Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.409
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 57(3): 462-477.e9, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38430908

RESUMEN

Inducible nucleosome remodeling at hundreds of latent enhancers and several promoters shapes the transcriptional response to Toll-like receptor 4 (TLR4) signaling in macrophages. We aimed to define the identities of the transcription factors that promote TLR-induced remodeling. An analysis strategy based on ATAC-seq and single-cell ATAC-seq that enriched for genomic regions most likely to undergo remodeling revealed that the transcription factor nuclear factor κB (NF-κB) bound to all high-confidence peaks marking remodeling during the primary response to the TLR4 ligand, lipid A. Deletion of NF-κB subunits RelA and c-Rel resulted in the loss of remodeling at high-confidence ATAC-seq peaks, and CRISPR-Cas9 mutagenesis of NF-κB-binding motifs impaired remodeling. Remodeling selectivity at defined regions was conferred by collaboration with other inducible factors, including IRF3- and MAP-kinase-induced factors. Thus, NF-κB is unique among TLR4-activated transcription factors in its broad contribution to inducible nucleosome remodeling, alongside its ability to activate poised enhancers and promoters assembled into open chromatin.


Asunto(s)
FN-kappa B , Receptor Toll-Like 4 , FN-kappa B/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Nucleosomas , Transducción de Señal , Regulación de la Expresión Génica , Factor de Transcripción ReIA/metabolismo
2.
Nat Immunol ; 20(6): 677-686, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110312

RESUMEN

Consumption of a high-energy Western diet triggers mild adaptive ß cell proliferation to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. In the present study we show that the toll-like receptors TLR2 and TLR4 inhibited the diet-induced replication of ß cells in mice and humans. The combined, but not the individual, loss of TLR2 and TLR4 increased the replication of ß cells, but not that of α cells, leading to enlarged ß cell area and hyperinsulinemia in diet-induced obesity. Loss of TLR2 and TLR4 increased the nuclear abundance of the cell cycle regulators cyclin D2 and Cdk4 in a manner dependent on the signaling mediator Erk. These data reveal a regulatory mechanism controlling the proliferation of ß cells in diet-induced obesity and suggest that selective targeting of the TLR2/TLR4 pathways may reverse ß cell failure in patients with diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Animales , Proliferación Celular , Ciclina D2/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Humanos , Insulina/sangre , Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Obesidad/tratamiento farmacológico , Parabiosis , Unión Proteica , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(22): e2322524121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781216

RESUMEN

Long noncoding RNAs (lncRNAs) account for the largest portion of RNA from the transcriptome, yet most of their functions remain unknown. Here, we performed two independent high-throughput CRISPRi screens to understand the role of lncRNAs in monocyte function and differentiation. The first was a reporter-based screen to identify lncRNAs that regulate TLR4-NFkB signaling in human monocytes and the second screen identified lncRNAs involved in monocyte to macrophage differentiation. We successfully identified numerous noncoding and protein-coding genes that can positively or negatively regulate inflammation and differentiation. To understand the functional roles of lncRNAs in both processes, we chose to further study the lncRNA LOUP [lncRNA originating from upstream regulatory element of SPI1 (also known as PU.1)], as it emerged as a top hit in both screens. Not only does LOUP regulate its neighboring gene, the myeloid fate-determining factor SPI1, thereby affecting monocyte to macrophage differentiation, but knockdown of LOUP leads to a broad upregulation of NFkB-targeted genes at baseline and upon TLR4-NFkB activation. LOUP also harbors three small open reading frames capable of being translated and are responsible for LOUP's ability to negatively regulate TLR4/NFkB signaling. This work emphasizes the value of high-throughput screening to rapidly identify functional lncRNAs in the innate immune system.


Asunto(s)
Diferenciación Celular , Inflamación , Macrófagos , Monocitos , ARN Largo no Codificante , Transducción de Señal , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/citología , Diferenciación Celular/genética , Monocitos/metabolismo , Monocitos/citología , Inflamación/genética , Inflamación/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , FN-kappa B/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Sistemas CRISPR-Cas , Regulación de la Expresión Génica
4.
Nat Immunol ; 15(2): 152-60, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24317040

RESUMEN

High-density lipoprotein (HDL) mediates reverse cholesterol transport and is known to be protective against atherosclerosis. In addition, HDL has potent anti-inflammatory properties that may be critical for protection against other inflammatory diseases. The molecular mechanisms of how HDL can modulate inflammation, particularly in immune cells such as macrophages, remain poorly understood. Here we identify the transcriptional regulator ATF3, as an HDL-inducible target gene in macrophages that downregulates the expression of Toll-like receptor (TLR)-induced proinflammatory cytokines. The protective effects of HDL against TLR-induced inflammation were fully dependent on ATF3 in vitro and in vivo. Our findings may explain the broad anti-inflammatory and metabolic actions of HDL and provide the basis for predicting the success of new HDL-based therapies.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Antiinflamatorios no Esteroideos/uso terapéutico , Aterosclerosis/terapia , Colesterol/metabolismo , Inflamación/terapia , Lipoproteínas HDL/uso terapéutico , Macrófagos/efectos de los fármacos , Factor de Transcripción Activador 3/genética , Animales , Antiinflamatorios no Esteroideos/farmacología , Células Cultivadas , Inmunoprecipitación de Cromatina , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lipoproteínas HDL/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Biología de Sistemas , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
5.
Circ Res ; 134(5): 505-525, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38422177

RESUMEN

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Asunto(s)
Cardiomiopatías , Resistencia a la Insulina , Animales , Ratones , Ratas , Adenosina Trifosfatasas , Arginina , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Antígenos CD36/genética , Fibrosis , Inflamación , Leucina , Lípidos , Lisina , Diana Mecanicista del Complejo 1 de la Rapamicina , Miocitos Cardíacos , Mononucleótido de Nicotinamida , Receptor Toll-Like 4/genética
6.
EMBO Rep ; 25(2): 770-795, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182816

RESUMEN

DExD/H-box helicases are crucial regulators of RNA metabolism and antiviral innate immune responses; however, their role in bacteria-induced inflammation remains unclear. Here, we report that DDX5 interacts with METTL3 and METTL14 to form an m6A writing complex, which adds N6-methyladenosine to transcripts of toll-like receptor (TLR) 2 and TLR4, promoting their decay via YTHDF2-mediated RNA degradation, resulting in reduced expression of TLR2/4. Upon bacterial infection, DDX5 is recruited to Hrd1 at the endoplasmic reticulum in an MyD88-dependent manner and is degraded by the ubiquitin-proteasome pathway. This process disrupts the DDX5 m6A writing complex and halts m6A modification as well as degradation of TLR2/4 mRNAs, thereby promoting the expression of TLR2 and TLR4 and downstream NF-κB activation. The role of DDX5 in regulating inflammation is also validated in vivo, as DDX5- and METTL3-KO mice exhibit enhanced expression of inflammatory cytokines. Our findings show that DDX5 acts as a molecular switch to regulate inflammation during bacterial infection and shed light on mechanisms of quiescent inflammation during homeostasis.


Asunto(s)
Adenina , Infecciones Bacterianas , Receptor Toll-Like 2 , Animales , Ratones , Adenina/análogos & derivados , Inflamación/genética , Metiltransferasas/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética
7.
J Immunol ; 212(4): 702-714, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38169331

RESUMEN

We have previously reported that the gut microbiota of healthy infants harbors allergy-protective bacteria taxa that are depleted in infants with cow's milk allergy (CMA). Few reports have investigated the role of the gut microbiota in promoting allergic responses. In this study we selected a CMA-associated microbiota with increased abundance of Gram-negative bacteria for analysis of its proinflammatory potential. LPS is the major component of the outer membrane of Gram-negative bacteria. Colonization of mice with a global or conditional mutation of the LPS receptor TLR4 with this CMA microbiota induced expression of serum amyloid A1 (Saa1) and other Th17-, B cell-, and Th2-associated genes in the ileal epithelium in a TLR4-dependent manner. In agreement with the gene expression data, mice colonized with the CMA microbiota have expanded populations of Th17 and regulatory T cells and elevated concentrations of fecal IgA. Importantly, we used both antibiotic-treated specific pathogen-free and germ-free rederived mice with a conditional mutation of TLR4 in the CD11c+ compartment to demonstrate that the induction of proinflammatory genes, fecal IgA, and Th17 cells is dependent on TLR4 signaling. Furthermore, metagenomic sequencing revealed that the CMA microbiota has an increased abundance of LPS biosynthesis genes. Taken together, our results show that a microbiota displaying a higher abundance of LPS genes is associated with TLR4-dependent proinflammatory gene expression and a mixed type 2/type 3 response in mice, which may be characteristic of a subset of infants with CMA.


Asunto(s)
Microbioma Gastrointestinal , Hipersensibilidad a la Leche , Humanos , Lactante , Femenino , Bovinos , Animales , Ratones , Hipersensibilidad a la Leche/complicaciones , Lipopolisacáridos , Receptor Toll-Like 4/genética , Inmunidad , Inmunoglobulina A
8.
J Neurosci ; 44(6)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326029

RESUMEN

Toll-like receptors (TLRs) play an important role in the innate immune response after CNS injury. Although TLR4 is one of the best characterized, its role in chronic stages after spinal cord injury (SCI) is not well understood. We examined the role of TLR4 signaling in injury-induced responses at 1 d, 7 d, and 8 weeks after spinal cord contusion injury in adult female TLR4 null and wild-type mice. Analyses include secondary damage, a range of transcriptome and protein analyses of inflammatory, cell death, and extracellular matrix (ECM) molecules, as well as immune cell infiltration and changes in axonal sprouting and locomotor recovery. Lack of TLR4 signaling results in reduced neuronal and myelin loss, reduced activation of NFκB, and decreased expression of inflammatory cytokines and necroptotic cell death pathway at a late time point (8 weeks) after injury. TLR4 null mice also showed reduction of scar-related ECM molecules at 8 weeks after SCI, accompanied by increase in ECM molecules associated with perineuronal nets, increased sprouting of serotonergic fibers, and improved locomotor recovery. These findings reveal novel effects of TLR4 signaling in chronic SCI. We show that TLR4 influences inflammation, cell death, and ECM deposition at late-stage post-injury when secondary injury processes are normally considered to be over. This highlights the potential for late-stage targeting of TLR4 as a potential therapy for chronic SCI.


Asunto(s)
Citocinas , Traumatismos de la Médula Espinal , Ratones , Femenino , Animales , Citocinas/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Neuronas/metabolismo , Inflamación/metabolismo , Ratones Noqueados , Médula Espinal/metabolismo , Recuperación de la Función/fisiología
9.
Development ; 149(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35043940

RESUMEN

Hemogenic endothelial (HE) cells in the dorsal aorta undergo an endothelial-to-hematopoietic transition (EHT) to form multipotent progenitors, lympho-myeloid biased progenitors (LMPs), pre-hematopoietic stem cells (pre-HSCs) and adult-repopulating HSCs. These briefly accumulate in intra-arterial hematopoietic clusters (IAHCs) before being released into the circulation. It is generally assumed that the number of IAHC cells correlates with the number of HSCs. Here, we show that changes in the number of IAHC cells, LMPs and HSCs can be uncoupled. Mutations impairing MyD88-dependent toll-like receptor (TLR) signaling decreased the number of IAHC cells and LMPs, but increased the number of HSCs in the aorta-gonad-mesonephros region of mouse embryos. TLR4-deficient embryos generated normal numbers of HE cells, but IAHC cell proliferation decreased. Loss of MyD88-dependent TLR signaling in innate immune myeloid cells had no effect on IAHC cell numbers. Instead, TLR4 deletion in endothelial cells (ECs) recapitulated the phenotype observed with germline deletion, demonstrating that MyD88-dependent TLR signaling in ECs and/or in IAHCs regulates the numbers of LMPs and HSCs.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Embrión de Mamíferos/citología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Hemangioblastos/citología , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/citología , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/citología , Células Mieloides/metabolismo , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Receptores Toll-Like/metabolismo
10.
Am J Pathol ; 194(5): 693-707, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38309428

RESUMEN

Glucose lowering independently reduces liver fibrosis in human nonalcoholic fatty liver disease. This study investigated the impact of diabetes on steatohepatitis and established a novel mouse model for diabetic steatohepatitis. Male C57BL/6J mice were fed a 60% high-fat diet (HFD) and injected with carbon tetrachloride (CCl4) and streptozotocin (STZ) to induce diabetes. The HFD+CCl4+STZ group showed more severe liver steatosis, hepatocyte ballooning, and regenerative nodules compared with other groups. Diabetes up-regulated inflammatory cytokine-associated genes and increased the M1/M2 macrophage ratios in the liver. Single-cell RNA sequencing analysis of nonparenchymal cells in the liver showed that diabetes reduced Kupffer cells and increased bone marrow-derived recruited inflammatory macrophages, such as Ly6Chi-RM. Diabetes globally reduced liver sinusoidal endothelial cells (LSECs). Furthermore, genes related to the receptor for advanced glycation end products (RAGE)/Toll-like receptor 4 (TLR4) were up-regulated in Ly6Chi-RM and LSECs in mice with diabetes, suggesting a possible role of RAGE/TLR4 signaling in the interaction between inflammatory macrophages and LSECs. This study established a novel diabetic steatohepatitis model using a combination of HFD, CCl4, and STZ. Diabetes exacerbated steatosis, hepatocyte ballooning, fibrosis, regenerative nodule formation, and the macrophage M1/M2 ratios triggered by HFD and CCl4. Single-cell RNA sequencing analysis indicated that diabetes activated inflammatory macrophages and impairs LSECs through the RAGE/TLR4 signaling pathway. These findings open avenues for discovering novel therapeutic targets for diabetic steatohepatitis.


Asunto(s)
Diabetes Mellitus , Enfermedad del Hígado Graso no Alcohólico , Ratones , Masculino , Humanos , Animales , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Células Endoteliales/metabolismo , Transcriptoma , Ratones Endogámicos C57BL , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Cirrosis Hepática/patología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Dieta Alta en Grasa/efectos adversos
11.
FASEB J ; 38(6): e23566, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38526868

RESUMEN

Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Ratones , Humanos , Receptor Toll-Like 4/genética , Receptor PAR-2/genética , Enfermedad de Chagas/genética , Enfermedad de Chagas/parasitología , Antivirales/farmacología , Inhibidores de Serina Proteinasa/farmacología , Inflamación , Serina , Serina Endopeptidasas/genética
12.
FASEB J ; 38(2): e23387, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38193649

RESUMEN

Human brain microvascular endothelial cells (HBMVECs) and microglia play critical roles in regulating cerebral homeostasis during ischemic stroke. However, the role of HBMVECs-derived exosomes in microglia polarization after stroke remains unknown. We isolated exosomes (Exos) from oxygen glucose deprivation (OGD)-exposed HBMVECs, before added them into microglia. Microglia polarization markers were tested using RT-qPCR or flow cytometry. Inflammatory cytokines were measured with ELISA. Endothelial cell damage was assessed by cell viability, apoptosis, apoptosis-related proteins, oxidative stress, and angiogenic activity using CCK-8, flow cytometry, western blot, ELISA, and endothelial tube formation assay, respectively. We also established middle cerebral artery occlusion (MCAO) mice model to examine the function of circ_0000495 on stroke in vivo. Our study found that HBMVECs-Exos reduced M2 markers (IL-10, CD163, and CD206), increased M1 markers (TNF-α, IL-1ß, and IL-12), CD86-positive cells, and inflammatory cytokines (TNF-α and IL-1ß), indicating the promotion of microglial M1-polarization. Microglial M1-polarization induced by HBMVECs-Exos reduced viability and promoted apoptosis and oxidative stress, revealing the aggravation of endothelial cell damage. However, circ_0000495 silencing inhibited HBMVECs-Exos-induced alterations. Mechanistically, circ_0000495 adsorbed miR-579-3p to upregulate toll-like receptor 4 (TLR4) in microglia; miR-579-3p suppressed HBMVECs-Exos-induced alterations via declining TLR4; furthermore, Yin Yang 1 (YY1) transcriptionally activated circ_0000495 in HBMVECs. Importantly, circ_0000495 aggravated ischemic brain injury in vivo via activating TLR4/nuclear factor-κB (NF-κB) pathway. Collectively, OGD-treated HBMVECs-Exos transmitted circ_0000495 to regulate miR-579-3p/TLR4/NF-κB axis in microglia, thereby facilitating microglial M1-polarization and endothelial cell damage.


Asunto(s)
Exosomas , MicroARNs , Accidente Cerebrovascular , Animales , Ratones , Humanos , Células Endoteliales , Microglía , Receptor Toll-Like 4/genética , FN-kappa B , Factor de Necrosis Tumoral alfa , Encéfalo , Hipoxia , Oxígeno , Citocinas , MicroARNs/genética
13.
Immunity ; 44(3): 647-658, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26944199

RESUMEN

The gut microbiota is compartmentalized in the intestinal lumen and induces local immune responses, but it remains unknown whether the gut microbiota can induce systemic response and contribute to systemic immunity. We report that selective gut symbiotic gram-negative bacteria were able to disseminate systemically to induce immunoglobulin G (IgG) response, which primarily targeted gram-negative bacterial antigens and conferred protection against systemic infections by E. coli and Salmonella by directly coating bacteria to promote killing by phagocytes. T cells and Toll-like receptor 4 on B cells were important in the generation of microbiota-specific IgG. We identified murein lipoprotein (MLP), a highly conserved gram-negative outer membrane protein, as a major antigen that induced systemic IgG homeostatically in both mice and humans. Administration of anti-MLP IgG conferred crucial protection against systemic Salmonella infection. Thus, our findings reveal an important function for the gut microbiota in combating systemic infection through the induction of protective IgG.


Asunto(s)
Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Inmunoglobulina G/metabolismo , Intestinos/inmunología , Peptidoglicano/inmunología , Animales , Carga Bacteriana/genética , Homeostasis/genética , Interacciones Huésped-Patógeno , Inmunoglobulina G/genética , Intestinos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética
14.
Immunity ; 45(1): 94-105, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27438768

RESUMEN

Although the intracellular trafficking system is integral to most physiologic activities, its role in mediating immune responses to infection has remained elusive. Here, we report that infected bladder epithelial cells (BECs) mobilized the exocyst complex, a powerful exporter of subcellular vesicles, to rapidly expel intracellular bacteria back for clearance. Toll-like receptor (TLR) 4 signals emanating from bacteria-containing vesicles (BCVs) were found to trigger K33-linked polyubiquitination of TRAF3 at Lys168, which was then detected by RalGDS, a guanine nucleotide exchange factor (GEF) that precipitated the assembly of the exocyst complex. Although this distinct modification of TRAF3 served to connect innate immune signaling to the cellular trafficking apparatus, it crucially ensured temporal and spatial accuracy in determining which among the many subcellular vesicles was recognized and selected for expulsion in response to innate immune signaling.


Asunto(s)
Escherichia coli/inmunología , Inmunidad Innata , Factor 3 Asociado a Receptor de TNF/metabolismo , Vesículas Transportadoras/metabolismo , Vejiga Urinaria/patología , Infecciones Urinarias/inmunología , Urotelio/inmunología , Animales , Células Cultivadas , Escherichia coli/genética , Exocitosis , Femenino , Humanos , Espacio Intracelular , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño/genética , Transducción de Señal , Factor 3 Asociado a Receptor de TNF/genética , Receptor Toll-Like 4/genética , Ubiquitinación , Vejiga Urinaria/microbiología , Urotelio/microbiología , Factor de Intercambio de Guanina Nucleótido ral/genética , Factor de Intercambio de Guanina Nucleótido ral/metabolismo
15.
EMBO Rep ; 24(12): e49561, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37943703

RESUMEN

Multidrug-resistant bacteria present a major threat to public health that urgently requires new drugs or treatment approaches. Here, we conduct integrated proteomic and metabolomics analyses to screen for molecular candidates improving survival of mice infected with Vibrio parahaemolyticus, which indicate that L-Alanine metabolism and phagocytosis are strongly correlated with mouse survival. We also assess the role of L-Alanine in improving mouse survival by in vivo bacterial challenge experiments using various bacteria species, including V. parahaemolyticus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Functional studies demonstrate that exogenous L-Alanine promotes phagocytosis of these multidrug-resistant pathogen species. We reveal that the underlying mechanism involves two events boosted by L-Alanine: TLR4 expression and L-Alanine-enhanced TLR4 signaling via increased biosynthesis and secretion of fatty acids, including palmitate. Palmitate enhances binding of lipopolysaccharide to TLR4, thereby promoting TLR4 dimer formation and endocytosis for subsequent activation of the PI3K/Akt and NF-κB pathways and bacteria phagocytosis. Our data suggest that modulation of the metabolic environment is a plausible approach for combating multidrug-resistant bacteria infection.


Asunto(s)
Alanina , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor Toll-Like 4/genética , Proteómica , Fagocitosis , Bacterias/metabolismo , Palmitatos
16.
Exp Cell Res ; 439(1): 114091, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38740168

RESUMEN

Resatorvid (TAK-242), a small-molecule inhibitor of Toll-like receptor 4 (TLR4), has the ability to cross the blood-brain barrier (BBB). In this study, we explored the role of TAK-242 on glioblastoma (GBM) invasion, migration, and proneural-mesenchymal transition (PMT). RNA sequencing (RNA-Seq) data and full clinical information of glioma patients were downloaded from the Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) cohorts and then analyzed using R language; patients were grouped based on proneural (PN) and mesenchymal (MES) subtypes. Bioinformatics analysis was used to detect the difference in survival and TLR4-pathway expression between these groups. Cell viability assay, wound-healing test, and transwell assay, as well as an intracranial xenotransplantation mice model, were used to assess the functional role of TAK-242 in GBM in vitro and in vivo. RNA-Seq, Western blot, and immunofluorescence were employed to investigate the possible mechanism. TLR4 expression in GBM was significantly higher than in normal brain tissue and upregulated the expression of MES marker genes. Moreover, TAK-242 inhibited GBM progression in vitro and in vivo via linking with PMT, which could be a novel treatment strategy for inhibiting GBM recurrence.


Asunto(s)
Neoplasias Encefálicas , Movimiento Celular , Transición Epitelial-Mesenquimal , Glioblastoma , Transducción de Señal , Sulfonamidas , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Humanos , Animales , Ratones , Sulfonamidas/farmacología , Transición Epitelial-Mesenquimal/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Invasividad Neoplásica , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Proliferación Celular , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Biochem J ; 481(4): 191-218, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38224573

RESUMEN

Insulin resistance (IR) is the key pathophysiological cause of type 2 diabetes, and inflammation has been implicated in it. The death domain (DD) of the adaptor protein, MyD88 plays a crucial role in the transduction of TLR4-associated inflammatory signal. Herein, we have identified a 10-residue peptide (M10), from the DD of MyD88 which seems to be involved in Myddosome formation. We hypothesized that M10 could inhibit MyD88-dependent TLR4-signaling and might have effects on inflammation-associated IR. Intriguingly, 10-mer M10 showed oligomeric nature and reversible self-assembly property indicating the peptide's ability to recognize its own amino acid sequence. M10 inhibited LPS-induced nuclear translocation of NF-κB in L6 myotubes and also reduced LPS-induced IL-6 and TNF-α production in peritoneal macrophages of BALB/c mice. Remarkably, M10 inhibited IL-6 and TNF-α secretion in diabetic, db/db mice. Notably, M10 abrogated IR in insulin-resistant L6 myotubes, which was associated with an increase in glucose uptake and a decrease in Ser307-phosphorylation of IRS1, TNF-α-induced JNK activation and nuclear translocation of NF-κB in these cells. Alternate day dosing with M10 (10 and 20 mg/kg) for 30 days in db/db mice significantly lowered blood glucose and improved glucose intolerance after loading, 3.0 g/kg glucose orally. Furthermore, M10 increased insulin and adiponectin secretion in db/db mice. M10-induced glucose uptake in L6 myotubes involved the activation of PI3K/AKT/GLUT4 pathways. A scrambled M10-analog was mostly inactive. Overall, the results show the identification of a 10-mer peptide from the DD of MyD88 with anti-inflammatory and anti-diabetic properties, suggesting that targeting of TLR4-inflammatory pathway, could lead to the discovery of molecules against IR and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glucemia , Dominio de Muerte , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inflamación/tratamiento farmacológico , Insulina/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/toxicidad , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Péptidos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(10): e2111537119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238643

RESUMEN

Ischemia reperfusion injury represents a common pathological condition that is triggered by the release of endogenous ligands. While neutrophils are known to play a critical role in its pathogenesis, the tissue-specific spatiotemporal regulation of ischemia-reperfusion injury is not understood. Here, using oxidative lipidomics and intravital imaging of transplanted mouse lungs that are subjected to severe ischemia reperfusion injury, we discovered that necroptosis, a nonapoptotic form of cell death, triggers the recruitment of neutrophils. During the initial stages of inflammation, neutrophils traffic predominantly to subpleural vessels, where their aggregation is directed by chemoattractants produced by nonclassical monocytes that are spatially restricted in this vascular compartment. Subsequent neutrophilic disruption of capillaries resulting in vascular leakage is associated with impaired graft function. We found that TLR4 signaling in vascular endothelial cells and downstream NADPH oxidase 4 expression mediate the arrest of neutrophils, a step upstream of their extravasation. Neutrophil extracellular traps formed in injured lungs and their disruption with DNase prevented vascular leakage and ameliorated primary graft dysfunction. Thus, we have uncovered mechanisms that regulate the initial recruitment of neutrophils to injured lungs, which result in selective damage to subpleural pulmonary vessels and primary graft dysfunction. Our findings could lead to the development of new therapeutics that protect lungs from ischemia reperfusion injury.


Asunto(s)
Endotelio Vascular/metabolismo , Pulmón/metabolismo , Necroptosis , Infiltración Neutrófila , Neutrófilos/metabolismo , Daño por Reperfusión/metabolismo , Animales , Endotelio Vascular/lesiones , Humanos , Pulmón/irrigación sanguínea , Ratones , Ratones Noqueados , Daño por Reperfusión/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35105806

RESUMEN

The protumor roles of alternatively activated (M2) tumor-associated macrophages (TAMs) have been well established, and macrophage reprogramming is an important therapeutic goal. However, the mechanisms of TAM polarization remain incompletely understood, and effective strategies for macrophage targeting are lacking. Here, we show that miR-182 in macrophages mediates tumor-induced M2 polarization and can be targeted for therapeutic macrophage reprogramming. Constitutive miR-182 knockout in host mice and conditional knockout in macrophages impair M2-like TAMs and breast tumor development. Targeted depletion of macrophages in mice blocks the effect of miR-182 deficiency in tumor progression while reconstitution of miR-182-expressing macrophages promotes tumor growth. Mechanistically, cancer cells induce miR-182 expression in macrophages by TGFß signaling, and miR-182 directly suppresses TLR4, leading to NFκb inactivation and M2 polarization of TAMs. Importantly, therapeutic delivery of antagomiR-182 with cationized mannan-modified extracellular vesicles effectively targets macrophages, leading to miR-182 inhibition, macrophage reprogramming, and tumor suppression in multiple breast cancer models of mice. Overall, our findings reveal a crucial TGFß/miR-182/TLR4 axis for TAM polarization and provide rationale for RNA-based therapeutics of TAM targeting in cancer.


Asunto(s)
Reprogramación Celular , Neoplasias Mamarias Animales/metabolismo , MicroARNs/metabolismo , ARN Neoplásico/metabolismo , Transducción de Señal , Macrófagos Asociados a Tumores/metabolismo , Animales , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Neoplasias Mamarias Animales/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/genética , Receptor Toll-Like 4/biosíntesis , Receptor Toll-Like 4/genética , Factor de Crecimiento Transformador beta/biosíntesis , Factor de Crecimiento Transformador beta/genética
20.
J Infect Dis ; 229(6): 1637-1647, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38147361

RESUMEN

BACKGROUND: The pathogenesis of Chlamydia trachomatis is associated with the induction of the host inflammatory response; however, the precise underlying molecular mechanisms remain poorly understood. METHODS: CT622, a T3SS effector protein, has an important role in the pathogenesis of C trachomatis; however, whether CT622 can induce a host inflammatory response is not understood. Our findings demonstrate that CT622 induces the expression of interleukins 6 and 8 (IL-6 and IL-8). Mechanistically, these effects involve the activation of the MAPK/NF-κB signaling pathways (mitogen-activated protein kinase/nuclear factor κB). RESULTS: Interestingly, we demonstrated that the suppression of toll-like receptor 4 using small interfering RNA markedly reduced the phosphorylation of ERK, p38, JNK, and IκBα, concomitant with a significant decrease in IL-6 and IL-8 secretion. Conversely, disruption of toll-like receptor 2 abrogated the CT622-induced upregulation of IL-8 and activation of ERK, whereas IL-6 expression and p38, JNK, and IκBα phosphorylation were unaffected. CONCLUSIONS: Taken together, these results indicate that CT622 contributes to the inflammatory response through the toll-like receptor 2/4-mediated MAPK/NF-κB pathways, which provides insight into the molecular pathology of C trachomatis infection.


Asunto(s)
Chlamydia trachomatis , Citocinas , FN-kappa B , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Humanos , Chlamydia trachomatis/inmunología , FN-kappa B/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Células THP-1 , Citocinas/metabolismo , Transducción de Señal , Interleucina-6/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/metabolismo , Interleucina-8/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA