch arteries (PAAs) and their derivatives. METHODS: Mouse genetics, lineage tracing, confocal microscopy, and quantitative image analyses were used to investigate mechanisms of PAA formation and repair. RESULTS: The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived endothelial cells (ECs) is regulated by VEGFR2 (vascular endothelial growth factor receptor 2) and Tbx1. Remarkably, when the SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated 3-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of 1 VEGFR2 allele (VEGFR2SHF-HET) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles (VEGFR2SHF-KO) abolishes it. The decrease in SHF-derived ECs in VEGFR2SHF-HET and VEGFR2SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2SHF-KO mutants. Blocking the compensatory response in VEGFR2SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1+/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and congenital heart disease. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. CONCLUSIONS: Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling.


Asunto(s)
Aorta Torácica , Células Endoteliales , Cardiopatías Congénitas , Proteínas de Dominio T Box , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Ratones , Aorta Torácica/embriología , Aorta Torácica/metabolismo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/embriología , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Diferenciación Celular , Ratones Endogámicos C57BL
9.
Cell ; 147(3): 539-53, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22036563

RESUMEN

To identify pathways involved in adult lung regeneration, we employ a unilateral pneumonectomy (PNX) model that promotes regenerative alveolarization in the remaining intact lung. We show that PNX stimulates pulmonary capillary endothelial cells (PCECs) to produce angiocrine growth factors that induce proliferation of epithelial progenitor cells supporting alveologenesis. Endothelial cells trigger expansion of cocultured epithelial cells, forming three-dimensional angiospheres reminiscent of alveolar-capillary sacs. After PNX, endothelial-specific inducible genetic ablation of Vegfr2 and Fgfr1 in mice inhibits production of MMP14, impairing alveolarization. MMP14 promotes expansion of epithelial progenitor cells by unmasking cryptic EGF-like ectodomains that activate the EGF receptor (EGFR). Consistent with this, neutralization of MMP14 impairs EGFR-mediated alveolar regeneration, whereas administration of EGF or intravascular transplantation of MMP14(+) PCECs into pneumonectomized Vegfr2/Fgfr1-deficient mice restores alveologenesis and lung inspiratory volume and compliance function. VEGFR2 and FGFR1 activation in PCECs therefore increases MMP14-dependent bioavailability of EGFR ligands to initiate and sustain alveologenesis.


Asunto(s)
Factores de Crecimiento Endotelial/metabolismo , Pulmón/citología , Pulmón/fisiología , Alveolos Pulmonares/citología , Animales , Células Endoteliales/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Neovascularización Fisiológica , Neumonectomía , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Regeneración , Células Madre/metabolismo , Técnicas de Cultivo de Tejidos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
10.
Nature ; 578(7794): 290-295, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025034

RESUMEN

Shear stress on arteries produced by blood flow is important for vascular development and homeostasis but can also initiate atherosclerosis1. Endothelial cells that line the vasculature use molecular mechanosensors to directly detect shear stress profiles that will ultimately lead to atheroprotective or atherogenic responses2. Plexins are key cell-surface receptors of the semaphorin family of cell-guidance signalling proteins and can regulate cellular patterning by modulating the cytoskeleton and focal adhesion structures3-5. However, a role for plexin proteins in mechanotransduction has not been examined. Here we show that plexin D1 (PLXND1) has a role in mechanosensation and mechanically induced disease pathogenesis. PLXND1 is required for the response of endothelial cells to shear stress in vitro and in vivo and regulates the site-specific distribution of atherosclerotic lesions. In endothelial cells, PLXND1 is a direct force sensor and forms a mechanocomplex with neuropilin-1 and VEGFR2 that is necessary and sufficient for conferring mechanosensitivity upstream of the junctional complex and integrins. PLXND1 achieves its binary functions as either a ligand or a force receptor by adopting two distinct molecular conformations. Our results establish a previously undescribed mechanosensor in endothelial cells that regulates cardiovascular pathophysiology, and provide a mechanism by which a single receptor can exhibit a binary biochemical nature.


Asunto(s)
Células Endoteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mecanotransducción Celular , Glicoproteínas de Membrana/metabolismo , Estrés Mecánico , Animales , Aterosclerosis/metabolismo , Femenino , Integrinas/metabolismo , Ratones , Neuropilina-1/metabolismo , Docilidad , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
11.
J Cell Sci ; 136(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36601864

RESUMEN

AMG232 effectively inhibits cancers with wild-type p53 (also known as TP53) by reactivating p53, but whether it inhibits glioma angiogenesis remains unclear. This study confirms that AMG232 inhibits the proliferation of glioma endothelial cells (GECs) in a dose-dependent manner and inhibits the angiogenesis of GECs. p53 and RNA-binding motif protein 4 (RBM4) were expressed at low levels in GECs, while MDM2 and vascular endothelial growth factor receptor 2 (VEGFR2, also known as KDR) were highly expressed. In vitro and in vivo experiments confirmed that AMG232 upregulated p53 and RBM4, and downregulated MDM2 and VEGFR2 by blocking the MDM2-p53 interaction. Both p53 silencing and RBM4 silencing significantly upregulated the expression of VEGFR2, promoted the proliferation, migration and tube formation of GECs, and reversed the effects of AMG232 on downregulating VEGFR2 and inhibiting the angiogenesis of GECs. AMG232 increased RBM4 expression by upregulating p53, and p53 bound to RBM4 and promoted its transcription. RBM4 bound to and shortened the half-life of VEGFR2, promoting its degradation. Finally, AMG232 produced a significant decrease in new vessels and hemoglobin content in vivo. This study proves that AMG232 inhibits glioma angiogenesis by blocking the MDM2-p53 interaction, in which the p53-RBM4-VEGFR2 pathway plays an important role.


Asunto(s)
Células Endoteliales , Glioma , Humanos , Movimiento Celular , Proliferación Celular/fisiología , Células Endoteliales/metabolismo , Glioma/tratamiento farmacológico , Glioma/genética , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
12.
FASEB J ; 38(10): e23682, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38780524

RESUMEN

Gliomas are highly vascularized malignancies, but current anti-angiogenic treatments have not demonstrated practical improvements in patient survival. Studies have suggested that glioma-derived endothelial cell (GdEC) formed by glioma stem cell (GSC) differentiation may contribute to the failure of this treatment. However, the molecular mechanisms involved in GSC endothelial differentiation remain poorly understood. We previously reported that vasorin (VASN) is highly expressed in glioma and promotes angiogenesis. Here, we show that VASN expression positively correlates with GdEC signatures in glioma patients. VASN promotes the endothelial differentiation capacity of GSC in vitro and participates in the formation of GSC-derived vessels in vivo. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) is a critical factor that mediates the regulation of VASN on GSC endothelial differentiation. Separation of cell chromatin fractionation and chromatin immunoprecipitation-sequencing analysis show that VASN interacts with Notch1 and co-translocates into the cell nuclei, where VASN binds to the VEGFR2 gene promoter to stimulate its transcription during the progression of GSC differentiation into GdEC. Together, these findings elucidate the role and mechanisms of VASN in promoting the endothelial differentiation of GSC and suggest VASN as a potential target for anti-angiogenic therapy based on intervention in GdEC formation in gliomas.


Asunto(s)
Diferenciación Celular , Células Endoteliales , Glioma , Células Madre Neoplásicas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Glioma/metabolismo , Glioma/patología , Glioma/genética , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Ratones , Células Endoteliales/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Ratones Desnudos , Transcripción Genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética
13.
PLoS Comput Biol ; 20(2): e1011798, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38324585

RESUMEN

The vascular endothelial growth factor (VEGF) family of cytokines are key drivers of blood vessel growth and remodeling. These ligands act via multiple VEGF receptors (VEGFR) and co-receptors such as Neuropilin (NRP) expressed on endothelial cells. These membrane-associated receptors are not solely expressed on the cell surface, they move between the surface and intracellular locations, where they can function differently. The location of the receptor alters its ability to 'see' (access and bind to) its ligands, which regulates receptor activation; location also alters receptor exposure to subcellularly localized phosphatases, which regulates its deactivation. Thus, receptors in different subcellular locations initiate different signaling, both in terms of quantity and quality. Similarly, the local levels of co-expression of other receptors alters competition for ligands. Subcellular localization is controlled by intracellular trafficking processes, which thus control VEGFR activity; therefore, to understand VEGFR activity, we must understand receptor trafficking. Here, for the first time, we simultaneously quantify the trafficking of VEGFR1, VEGFR2, and NRP1 on the same cells-specifically human umbilical vein endothelial cells (HUVECs). We build a computational model describing the expression, interaction, and trafficking of these receptors, and use it to simulate cell culture experiments. We use new quantitative experimental data to parameterize the model, which then provides mechanistic insight into the trafficking and localization of this receptor network. We show that VEGFR2 and NRP1 trafficking is not the same on HUVECs as on non-human ECs; and we show that VEGFR1 trafficking is not the same as VEGFR2 trafficking, but rather is faster in both internalization and recycling. As a consequence, the VEGF receptors are not evenly distributed between the cell surface and intracellular locations, with a very low percentage of VEGFR1 being on the cell surface, and high levels of NRP1 on the cell surface. Our findings have implications both for the sensing of extracellular ligands and for the composition of signaling complexes at the cell surface versus inside the cell.


Asunto(s)
Factor A de Crecimiento Endotelial Vascular , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Transducción de Señal , Fosforilación , Neuropilina-1/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(26): e2202631119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35733256

RESUMEN

Angiogenesis contributes fundamentally to embryonic development, tissue homeostasis, and wound healing. Basic fibroblast growth factor (FGF2) is recognized as the first proangiogenic molecule discovered, and it facilitates angiogenesis by activating FGF receptor 1 (FGFR1) signaling in endothelial cells. However, the precise roles of FGFR and the FGF/FGFR signaling axis in angiogenesis remain unclear, especially because of the contradictory phenotypes of in vivo FGF and FGFR gene deficiency models. Our previous study results suggested a potential role of posttranslational small ubiquitin-like modifier modification (SUMOylation), with highly dynamic regulatory features, in vascular development and disorder. Here, we identified SENP1-regulated endothelial FGFR1 SUMOylation at conserved lysines responding to proangiogenic stimuli, while SENP1 functioned as the deSUMOylase. Hypoxia-enhanced FGFR1 SUMOylation restricted the tyrosine kinase activation of FGFR1 by modulating the dimerization of FGFR1 and FGFR1 binding with its phosphatase PTPRG. Consequently, it facilitated the recruitment of FRS2α to VEGFR2 but limited additional recruitment of FRS2α to FGFR1, supporting the activation of VEGFA/VEGFR2 signaling in endothelial cells. Furthermore, SUMOylation-defective mutation of FGFR1 resulted in exaggerated FGF2/FGFR1 signaling but suppressed VEGFA/VEGFR2 signaling and the angiogenic capabilities of endothelial cells, which were rescued by FRS2α overexpression. Reduced angiogenesis and endothelial sprouting in mice bearing an endothelial-specific, FGFR1 SUMOylation-defective mutant confirmed the functional significance of endothelial FGFR1 SUMOylation in vivo. Our findings identify the reversible SUMOylation of FGFR1 as an intrinsic fine-tuned mechanism in coordinating endothelial angiogenic signaling during neovascularization; SENP1-regulated FGFR1 SUMOylation and deSUMOylation controls the competitive recruitment of FRS2α by FGFR1 and VEGFR2 to switch receptor-complex formation responding to hypoxia and normoxia angiogenic environments.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Sumoilación , Animales , Células Endoteliales/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Hipoxia/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Mutación , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Sumoilación/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
15.
J Cell Mol Med ; 28(11): e18462, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847478

RESUMEN

Osteosarcoma (OS) is the most common primary malignant bone tumour in children and young adults. Account for 80% of all OS cases, conventional OS are characterized by the presence of osteoblastic, chondroblastic and fibroblastic cell types. Despite this heterogeneity, therapeutic treatment and prognosis of OS are essentially the same for all OS subtypes. Here, we report that DEC2, a transcriptional repressor, is expressed at higher levels in chondroblastic OS compared with osteoblastic OS. This difference suggests that DEC2 is disproportionately involved in the progression of chondroblastic OS, and thus, DEC2 may represent a possible molecular target for treating this type of OS. In the human chondroblastic-like OS cell line MNNG/HOS, we found that overexpression of DEC2 affects the proliferation of the cells by activating the VEGFC/VEGFR2 signalling pathway. Enhanced expression of DEC2 increased VEGFR2 expression, as well as increased the phosphorylation levels at sites Y951 and Y1175 of VEGFR2. On the one hand, activation of VEGFR2Y1175 enhanced cell proliferation through VEGFR2Y1175-PLCγ1-PKC-SPHK-MEK-ERK signalling. On the other hand, activation of VEGFR2Y951 decreased mitochondria-dependent apoptosis rate through VEGFR2Y951-VARP-PI3K-AKT signalling. Activation of these two signalling pathways resulted in enhanced progression of chondroblastic OS. In conclusion, DEC2 plays a pivotal role in cell proliferation and apoptosis-resistance in chondroblastic OS via the VEGFC/VEGFR2 signalling pathway. These findings lay the groundwork for developing focused treatments that target specific types of OS.


Asunto(s)
Neoplasias Óseas , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Osteosarcoma , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Línea Celular Tumoral , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Animales , Apoptosis/genética , Fosforilación
16.
J Biol Chem ; 299(4): 103050, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813233

RESUMEN

Consecutive oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2 yields the hemiketal eicosanoids, HKE2 and HKD2. Hemiketals stimulate angiogenesis by inducing endothelial cell tubulogenesis in culture; however, how this process is regulated has not been determined. Here, we identify vascular endothelial growth factor receptor 2 (VEGFR2) as a mediator of HKE2-induced angiogenesis in vitro and in vivo. We found that HKE2 treatment of human umbilical vein endothelial cells dose-dependently increased the phosphorylation of VEGFR2 and the downstream kinases ERK and Akt that mediated endothelial cell tubulogenesis. In vivo, HKE2 induced the growth of blood vessels into polyacetal sponges implanted in mice. HKE2-mediated effects in vitro and in vivo were blocked by the VEGFR2 inhibitor vatalanib, indicating that the pro-angiogenic effect of HKE2 was mediated by VEGFR2. HKE2 covalently bound and inhibited PTP1B, a protein tyrosine phosphatase that dephosphorylates VEGFR2, thereby providing a possible molecular mechanism for how HKE2 induced pro-angiogenic signaling. In summary, our studies indicate that biosynthetic cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways gives rise to a potent lipid autacoid that regulates endothelial cell function in vitro and in vivo. These findings suggest that common drugs targeting the arachidonic acid pathway could prove useful in antiangiogenic therapy.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Ratones , Humanos , Animales , Ciclooxigenasa 2/metabolismo , Ácido Araquidónico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neovascularización Fisiológica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inhibidores de la Angiogénesis/farmacología , Movimiento Celular , Proliferación Celular
17.
Angiogenesis ; 27(2): 245-272, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403816

RESUMEN

Angiogenesis is a crucial process in the progression of various pathologies, like solid tumors, wet age-related macular degeneration, and chronic inflammation. Current anti-angiogenic treatments still have major drawbacks like limited efficacy in diseases that also rely on inflammation. Therefore, new anti-angiogenic approaches are sorely needed, and simultaneous inhibition of angiogenesis and inflammation is desirable. Here, we show that 2-desaza-annomontine (C81), a derivative of the plant alkaloid annomontine previously shown to inhibit endothelial inflammation, impedes angiogenesis by inhibiting CDC2-like kinases (CLKs) and WNT/ß-catenin signaling. C81 reduced choroidal neovascularization in a laser-induced murine in vivo model, inhibited sprouting from vascular endothelial growth factor A (VEGF-A)-activated murine aortic rings ex vivo, and reduced angiogenesis-related activities of endothelial cells in multiple functional assays. This was largely phenocopied by CLK inhibitors and knockdowns, but not by inhibitors of the other known targets of C81. Mechanistically, CLK inhibition reduced VEGF receptor 2 (VEGFR2) mRNA and protein expression as well as downstream signaling. This was partly caused by a reduction of WNT/ß-catenin pathway activity, as activating the pathway induced, while ß-catenin knockdown impeded VEGFR2 expression. Surprisingly, alternative splicing of VEGFR2 was not detected. In summary, C81 and other CLK inhibitors could be promising compounds in the treatment of diseases that depend on angiogenesis and inflammation due to their impairment of both processes.


Asunto(s)
Carbolinas , Pirimidinas , Factor A de Crecimiento Endotelial Vascular , beta Catenina , Animales , Humanos , Ratones , Angiogénesis , Inhibidores de la Angiogénesis/farmacología , beta Catenina/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamación , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Vía de Señalización Wnt
18.
EMBO J ; 39(12): e102930, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32347571

RESUMEN

During angiogenesis, VEGF acts as an attractive cue for endothelial cells (ECs), while Sema3E mediates repulsive cues. Here, we show that the small GTPase RhoJ integrates these opposing signals in directional EC migration. In the GTP-bound state, RhoJ interacts with the cytoplasmic domain of PlexinD1. Upon Sema3E stimulation, RhoJ released from PlexinD1 induces cell contraction. PlexinD1-bound RhoJ further facilitates Sema3E-induced PlexinD1-VEGFR2 association, VEGFR2 transphosphorylation at Y1214, and p38 MAPK activation, leading to reverse EC migration. Upon VEGF stimulation, RhoJ is required for the formation of the holoreceptor complex comprising VEGFR2, PlexinD1, and neuropilin-1, thereby preventing degradation of internalized VEGFR2, prolonging downstream signal transductions via PLCγ, Erk, and Akt, and promoting forward EC migration. After conversion to the GDP-bound state, RhoJ shifts from PlexinD1 to VEGFR2, which then terminates the VEGFR2 signals. RhoJ deficiency in ECs efficiently suppressed aberrant angiogenesis in ischemic retina. These findings suggest that distinct Rho GTPases may act as context-dependent integrators of chemotactic cues in directional cell migration and may serve as candidate therapeutic targets to manipulate cell motility in disease or tissue regeneration.


Asunto(s)
Movimiento Celular , Células Endoteliales/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Animales , Células Endoteliales/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Unión al GTP rho/genética
19.
Biochem Biophys Res Commun ; 719: 150100, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38763043

RESUMEN

One of the factors that predispose to fractures is liver damage. Interestingly, fractures are sometimes accompanied by abnormal liver function. Polyene phosphatidylcholine (PPC) is an important liver repair drug. We wondered if PPC had a role in promoting fracture healing. A rat model of tibial fracture was developed using the modified Einhorn model method. X-rays were used to detect the progression of fracture healing. Progress of ossification and angiogenesis at the fracture site were analyzed by Safranin O/fast green staining and CD31 immunohistochemistry. To investigate whether PPC has a direct angiogenesis effect, HUVECs were used. We performed MTT, wound healing, Transwell migration, and tube formation assays. Finally, RT-qPCR and Western blot analysis were used to study the underlying mechanism. The results showed that PPC significantly shortened the apparent recovery time of mobility in rats. PPC treatment significantly promoted the formation of cartilage callus, endochondral ossification, and angiogenesis at the fracture site. In vitro, PPC promoted the proliferative viability of HUVECs, their ability to heal wounds, and their ability to penetrate membranes in the Transwell apparatus and increased the tube formation of cells. The transcription of VEGFA, VEGFR2, PLCγ, RAS, ERK1/2 and MEK1/2 was significantly up regulated by PPC. Further, the protein level results demonstrated a significant increase in the expression of VEGFA, VEGFR2, MEK1/2, and ERK1/2 proteins. In conclusion, our findings suggest that PPC promotes angiogenesis by activating the VEGFA/VEGFR2 and downstream signaling pathway, thereby accelerating fracture healing.


Asunto(s)
Curación de Fractura , Células Endoteliales de la Vena Umbilical Humana , Neovascularización Fisiológica , Fosfatidilcolinas , Ratas Sprague-Dawley , Transducción de Señal , Fracturas de la Tibia , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Curación de Fractura/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Fracturas de la Tibia/metabolismo , Fracturas de la Tibia/tratamiento farmacológico , Fracturas de la Tibia/patología , Transducción de Señal/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Ratas , Masculino , Fosfatidilcolinas/farmacología , Polienos/farmacología , Angiogénesis
20.
Biol Reprod ; 110(3): 569-582, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092011

RESUMEN

Placental angiogenesis is critical for normal development. Angiogenic factors and their receptors are key regulators of this process. Dysregulated placental vascular development is associated with pregnancy complications. Despite their importance, vascular growth factor expression has not been thoroughly correlated with placental morphologic development across gestation in cats. We postulate that changes in placental vessel morphology can be appreciated as consequences of dynamic expression of angiogenic signaling agents. Here, we characterized changes in placental morphology alongside expression analysis of angiogenic factor splice variants and receptors throughout pregnancy in domestic shorthair cats. We observed increased vascular and lamellar density in the lamellar zone during mid-pregnancy. Immunohistochemical analysis localized the vascular endothelial growth factor A (VEGF-A) receptor KDR to endothelial cells of the maternal and fetal microvasculatures. PlGF and its principal receptor Flt-1 were localized to the trophoblasts and fetal vasculature. VEGF-A was found in trophoblast cells and associated with endothelial cells. We detected expression of two Plgf splice variants and four Vegf-a variants. Quantitative real-time polymerase chain reaction analysis showed upregulation of mRNAs encoding pan Vegf-a and all Vegf-a splice forms at gestational days 30-35. Vegf-A showed a marked relative increase in expression during mid-pregnancy, consistent with the pro-angiogenic changes seen in the lamellar zone at days 30-35. Flt-1 was upregulated during late pregnancy. Plgf variants showed stable expression during the first two-thirds of pregnancy, followed by a marked increase toward term. These findings revealed specific spatiotemporal expression patterns of VEGF-A family members consistent with pivotal roles during normal placental development.


Asunto(s)
Placenta , Factor A de Crecimiento Endotelial Vascular , Gatos , Embarazo , Animales , Femenino , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Placenta/metabolismo , Factores de Crecimiento Endotelial Vascular/análisis , Factores de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales , Factor de Crecimiento Placentario/genética , Factor de Crecimiento Placentario/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA