RESUMEN
Neonatal germ cell development provides the foundation of spermatogenesis. However, a systematic understanding of this process is still limited. To resolve cellular and molecular heterogeneity in this process, we profiled single cell transcriptomes of undifferentiated germ cells from neonatal mouse testes and employed unbiased clustering and pseudotime ordering analysis to assign cells to distinct cell states in the developmental continuum. We defined the unique transcriptional programs underlying migratory capacity, resting cellular states and apoptosis regulation in transitional gonocytes. We also identified a subpopulation of primitive spermatogonia marked by CD87 (plasminogen activator, urokinase receptor), which exhibited a higher level of self-renewal gene expression and migration potential. We further revealed a differentiation-primed state within the undifferentiated compartment, in which elevated Oct4 expression correlates with lower expression of self-renewal pathway factors, higher Rarg expression, and enhanced retinoic acid responsiveness. Lastly, a knockdown experiment revealed the role of Oct4 in the regulation of gene expression related to the MAPK pathway and cell adhesion, which may contribute to stem cell differentiation. Our study thus provides novel insights into cellular and molecular regulation during early germ cell development.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Análisis de Secuencia de ARN , Espermatogonias/citología , Animales , Animales Recién Nacidos , Apoptosis , Adhesión Celular , Diferenciación Celular , Perfilación de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Microscopía Fluorescente , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Receptores de Ácido Retinoico/fisiología , Receptores del Activador de Plasminógeno Tipo Uroquinasa/fisiología , Espermatogénesis/genética , Transcriptoma , Tretinoina/fisiología , Receptor de Ácido Retinoico gammaRESUMEN
Retinoic acid (RA), a metabolite of retinol (vitamin A), functions as a ligand for nuclear RA receptors (RARs) that regulate development of chordate animals. RA-RARs can activate or repress transcription of key developmental genes. Genetic studies in mouse and zebrafish embryos that are deficient in RA-generating enzymes or RARs have been instrumental in identifying RA functions, revealing that RA signaling regulates development of many organs and tissues, including the body axis, spinal cord, forelimbs, heart, eye and reproductive tract. An understanding of the normal functions of RA signaling during development will guide efforts for use of RA as a therapeutic agent to improve human health. Here, we provide an overview of RA signaling and highlight its key functions during development.
Asunto(s)
Genes del Desarrollo , Receptores de Ácido Retinoico/fisiología , Tretinoina/farmacología , Tretinoina/fisiología , Animales , Embrión de Mamíferos , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes del Desarrollo/efectos de los fármacos , Genes del Desarrollo/genética , Humanos , Ratones , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Tretinoina/metabolismo , Pez CebraRESUMEN
The mucosal immune system of the intestine is separated from a vast array of microbes by a single layer of epithelial cells. Cues from the commensal microflora are needed to maintain epithelial homeostasis, but the molecular and cellular identities of these cues are unclear. Here we provide evidence that signals from the commensal microflora contribute to the differentiation of a lymphocyte population coexpressing stimulatory natural killer cell receptors and the transcription factor RORgammat that produced interleukin 22 (IL-22). The emergence of these IL-22-producing RORgammathiNKp46+NK1.1(int) cells depended on RORgammat expression, which indicated that these cells may have been derived from lymphoid tissue-inducer cells. IL-22 released by these cells promoted the production of antimicrobial molecules important in the maintenance of mucosal homeostasis.
Asunto(s)
Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Células T Asesinas Naturales/inmunología , Receptores de Ácido Retinoico/fisiología , Receptores de Hormona Tiroidea/fisiología , Factores de Transcripción/fisiología , Animales , Antígenos Ly/inmunología , Bacterias/inmunología , Diferenciación Celular , Homeostasis/inmunología , Interleucinas/biosíntesis , Ratones , Ratones Noqueados , Receptor 1 Gatillante de la Citotoxidad Natural/inmunología , Células T Asesinas Naturales/citología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Ganglios Linfáticos Agregados/inmunología , Receptores de Ácido Retinoico/genética , Receptores de Hormona Tiroidea/genética , Interleucina-22RESUMEN
NKp46+CD3- natural killer lymphocytes isolated from blood, lymphoid organs, lung, liver and uterus can produce granule-dependent cytotoxicity and interferon-gamma. Here we identify in dermis, gut lamina propria and cryptopatches distinct populations of NKp46+CD3- cells with a diminished capacity to degranulate and produce interferon-gamma. In the gut, expression of the transcription factor RORgammat, which is involved in the development of lymphoid tissue-inducer cells, defined a previously unknown subset of NKp46+CD3- lymphocytes. Unlike RORgammat- lamina propria and dermis natural killer cells, gut RORgammat+NKp46+ cells produced interleukin 22. Our data show that lymphoid tissue-inducer cells and natural killer cells shared unanticipated similarities and emphasize the heterogeneity of NKp46+CD3- cells in innate immunity, lymphoid organization and local tissue repair.
Asunto(s)
Dermis/inmunología , Mucosa Intestinal/inmunología , Células T Asesinas Naturales/inmunología , Receptores de Ácido Retinoico/fisiología , Receptores de Hormona Tiroidea/fisiología , Factores de Transcripción/fisiología , Animales , Complejo CD3/metabolismo , División Celular , Humanos , Interferón gamma/biosíntesis , Interleucinas/biosíntesis , Activación de Linfocitos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Receptor 1 Gatillante de la Citotoxidad Natural/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Ganglios Linfáticos Agregados/inmunología , Receptores de Ácido Retinoico/genética , Receptores de Hormona Tiroidea/genética , Factores de Transcripción/genética , Interleucina-22RESUMEN
Interleukin 22 (IL-22) is a member of the IL-10 cytokine family that is involved in inflammatory and wound healing processes. Originally considered a T helper type 1 (T(H)1)-associated cytokine, IL-22 has since been shown to be produced mainly by IL-17-producing helper T cells (T(H)-17 cells). Here we describe a previously uncharacterized IL-22-producing human helper T cell population that coexpressed the chemokine receptor CCR6 and the skin-homing receptors CCR4 and CCR10. These cells were distinct from both T(H)-17 cells and T(H)1 cells. Downregulation of either the aryl hydrocarbon receptor (AHR) or the transcription factor RORC by RNA-mediated interference affected IL-22 production, whereas IL-17 production was affected only by downregulation of RORC by RNA-mediated interference. AHR agonists substantially altered the balance of IL-22- versus IL-17-producing cells. This subset of IL-22-producing cells may be important in skin homeostasis and pathology.
Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Interleucinas/biosíntesis , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Regulación hacia Abajo , Humanos , Memoria Inmunológica , Interferón gamma/biosíntesis , Interleucina-13/biosíntesis , Interleucina-17/biosíntesis , Activación de Linfocitos , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/fisiología , Receptores CCR10/biosíntesis , Receptores CCR4/biosíntesis , Receptores CCR6/biosíntesis , Receptores de Ácido Retinoico/fisiología , Receptores de Hormona Tiroidea/fisiología , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunología , Interleucina-22RESUMEN
Cancer "stem cells" (CSCs) sustain the hierarchies of dividing cells that characterize cancer. The main causes of cancer-related mortality are metastatic disease and relapse, both of which originate primarily from CSCs, so their eradication may provide a bona fide curative strategy, though there maybe also the need to kill the bulk cancer cells. While classic anti-cancer chemotherapy is effective against the dividing progeny of CSCs, non-dividing or quiescent CSCs are often spared. Improved anti-cancer therapies therefore require approaches that target non-dividing CSCs, which must be underpinned by a better understanding of factors that permit these cells to maintain a stem cell-like state. During hematopoiesis, retinoic acid receptor (RAR) γ is selectively expressed by stem cells and their immediate progeny. It is overexpressed in, and is an oncogene for, many cancers including colorectal, renal and hepatocellular carcinoma, cholangiocarcinomas and some cases of acute myeloid leukemia that harbor RARγ fusion proteins. In vitro studies suggest that RARγ-selective and pan-RAR antagonists provoke the death of CSCs by necroptosis and point to antagonism of RARγ as a potential strategy to treat metastatic disease and relapse, and perhaps provide a cure for some cancers.
Asunto(s)
Células Madre Neoplásicas/metabolismo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , División Celular/fisiología , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Células Madre Neoplásicas/fisiología , Oncogenes/genética , Receptores de Ácido Retinoico/antagonistas & inhibidores , Receptores de Ácido Retinoico/fisiología , Receptor de Ácido Retinoico gammaRESUMEN
Neuronal regeneration is a highly energy-demanding process that greatly relies on axonal mitochondrial transport to meet the enhanced metabolic requirements. Mature neurons typically fail to regenerate after injury, partly because of mitochondrial motility and energy deficits in injured axons. Retinoic acid receptor (RAR)-ß signaling is involved in axonal and neurite regeneration. Here we investigate the effect of RAR-ß signaling on mitochondrial trafficking during neurite outgrowth and find that it enhances their proliferation, speed, and movement toward the growing end of the neuron via hypoxia-inducible factor 1α signaling. We also show that RAR-ß signaling promotes the binding of the mitochondria to the anchoring protein, glucose-related protein 75, at the growing tip of neurite, thus allowing them to provide energy and metabolic roles required for neurite outgrowth.-Trigo, D., Goncalves, M. B., Corcoran, J. P. T. The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor ß signaling.
Asunto(s)
Dinámicas Mitocondriales/fisiología , Proyección Neuronal/fisiología , Receptores de Ácido Retinoico/fisiología , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Dinámicas Mitocondriales/efectos de los fármacos , Naftalenos/farmacología , Proyección Neuronal/efectos de los fármacos , Neuronas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Receptores de Ácido Retinoico/agonistasRESUMEN
Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca(2+) levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca(2+)-levels to RA synthesis remains unknown. Here we identify the Ca(2+)-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca(2+)-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity.
Asunto(s)
Calcineurina/fisiología , Homeostasis , Plasticidad Neuronal/fisiología , Tretinoina/metabolismo , Animales , Ratones , Fosforilación , Receptores AMPA/metabolismo , Receptores de Ácido Retinoico/fisiología , Receptor alfa de Ácido Retinoico , Transducción de SeñalRESUMEN
Cellular retinoic acid binding proteins (CRABPs) are high-affinity retinoic acid (RA) binding proteins that mainly reside in the cytoplasm. In mammals, this family has two members, CRABPI and II, both highly conserved during evolution. The two proteins share a very similar structure that is characteristic of a "ß-clam" motif built up from10-strands. The proteins are encoded by two different genes that share a very similar genomic structure. CRABPI is widely distributed and CRABPII has restricted expression in only certain tissues. The CrabpI gene is driven by a housekeeping promoter, but can be regulated by numerous factors, including thyroid hormones and RA, which engage a specific chromatin-remodeling complex containing either TRAP220 or RIP140 as coactivator and corepressor, respectively. The chromatin-remodeling complex binds the DR4 element in the CrabpI gene promoter to activate or repress this gene in different cellular backgrounds. The CrabpII gene promoter contains a TATA-box and is rapidly activated by RA through an RA response element. Biochemical and cell culture studies carried out in vitro show the two proteins have distinct biological functions. CRABPII mainly functions to deliver RA to the nuclear RA receptors for gene regulation, although recent studies suggest that CRABPII may also be involved in other cellular events, such as RNA stability. In contrast, biochemical and cell culture studies suggest that CRABPI functions mainly in the cytoplasm to modulate intracellular RA availability/concentration and to engage other signaling components such as ERK activity. However, these functional studies remain inconclusive because knocking out one or both genes in mice does not produce definitive phenotypes. Further studies are needed to unambiguously decipher the exact physiological activities of these two proteins.
Asunto(s)
Regulación de la Expresión Génica/fisiología , Receptores de Ácido Retinoico/fisiología , Tretinoina/fisiología , Animales , Diferenciación Celular , Ensamble y Desensamble de Cromatina , Predicción , Humanos , Subunidad 1 del Complejo Mediador/fisiología , Ratones , Ratones Noqueados , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Conformación Proteica , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/genética , Elementos de Respuesta/genética , Factores de Transcripción/fisiologíaRESUMEN
It has long been established that the transcriptional activity of retinoic acid (RA) is mediated by members of the nuclear receptor family of ligand-activated transcription factors termed RA receptors (RARs). More recent observations have established that RA also activates an additional nuclear receptor, PPARß/δ. Partitioning RA between RARs and PPARß/δ is governed by different intracellular lipid-binding proteins: cellular RA binding protein 2 (CRABP2) delivers RA to nuclear RARs and a fatty acid binding protein (FABP5) delivers the hormone from the cytosol to nuclear PPARß/δ. Consequently, RA signals through RARs in CRABP2-expressing cells, but activates PPARß/δ in cells that express a high level of FABP5. RA elicits different and sometimes opposing responses in cells that express different FABP5/CRABP2 ratios because PPARß/δ and RARs regulate the expression of distinct sets of genes. An overview of the observations that led to the discovery of this non-classical activity of RA are presented here, along with a discussion of evidence demonstrating the involvement of the dual transcriptional activities of RA in regulating energy homeostasis, insulin responses, and adipocyte and neuron differentiation.
Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , PPAR delta/fisiología , PPAR-beta/fisiología , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Tejido Adiposo/metabolismo , Animales , Transporte Biológico , Proteínas de Unión a Ácidos Grasos/fisiología , Predicción , Regulación de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Modelos Moleculares , Proteínas de Neoplasias/fisiología , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Obesidad/metabolismo , PPAR delta/efectos de los fármacos , PPAR-beta/efectos de los fármacos , Conformación Proteica , Receptores de Ácido Retinoico/fisiologíaRESUMEN
Failure of axonal regeneration in the central nervous system (CNS) is mainly attributed to a lack of intrinsic neuronal growth programs and an inhibitory environment from a glial scar. Phosphatase and tensin homolog (PTEN) is a major negative regulator of neuronal regeneration and, as such, inhibiting its activity has been considered a therapeutic target for spinal cord (SC) injuries (SCIs). Using a novel model of rat cervical avulsion, we show that treatment with a retinoic acid receptor ß (RARß) agonist results in locomotor and sensory recovery. Axonal regeneration from the severed roots into the SC could be seen by biotinylated dextran amine labeling. Light micrographs of the dorsal root entry zone show the peripheral nervous system (PNS)-CNS transition of regrown axons. RARß agonist treatment also resulted in the absence of scar formation. Mechanism studies revealed that, in RARß-agonist-treated neurons, PTEN activity is decreased by cytoplasmic phosphorylation and increased secretion in exosomes. These are taken up by astrocytes, resulting in hampered proliferation and causing them to arrange in a normal-appearing scaffold around the regenerating axons. Attribution of the glial modulation to neuronal PTEN in exosomes was demonstrated by the use of an exosome inhibitor in vivo and PTEN siRNA in vitro assays. The dual effect of RARß signaling, both neuronal and neuronal-glial, results in axonal regeneration into the SC after dorsal root neurotmesis. Targeting this pathway may open new avenues for the treatment of SCIs. SIGNIFICANCE STATEMENT: Spinal cord injuries (SCIs) often result in permanent damage in the adult due to the very limited capacity of axonal regeneration. Intrinsic neuronal programs and the formation of a glial scar are the main obstacles. Here, we identify a single target, neuronal retinoic acid receptor ß (RARß), which modulates these two aspects of the postinjury physiological response. Activation of RARß in the neuron inactivates phosphatase and tensin homolog and induces its transfer into the astrocytes in small vesicles, where it prevents scar formation. This may open new therapeutic avenues for SCIs.
Asunto(s)
Astrocitos/metabolismo , Cicatriz/metabolismo , Exosomas/metabolismo , Neuroglía/metabolismo , Fosfohidrolasa PTEN/metabolismo , Receptores de Ácido Retinoico/fisiología , Regeneración de la Medula Espinal/fisiología , Animales , Células Cultivadas , Cicatriz/prevención & control , Masculino , Ratones , Neuroglía/patología , Neuronas/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/fisiologíaRESUMEN
The mammalian striatum controls sensorimotor and psychoaffective functions through coordinated activities of its two striatonigral and striatopallidal output pathways. Here we show that retinoic acid receptor ß (RARß) controls development of a subpopulation of GABAergic, Gad65-positive striatonigral projection neurons. In Rarb(-/-) knock-out mice, concomitant reduction of Gad65, dopamine receptor D1 (Drd1), and substance P expression at different phases of prenatal development was associated with reduced number of Drd1-positive cells at birth, in contrast to normal numbers of striatopallidal projection neurons expressing dopamine receptor D2. Fate mapping using BrdU pulse-chase experiments revealed that such deficits may originate from compromised proliferation of late-born striosomal neurons and lead to decreased number of Drd1-positive cells retaining BrdU in postnatal day (P) 0 Rarb(-/-) striatum. Reduced expression of Fgf3 in the subventricular zone of the lateral ganglionic eminence (LGE) at embryonic day 13.5 may underlie such deficits by inducing premature differentiation of neuronal progenitors, as illustrated by reduced expression of the proneural gene Ascl1 (Mash1) and increased expression of Meis1, a marker of postmitotic LGE neurons. In agreement with a critical role of FGF3 in this control, reduced number of Ascl1-expressing neural progenitors, and a concomitant increase of Meis1-expressing cells, were observed in primary cell cultures of Rarb(-/-) LGE. This defect was normalized by addition of fibroblast growth factor (FGF). Such data point to role of Meis1 in striatal development, also supported by reduced neuronal differentiation in the LGE of Meis1(-/-) embryos. Our data unveil a novel mechanism of development of striatonigral projection neurons involving retinoic acid and FGF, two signals required for positioning the boundaries of Meis1-expressing cells.
Asunto(s)
Cuerpo Estriado/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Proteínas de Homeodominio/fisiología , Proteínas de Neoplasias/fisiología , Neuronas/fisiología , Receptores de Ácido Retinoico/fisiología , Sustancia Negra/fisiología , Animales , Antimetabolitos/farmacología , Bromodesoxiuridina/farmacología , Cuerpo Estriado/citología , Cuerpo Estriado/embriología , Femenino , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Glutamato Descarboxilasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Neurogénesis/genética , Neurogénesis/fisiología , Embarazo , Cultivo Primario de Células , Receptores de Dopamina D1/metabolismo , Sustancia Negra/citología , Sustancia Negra/embriologíaRESUMEN
Cellular uptake of vitamin A (retinol) is essential for many biological functions. The Stra6 protein binds the serum retinol-binding protein, RBP4, and acts in conjunction with the enzyme lecithin:retinol acyltransferase to facilitate retinol uptake in some cell types. We show that in embryonic stem (ES) cells and in some tissues, the Stra6 gene encodes two distinct mRNAs transcribed from two different promoters. Whereas both are all-trans-retinoic acid (RA)-responsive in ES cells, the downstream promoter contains a half-site RA response element (RARE) and drives an â¼ 13-fold, RA-associated increase in luciferase reporter activity. We employed CRISPR-Cas9 genome editing to show that the endogenous RARE is required for RA-induced transcription of both Stra6 isoforms. We further demonstrate that in ES cells, 1) both RARγ and RXRα are present at the Stra6 RARE; 2) RA increases co-activator p300 (KAT3B) binding and histone H3 Lys-27 acetylation at both promoters; 3) RA decreases Suz12 levels and histone H3 Lys-27 trimethylation epigenetic marks at both promoters; and 4) these epigenetic changes are diminished in the absence of RARγ. In the brains of WT mice, both the longer and the shorter Stra6 transcript (Stra6L and Stra6S, respectively) are highly expressed, whereas these transcripts are found only at low levels in RARγ(-/-) mice. In the brains of vitamin A-deficient mice, both Stra6L and Stra6S levels are decreased. In contrast, in the vitamin A-deficient kidneys, the Stra6L levels are greatly increased, whereas Stra6S levels are decreased. Our data show that kidneys respond to retinol deficiency by differential Stra6 promoter usage, which may play a role in the retention of retinol when vitamin A is low.
Asunto(s)
Regulación de la Expresión Génica , Proteínas de la Membrana/genética , Regiones Promotoras Genéticas/genética , Empalme del ARN/genética , Receptores de Ácido Retinoico/fisiología , Elementos de Respuesta/genética , Deficiencia de Vitamina A , Animales , Secuencia de Bases , Western Blotting , Encéfalo/metabolismo , Células Cultivadas , Inmunoprecipitación de Cromatina , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Isoformas de Proteínas , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sitio de Iniciación de la Transcripción , Tretinoina/farmacología , Receptor de Ácido Retinoico gammaRESUMEN
All-trans retinoic acid (atRA), the active metabolite of vitamin A, plays critical functions in spermatogenesis, a complex, highly organized and regulated process comprising three phases. During the proliferative phase, undifferentiated spermatogonia divide to maintain a stem cell population and expand a progenitor cell population, of which a fraction enters the differentiation pathway yielding primary spermatocytes. During the meiotic phase, primary spermatocytes undergo recombination, segregation and reduction by half of chromosomes to produce haploid round spermatids. During the morphogenetic, post-meiotic phase, spermatids differentiate and elongate to ultimately form spermatozoa. Studies performed during the past 20 years have significantly improved our knowledge on the location of the proteins transducing the atRA signal, on the target genes of atRA and on its mechanism of action. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Asunto(s)
Receptores de Ácido Retinoico/fisiología , Espermatogénesis , Espermatogonias/citología , Animales , Masculino , Células de Sertoli/citología , Células de Sertoli/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Tretinoina/farmacologíaRESUMEN
Retinoic acid (RA) is a terpenoid that is synthesized from vitamin A/retinol (ROL) and binds to the nuclear receptors retinoic acid receptor (RAR)/retinoid X receptor (RXR) to control multiple developmental processes in vertebrates. The available clinical and experimental data provide uncontested evidence for the pleiotropic roles of RA signaling in development of multiple embryonic structures and organs such eyes, central nervous system, gonads, lungs and heart. The development of any of these above-mentioned embryonic organ systems can be effectively utilized to showcase the many strategies utilized by RA signaling. However, it is very likely that the strategies employed to transfer RA signals during cardiac development comprise the majority of the relevant and sophisticated ways through which retinoid signals can be conveyed in a complex biological system. Here, we provide the reader with arguments indicating that RA signaling is exquisitely regulated according to specific phases of cardiac development and that RA signaling itself is one of the major regulators of the timing of cardiac morphogenesis and differentiation. We will focus on the role of signaling by RA receptors (RARs) in early phases of heart development. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Asunto(s)
Corazón/embriología , Receptores de Ácido Retinoico/fisiología , Animales , Relojes Biológicos/efectos de los fármacos , Relojes Biológicos/fisiología , Evolución Biológica , Regulación del Desarrollo de la Expresión Génica , Corazón/efectos de los fármacos , Corazón/crecimiento & desarrollo , Humanos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Tiempo , Tretinoina/farmacologíaRESUMEN
Cells in the developing neural tissue demonstrate an exquisite balance between proliferation and differentiation. Retinoic acid (RA) is required for neuronal differentiation by promoting expression of proneural and neurogenic genes. We show that RA acts early in the neurogenic pathway by inhibiting expression of neural progenitor markers Geminin and Foxd4l1, thereby promoting differentiation. Our screen for RA target genes in early Xenopus development identified Ets2 Repressor Factor (Erf) and the closely related ETS repressors Etv3 and Etv3-like (Etv3l). Erf and Etv3l are RA responsive and inhibit the action of ETS genes downstream of FGF signaling, placing them at the intersection of RA and growth factor signaling. We hypothesized that RA regulates primary neurogenesis by inducing Erf and Etv3l to antagonize proliferative signals. Loss-of-function analysis showed that Erf and Etv3l are required to inhibit proliferation of neural progenitors to allow differentiation, whereas overexpression of Erf led to an increase in the number of primary neurons. Therefore, these RA-induced ETS repressors are key components of the proliferation-differentiation switch during primary neurogenesis in vivo.
Asunto(s)
Neurogénesis/fisiología , Proteínas Proto-Oncogénicas c-ets/fisiología , Proteínas Represoras/fisiología , Tretinoina/metabolismo , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Xenopus laevis/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Proliferación Celular , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/fisiología , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Neurogénesis/genética , Proteínas Proto-Oncogénicas c-ets/genética , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/fisiología , Proteínas Represoras/genética , Transducción de Señal , Proteínas de Xenopus/genética , Xenopus laevis/genéticaRESUMEN
BACKGROUND: Vertebrate body axis extension occurs in a head-to-tail direction from a caudal progenitor zone that responds to interacting signals. Wnt/ß-catenin signaling is critical for generation of paraxial mesoderm, somite formation, and maintenance of the axial stem cell pool. Body axis extension requires Wnt8a in lower vertebrates, but in mammals Wnt3a is required, although the anterior trunk develops in the absence of Wnt3a. RESULTS: We examined mouse Wnt8a(-/-) and Wnt3a(-/-) single and double mutants to explore whether mammalian Wnt8a contributes to body axis extension and to determine whether a posterior growth function for Wnt8a is conserved throughout the vertebrate lineage. We find that caudal Wnt8a is expressed only during early somite stages and is required for normal development of the anterior trunk in the absence of Wnt3a. During this time, we show that Wnt8a and Wnt3a cooperate to maintain Fgf8 expression and prevent premature Sox2 up-regulation in the axial stem cell niche, critical for posterior growth. Similar to Fgf8, Wnt8a requires retinoic acid (RA) signaling to restrict its caudal expression boundary and possesses an upstream RA response element that binds RA receptors. CONCLUSIONS: These findings provide new insight into interaction of caudal Wnt-FGF-RA signals required for body axis extension.
Asunto(s)
Tipificación del Cuerpo/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Nicho de Células Madre/fisiología , Proteína Wnt3A/fisiología , Anomalías Múltiples/embriología , Anomalías Múltiples/genética , Oxidorreductasas de Alcohol/deficiencia , Oxidorreductasas de Alcohol/genética , Animales , Tipificación del Cuerpo/genética , Secuencia Conservada , Factor 8 de Crecimiento de Fibroblastos/biosíntesis , Factor 8 de Crecimiento de Fibroblastos/genética , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Noqueados , Fenotipo , Receptores de Ácido Retinoico/fisiología , Elementos de Respuesta/genética , Factores de Transcripción SOXB1/biosíntesis , Factores de Transcripción SOXB1/genética , Transducción de Señal/fisiología , Somitos/crecimiento & desarrollo , Somitos/metabolismo , Tretinoina/farmacología , Vertebrados/embriología , Proteínas Wnt , Proteína Wnt3A/deficiencia , Proteína Wnt3A/genéticaRESUMEN
Transcriptional deregulation plays a key role in a large array of cancers, and successful targeting of oncogenic transcription factors that sustain diseases has been a holy grail in the field. Acute promyelocytic leukaemia (APL) driven by chimeric transcription factors encoding retinoic acid receptor alpha fusions is the paradigm of targeted cancer therapy, in which the application of all-trans retinoic acid (ATRA) treatments have markedly transformed this highly fatal cancer to a highly manageable disease. The extremely high complete remission rate resulted from targeted therapies using ATRA in combination with arsenic trioxide will likely be able to minimise or even totally eliminate the use of highly toxic chemotherapeutic agents in APL. In this article, we will review the molecular basis and the upcoming challenges of these targeted therapies in APL, and discuss the recent advance in our understanding of epigenetics underlying ATRA response and their potential use to further improve treatment response and overcome resistance.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Epigénesis Genética , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Terapia Molecular Dirigida/métodos , Trióxido de Arsénico , Arsenicales/administración & dosificación , Metilación de ADN , Humanos , Óxidos/administración & dosificación , Receptores de Ácido Retinoico/fisiología , Receptor alfa de Ácido Retinoico , Resultado del Tratamiento , Tretinoina/administración & dosificaciónRESUMEN
UNLABELLED: Mice deficient in small heterodimer partner (SHP) are protected from diet-induced hepatic steatosis resulting from increased fatty acid oxidation and decreased lipogenesis. The decreased lipogenesis appears to be a direct consequence of very low expression of peroxisome proliferator-activated receptor gamma 2 (PPAR-γ2), a potent lipogenic transcription factor, in the SHP(-/-) liver. The current study focused on the identification of a SHP-dependent regulatory cascade that controls PPAR-γ2 gene expression, thereby regulating hepatic fat accumulation. Illumina BeadChip array (Illumina, Inc., San Diego, CA) and real-time polymerase chain reaction were used to identify genes responsible for the linkage between SHP and PPAR-γ2 using hepatic RNAs isolated from SHP(-/-) and SHP-overexpressing mice. The initial efforts identify that hairy and enhancer of split 6 (Hes6), a novel transcriptional repressor, is an important mediator of the regulation of PPAR-γ2 transcription by SHP. The Hes6 promoter is specifically activated by the retinoic acid receptor (RAR) in response to its natural agonist ligand, all-trans retinoic acid (atRA), and is repressed by SHP. Hes6 subsequently represses hepatocyte nuclear factor 4 alpha (HNF-4α)-activated PPAR-γ2 gene expression by direct inhibition of HNF-4α transcriptional activity. Furthermore, we provide evidences that atRA treatment or adenovirus-mediated RAR-α overexpression significantly reduced hepatic fat accumulation in obese mouse models, as observed in earlier studies, and the beneficial effect is achieved by the proposed transcriptional cascade. CONCLUSIONS: Our study describes a novel transcriptional regulatory cascade controlling hepatic lipid metabolism that identifies retinoic acid signaling as a new therapeutic approach to nonalcoholic fatty liver diseases.
Asunto(s)
Hígado Graso/tratamiento farmacológico , PPAR gamma/genética , Receptores Citoplasmáticos y Nucleares/fisiología , Tretinoina/uso terapéutico , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Glucemia/análisis , Hígado Graso/metabolismo , Regulación de la Expresión Génica , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Receptores de Ácido Retinoico/fisiología , Proteínas Represoras/genética , Receptor alfa de Ácido Retinoico , Transcripción Genética , Tretinoina/farmacologíaRESUMEN
Damage to the gastrointestinal tract during graft-versus-host disease (GVHD) is one of the major causes of morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. In the current study, we identified a critical role for the retinoic acid (RA) signaling pathway in the induction and propagation of gastrointestinal GVHD. The administration of exogenous RA significantly increased expression of the gut-homing molecules, CCR9 and α4ß7, on donor T cells in mesenteric lymph nodes, and augmented the accumulation of proinflammatory CD4(+) and CD8(+) T cells within the gut mucosa, leading to a selective exacerbation of colonic GVHD and increased overall mortality. Conversely, depletion of RA in recipient mice by vitamin A deprivation resulted in a dramatic reduction of gut-homing molecule expression on donor T cells after HSCT. Significantly, absence of the RA receptor-α on donor T cells markedly attenuated the ability of these cells to cause lethal GVHD. This observation was attributable to a significant reduction in pathological damage within the colon. These findings identify an organ-specific role for RA in GVHD and provide evidence that blockade of the RA signaling pathway may represent a novel strategy for mitigating the severity of colonic GVHD.