Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(3): 447-462.e10, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244544

RESUMEN

Tumor suppressor BRCA2 functions in homology-directed repair (HDR), the protection of stalled replication forks, and the suppression of replicative gaps, but their relative contributions to genome integrity and chemotherapy response are under scrutiny. Here, we report that mouse and human cells require a RAD51 filament stabilization motif in BRCA2 for fork protection and gap suppression but not HDR. In mice, the loss of fork protection/gap suppression does not compromise genome stability or shorten tumor latency. By contrast, HDR deficiency increases spontaneous and replication stress-induced chromosome aberrations and tumor predisposition. Unlike with HDR, fork protection/gap suppression defects are also observed in Brca2 heterozygous cells, likely due to reduced RAD51 stabilization at stalled forks/gaps. Gaps arise from PRIMPOL activity, which is associated with 5-hydroxymethyl-2'-deoxyuridine sensitivity due to the formation of SMUG1-generated abasic sites and is exacerbated by poly(ADP-ribose) polymerase (PARP) inhibition. However, HDR proficiency has the major role in mitigating sensitivity to chemotherapeutics, including PARP inhibitors.


Asunto(s)
Proteína BRCA2 , Replicación del ADN , Recombinasa Rad51 , Animales , Humanos , Ratones , Proteína BRCA2/metabolismo , Reparación del ADN , Inestabilidad Genómica , Genómica , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación
2.
Mol Cell ; 84(3): 409-410, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38307000

RESUMEN

In this issue of Molecular Cell, Lim et al.1 reveal new insights into the distinct roles of BRCA2 in coping with DNA breaks, highlighting homologous recombination as the pivotal function that affects tumorigenesis and therapy response.


Asunto(s)
Replicación del ADN , Recombinasa Rad51 , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Roturas del ADN , Reparación del ADN , Recombinación Homóloga/genética , Recombinasa Rad51/genética , Humanos , Animales , Ratones
3.
Nature ; 628(8006): 212-220, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509361

RESUMEN

RAD51 is the central eukaryotic recombinase required for meiotic recombination and mitotic repair of double-strand DNA breaks (DSBs)1,2. However, the mechanism by which RAD51 functions at DSB sites in chromatin has remained elusive. Here we report the cryo-electron microscopy structures of human RAD51-nucleosome complexes, in which RAD51 forms ring and filament conformations. In the ring forms, the N-terminal lobe domains (NLDs) of RAD51 protomers are aligned on the outside of the RAD51 ring, and directly bind to the nucleosomal DNA. The nucleosomal linker DNA that contains the DSB site is recognized by the L1 and L2 loops-active centres that face the central hole of the RAD51 ring. In the filament form, the nucleosomal DNA is peeled by the RAD51 filament extension, and the NLDs of RAD51 protomers proximal to the nucleosome bind to the remaining nucleosomal DNA and histones. Mutations that affect nucleosome-binding residues of the RAD51 NLD decrease nucleosome binding, but barely affect DNA binding in vitro. Consistently, yeast Rad51 mutants with the corresponding mutations are substantially defective in DNA repair in vivo. These results reveal an unexpected function of the RAD51 NLD, and explain the mechanism by which RAD51 associates with nucleosomes, recognizes DSBs and forms the active filament in chromatin.


Asunto(s)
Microscopía por Crioelectrón , Roturas del ADN de Doble Cadena , Nucleosomas , Recombinasa Rad51 , Proteínas de Saccharomyces cerevisiae , Humanos , ADN/química , ADN/metabolismo , ADN/ultraestructura , Reparación del ADN/genética , Nucleosomas/química , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Recombinasa Rad51/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mutación , Dominios Proteicos , Histonas/química , Histonas/metabolismo , Histonas/ultraestructura , Unión Proteica
4.
EMBO J ; 43(6): 1043-1064, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360996

RESUMEN

Eukaryotic cells rely on several mechanisms to ensure that the genome is duplicated precisely once in each cell division cycle, preventing DNA over-replication and genomic instability. Most of these mechanisms limit the activity of origin licensing proteins to prevent the reactivation of origins that have already been used. Here, we have investigated whether additional controls restrict the extension of re-replicated DNA in the event of origin re-activation. In a genetic screening in cells forced to re-activate origins, we found that re-replication is limited by RAD51 and enhanced by FBH1, a RAD51 antagonist. In the presence of chromatin-bound RAD51, forks stemming from re-fired origins are slowed down, leading to frequent events of fork reversal. Eventual re-initiation of DNA synthesis mediated by PRIMPOL creates ssDNA gaps that facilitate the partial elimination of re-duplicated DNA by MRE11 exonuclease. In the absence of RAD51, these controls are abrogated and re-replication forks progress much longer than in normal conditions. Our study uncovers a safeguard mechanism to protect genome stability in the event of origin reactivation.


Asunto(s)
Proteínas de Unión al ADN , Recombinasa Rad51 , ADN/genética , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteína Homóloga de MRE11/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Humanos
5.
Trends Genet ; 40(6): 467-470, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494375

RESUMEN

DNA repair through homologous recombination (HR) is of vital importance for maintaining genome stability and preventing tumorigenesis. RAD51 is the core component of HR, catalyzing the strand invasion and homology search. Here, we highlight recent findings on FIRRM and FIGNL1 as regulators of the dynamics of RAD51.


Asunto(s)
Recombinación Homóloga , Recombinasa Rad51 , Recombinación Homóloga/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Humanos , Reparación del ADN/genética , Inestabilidad Genómica/genética , Animales
6.
Proc Natl Acad Sci U S A ; 121(12): e2316491121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466836

RESUMEN

Replication fork reversal is a fundamental process required for resolution of encounters with DNA damage. A key step in the stabilization and eventual resolution of reversed forks is formation of RAD51 nucleoprotein filaments on exposed single strand DNA (ssDNA). To avoid genome instability, RAD51 filaments are tightly controlled by a variety of positive and negative regulators. RADX (RPA-related RAD51-antagonist on the X chromosome) is a recently discovered negative regulator that binds tightly to ssDNA, directly interacts with RAD51, and regulates replication fork reversal and stabilization in a context-dependent manner. Here, we present a structure-based investigation of RADX's mechanism of action. Mass photometry experiments showed that RADX forms multiple oligomeric states in a concentration-dependent manner, with a predominance of trimers in the presence of ssDNA. The structure of RADX, which has no structurally characterized orthologs, was determined ab initio by cryo-electron microscopy (cryo-EM) from maps in the 2 to 4 Å range. The structure reveals the molecular basis for RADX oligomerization and the coupled multi-valent binding of ssDNA binding. The interaction of RADX with RAD51 filaments was imaged by negative stain EM, which showed a RADX oligomer at the end of filaments. Based on these results, we propose a model in which RADX functions by capping and restricting the end of RAD51 filaments.


Asunto(s)
Proteínas de Unión al ADN , Recombinasa Rad51 , Proteínas de Unión al ADN/metabolismo , Recombinasa Rad51/metabolismo , Microscopía por Crioelectrón , Nucleoproteínas/metabolismo , ADN de Cadena Simple , Replicación del ADN
7.
Proc Natl Acad Sci U S A ; 121(34): e2402262121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145931

RESUMEN

Homologous recombination (HR) is essential for the maintenance of genome stability. During HR, Replication Protein A (RPA) rapidly coats the 3'-tailed single-strand DNA (ssDNA) generated by end resection. Then, the ssDNA-bound RPA must be timely replaced by Rad51 recombinase to form Rad51 nucleoprotein filaments that drive homology search and HR repair. How cells regulate Rad51 assembly dynamics and coordinate RPA and Rad51 actions to ensure proper HR remains poorly understood. Here, we identified that Rtt105, a Ty1 transposon regulator, acts to stimulate Rad51 assembly and orchestrate RPA and Rad51 actions during HR. We found that Rtt105 interacts with Rad51 in vitro and in vivo and restrains the adenosine 5' triphosphate (ATP) hydrolysis activity of Rad51. We showed that Rtt105 directly stimulates dynamic Rad51-ssDNA assembly, strand exchange, and D-loop formation in vitro. Notably, we found that Rtt105 physically regulates the binding of Rad51 and RPA to ssDNA via different motifs and that both regulations are necessary and epistatic in promoting Rad51 nucleation, strand exchange, and HR repair. Consequently, disrupting either of the interactions impaired HR and conferred DNA damage sensitivity, underscoring the importance of Rtt105 in orchestrating the actions of Rad51 and RPA. Our work reveals additional layers of mechanisms regulating Rad51 filament dynamics and the coordination of HR.


Asunto(s)
ADN de Cadena Simple , Recombinasa Rad51 , Reparación del ADN por Recombinación , Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae , Recombinasa Rad51/metabolismo , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Unión Proteica
8.
Nucleic Acids Res ; 52(10): 5774-5791, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597669

RESUMEN

RAD51 filament is crucial for the homology-dependent repair of DNA double-strand breaks and stalled DNA replication fork protection. Positive and negative regulators control RAD51 filament assembly and disassembly. RAD51 is vital for genome integrity but excessive accumulation of RAD51 on chromatin causes genome instability and growth defects. However, the detailed mechanism underlying RAD51 disassembly by negative regulators and the physiological consequence of abnormal RAD51 persistence remain largely unknown. Here, we report the role of the human AAA+ ATPase FIGNL1 in suppressing a novel type of RAD51-mediated genome instability. FIGNL1 knockout human cells were defective in RAD51 dissociation after replication fork restart and accumulated ultra-fine chromosome bridges (UFBs), whose formation depends on RAD51 rather than replication fork stalling. FIGNL1 suppresses homologous recombination intermediate-like UFBs generated between sister chromatids at genomic loci with repeated sequences such as telomeres and centromeres. These data suggest that RAD51 persistence per se induces the formation of unresolved linkage between sister chromatids resulting in catastrophic genome instability. FIGNL1 facilitates post-replicative disassembly of RAD51 filament to suppress abnormal recombination intermediates and UFBs. These findings implicate FIGNL1 as a key factor required for active RAD51 removal after processing of stalled replication forks, which is essential to maintain genome stability.


Asunto(s)
Inestabilidad Genómica , Recombinasa Rad51 , Humanos , Cromátides/metabolismo , Cromátides/genética , Replicación del ADN/genética , Inestabilidad Genómica/genética , Recombinación Homóloga/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Línea Celular , Técnicas de Inactivación de Genes
9.
Nucleic Acids Res ; 52(12): 7337-7353, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38828772

RESUMEN

In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.


Asunto(s)
Secuencias de Aminoácidos , Proteína BRCA2 , Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Unión Proteica , Recombinasa Rad51 , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/química , Proteína BRCA2/metabolismo , Proteína BRCA2/química , Proteína BRCA2/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Ratones , Humanos , Sitios de Unión , Modelos Moleculares , Cristalografía por Rayos X , Recombinación Homóloga , Proteínas de Unión a Fosfato
10.
Nucleic Acids Res ; 52(13): 7401-7413, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38869071

RESUMEN

Homologous recombination (HR) is a key process for repairing DNA double strand breaks and for promoting genetic diversity. However, HR occurs unevenly across the genome, and certain genomic features can influence its activity. One such feature is the presence of guanine quadruplexes (G4s), stable secondary structures widely distributed throughout the genome. These G4s play essential roles in gene transcription and genome stability regulation. Especially, elevated G4 levels in cells deficient in the Bloom syndrome helicase (BLM) significantly enhance HR at G4 sites, potentially threatening genome stability. Here, we investigated the role of G4-binding protein Yin Yang-1 (YY1) in modulating HR at G4 sites in human cells. Our results show that YY1's binding to G4 structures suppresses sister chromatid exchange after BLM knockdown, and YY1's chromatin occupancy negatively correlates with the overall HR rate observed across the genome. By limiting RAD51 homolog 1 (RAD51) access, YY1 preferentially binds to essential genomic regions, shielding them from excessive HR. Our findings unveil a novel role of YY1-G4 interaction, revealing novel insights into cellular mechanisms involved in HR regulation.


Asunto(s)
G-Cuádruplex , Recombinación Homóloga , Recombinasa Rad51 , Intercambio de Cromátides Hermanas , Factor de Transcripción YY1 , Humanos , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Recombinación Homóloga/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Intercambio de Cromátides Hermanas/genética , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Cromatina/metabolismo , Cromatina/genética , Roturas del ADN de Doble Cadena , Inestabilidad Genómica/genética
11.
Nucleic Acids Res ; 52(12): 7031-7048, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38828785

RESUMEN

Homologous recombination (HR) is a template-based DNA double-strand break repair pathway that requires the selection of an appropriate DNA sequence to facilitate repair. Selection occurs during a homology search that must be executed rapidly and with high fidelity. Failure to efficiently perform the homology search can result in complex intermediates that generate genomic rearrangements, a hallmark of human cancers. Rad54 is an ATP dependent DNA motor protein that functions during the homology search by regulating the recombinase Rad51. How this regulation reduces genomic exchanges is currently unknown. To better understand how Rad54 can reduce these outcomes, we evaluated several amino acid mutations in Rad54 that were identified in the COSMIC database. COSMIC is a collection of amino acid mutations identified in human cancers. These substitutions led to reduced Rad54 function and the discovery of a conserved motif in Rad54. Through genetic, biochemical and single-molecule approaches, we show that disruption of this motif leads to failure in stabilizing early strand invasion intermediates, causing increased crossovers between homologous chromosomes. Our study also suggests that the translocation rate of Rad54 is a determinant in balancing genetic exchange. The latch domain's conservation implies an interaction likely fundamental to eukaryotic biology.


Asunto(s)
ADN Helicasas , Recombinación Homóloga , Recombinasa Rad51 , Saccharomyces cerevisiae , Humanos , Intercambio Genético , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Mutación , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Nucleic Acids Res ; 52(5): 2565-2577, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38214227

RESUMEN

RecA protein and RecA/Rad51 orthologues are required for homologous recombination and DNA repair in all living creatures. RecA/Rad51 catalyzes formation of the D-loop, an obligatory recombination intermediate, through an ATP-dependent reaction consisting of two phases: homology recognition between double-stranded (ds)DNA and single-stranded (ss)DNA to form a hybrid-duplex core of 6-8 base pairs and subsequent hybrid-duplex/D-loop processing. How dsDNA recognizes homologous ssDNA is controversial. The aromatic residue at the tip of the ß-hairpin loop (L2) was shown to stabilize dsDNA-strand separation. We tested a model in which dsDNA strands were separated by the aromatic residue before homology recognition and found that the aromatic residue was not essential to homology recognition, but was required for D-loop processing. Contrary to the model, we found that the double helix was not unwound even a single turn during search for sequence homology, but rather was unwound only after the homologous sequence was recognized. These results suggest that dsDNA recognizes its homologous ssDNA before strand separation. The search for homologous sequence with homologous ssDNA without dsDNA-strand separation does not generate stress within the dsDNA; this would be an advantage for dsDNA to express homology-dependent functions in vivo and also in vitro.


Asunto(s)
ADN de Cadena Simple , Recombinación Homóloga , Recombinasa Rad51 , Emparejamiento Base , ADN/química , ADN de Cadena Simple/genética , Rec A Recombinasas/metabolismo
13.
J Biol Chem ; 300(6): 107342, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705392

RESUMEN

Posttranslational modifications of Hsp90 are known to regulate its in vivo chaperone functions. Here, we demonstrate that the lysine acetylation-deacetylation dynamics of Hsp82 is a major determinant in DNA repair mediated by Rad51. We uncover that the deacetylated lysine 27 in Hsp82 dictates the formation of the Hsp82-Aha1-Rad51 complex, which is crucial for client maturation. Intriguingly, Aha1-Rad51 complex formation is not dependent on Hsp82 or its acetylation status; implying that Aha1-Rad51 association precedes the interaction with Hsp82. The DNA damage sensitivity of Hsp82 (K27Q/K27R) mutants are epistatic to the loss of the (de)acetylase hda1Δ; reinforcing the importance of the reversible acetylation of Hsp82 at the K27 position. These findings underscore the significance of the cross talk between a specific Hsp82 chaperone modification code and the cognate cochaperones in a client-specific manner. Given the pivotal role that Rad51 plays during DNA repair in eukaryotes and particularly in cancer cells, targeting the Hda1-Hsp90 axis could be explored as a new therapeutic approach against cancer.


Asunto(s)
Reparación del ADN , Proteínas HSP90 de Choque Térmico , Chaperonas Moleculares , Recombinasa Rad51 , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Acetilación , Daño del ADN , Procesamiento Proteico-Postraduccional , Lisina/metabolismo
14.
J Biol Chem ; 300(3): 107115, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38403248

RESUMEN

RAD51-associated protein 1 (RAD51AP1) is known to promote homologous recombination (HR) repair. However, the precise mechanism of RAD51AP1 in HR repair is unclear. Here, we identify that RAD51AP1 associates with pre-rRNA. Both the N terminus and C terminus of RAD51AP1 recognize pre-rRNA. Pre-rRNA not only colocalizes with RAD51AP1 at double-strand breaks (DSBs) but also facilitates the recruitment of RAD51AP1 to DSBs. Consistently, transient inhibition of pre-rRNA synthesis by RNA polymerase I inhibitor suppresses the recruitment of RAD51AP1 as well as HR repair. Moreover, RAD51AP1 forms liquid-liquid phase separation in the presence of pre-rRNA in vitro, which may be the molecular mechanism of RAD51AP1 foci formation. Taken together, our results demonstrate that pre-rRNA mediates the relocation of RAD51AP1 to DSBs for HR repair.


Asunto(s)
Proteínas de Unión al ADN , Recombinación Homóloga , Proteínas de Unión al ARN , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Precursores del ARN , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo
15.
FASEB J ; 38(1): e23332, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095232

RESUMEN

Severe hypoxia induced by vascular compromise (ovarian torsion, surgery), obliteration of vessels (aging, chemotherapy, particularly platinum drugs) can cause massive follicle atresia. On the other hand, hypoxia increases the occurrence of DNA double-strand breaks (DSBs) and triggers cellular damage repair mechanisms; however, if the damage is not promptly repaired, it can also induce the apoptosis program. Insulin-like growth factor-I (IGF-I) is a polypeptide hormone that plays essential roles in stimulating mammalian follicular development. Here, we report a novel role for IGF-I in protecting hypoxic GCs from apoptosis by promoting DNA repair through the homologous recombination (HR) process. Indeed, the hypoxic environment within follicles significantly inhibited the efficiency of HR-directed DNA repair. The presence of IGF-I-induced HR pathway to alleviate hypoxia-induced DNA damage and apoptosis primarily through upregulating the expression of the RAD51 recombinase. Importantly, we identified a new transcriptional regulator of RAD51, namely E2F8, which mediates the protective effects of IGF-I on hypoxic GCs by facilitating the transcriptional activation of RAD51. Furthermore, we demonstrated that the PI3K/AKT pathway is crucial for IGF-I-induced E2F8 expression, resulting in increased RAD51 expression and enhanced HR activity, which mitigates hypoxia-induced DNA damage and thereby protects against GCs apoptosis. Together, these findings define a novel mechanism of IGF-I-mediated GCs protection by activating the HR repair through the PI3K/AKT/E2F8/RAD51 pathway under hypoxia.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Reparación del ADN por Recombinación , Femenino , Animales , Porcinos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Reparación del ADN , Recombinación Homóloga , Recombinasa Rad51/genética , Hipoxia , Células de la Granulosa/metabolismo , Apoptosis , Mamíferos/metabolismo
16.
Mol Med ; 30(1): 54, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649802

RESUMEN

BACKGROUND: Bleomycin, a potent antitumor agent, is limited in clinical use due to the potential for fatal pulmonary toxicity. The accelerated DNA damage and senescence in alveolar epithelial cells (AECs) is considered a key factor in the development of lung pathology. Understanding the mechanisms for bleomycin-induced lung injury is crucial for mitigating its adverse effects. METHODS: Human lung epithelial (A549) cells were exposed to bleomycin and subsequently assessed for cellular senescence, DNA damage, and double-strand break (DSB) repair. The impact of Rad51 overexpression on DSB repair and senescence in AECs was evaluated in vitro. Additionally, bleomycin was intratracheally administered in C57BL/6 mice to establish a pulmonary fibrosis model. RESULTS: Bleomycin exposure induced dose- and time-dependent accumulation of senescence hallmarks and DNA lesions in AECs. These effects are probably due to the inhibition of Rad51 expression, consequently suppressing homologous recombination (HR) repair. Mechanistic studies revealed that bleomycin-mediated transcriptional inhibition of Rad51 might primarily result from E2F1 depletion. Furthermore, the genetic supplement of Rad51 substantially mitigated bleomycin-mediated effects on DSB repair and senescence in AECs. Notably, decreased Rad51 expression was also observed in the bleomycin-induced mouse pulmonary fibrosis model. CONCLUSIONS: Our works suggest that the inhibition of Rad51 plays a pivotal role in bleomycin-induced AECs senescence and lung injury, offering potential strategies to alleviate the pulmonary toxicity of bleomycin.


Asunto(s)
Bleomicina , Senescencia Celular , Reparación del ADN , Recombinasa Rad51 , Bleomicina/efectos adversos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Animales , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Humanos , Ratones , Reparación del ADN/efectos de los fármacos , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Células A549 , Daño del ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos
17.
Cancer Immunol Immunother ; 73(5): 95, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607586

RESUMEN

BACKGROUND: Homologous recombination deficiency (HRD), though largely uncharacterized in clear cell renal cell carcinoma (ccRCC), was found associated with RAD51 loss of expression. PBRM1 is the second most common mutated genes in ccRCC. Here, we introduce a HRD function-based PBRM1-RAD51 ccRCC classification endowed with diverse immune checkpoint blockade (ICB) responses. METHODS: Totally 1542 patients from four independent cohorts were enrolled, including our localized Zhongshan hospital (ZSHS) cohort and Zhongshan hospital metastatic RCC (ZSHS-mRCC) cohort, The Cancer Genome Atlas (TCGA) cohort and CheckMate cohort. The genomic profile and immune microenvironment were depicted by genomic, transcriptome data and immunohistochemistry. RESULTS: We observed that PBRM1-loss ccRCC harbored enriched HRD-associated mutational signature 3 and loss of RAD51. Dual-loss of PBRM1 and RAD51 identified patients hyper-sensitive to immunotherapy. This dual-loss subtype was featured by M1 macrophage infiltration. Dual-loss was, albeit homologous recombination defective, with high chromosomal stability. CONCLUSIONS: PBRM1 and RAD51 dual-loss ccRCC indicates superior responses to immunotherapy. Dual-loss ccRCC harbors an immune-desert microenvironment but enriched with M1 macrophages. Dual-loss ccRCC is susceptible to defective homologous recombination but possesses high chromosomal stability.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Inmunoterapia , Neoplasias Renales/genética , Neoplasias Renales/terapia , Inestabilidad Cromosómica , Microambiente Tumoral , Recombinasa Rad51 , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
18.
New Phytol ; 243(3): 966-980, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38840557

RESUMEN

Throughout their lifecycle, plants are subjected to DNA damage from various sources, both environmental and endogenous. Investigating the mechanisms of the DNA damage response (DDR) is essential to unravel how plants adapt to the changing environment, which can induce varying amounts of DNA damage. Using a combination of whole-mount single-molecule RNA fluorescence in situ hybridization (WM-smFISH) and plant cell cycle reporter lines, we investigated the transcriptional activation of a key homologous recombination (HR) gene, RAD51, in response to increasing amounts of DNA damage in Arabidopsis thaliana roots. The results uncover consistent variations in RAD51 transcriptional response and cell cycle arrest among distinct cell types and developmental zones. Furthermore, we demonstrate that DNA damage induced by genotoxic stress results in RAD51 transcription throughout the whole cell cycle, dissociating its traditional link with S/G2 phases. This work advances the current comprehension of DNA damage response in plants by demonstrating quantitative differences in DDR activation. In addition, it reveals new associations with the cell cycle and cell types, providing crucial insights for further studies of the broader response mechanisms in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ciclo Celular , Daño del ADN , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Recombinasa Rad51 , Transcripción Genética , Arabidopsis/genética , Raíces de Plantas/genética , Raíces de Plantas/citología , Ciclo Celular/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
19.
Mol Biol Rep ; 51(1): 745, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874758

RESUMEN

BACKGROUND: Sn1-type alkylating agents methylate the oxygen atom on guanine bases thereby producing O6-methylguanine. This modified base could pair with thymine and cytosine, resulting in the formation of O6-methylguanine/thymine mismatch during DNA replication, recognized by the mismatch repair (MMR) complex, which then initiates the DNA damage response and subsequent apoptotic processes. In our investigation of the molecular mechanisms underlying MMR-dependent apoptosis, we observed FANCD2 modification upon the activity of alkylating agent N-methyl-N-nitrosourea (MNU). This observation led us to hypothesize a relevant role for FANCD2 in the apoptosis induction process. METHODS AND RESULTS: We generated FANCD2 knockout cells using the CRISPR/Cas9 method in the human cervical cancer cell line HeLa MR. FANCD2-deficient cells exhibited MNU hypersensitivity. Upon MNU exposure, FANCD2 colocalized with the MMR complex. MNU-treated FANCD2 knockout cells displayed severe S phase delay followed by increased G2/M arrest and MMR-dependent apoptotic cell death. Moreover, FANCD2 knockout cells exhibited impaired CtIP and RAD51 recruitment to the damaged chromatin and DNA double-strand break accumulation, indicated by simultaneously observed increased γH2AX signal and 53BP1 foci. CONCLUSIONS: Our data suggest that FANCD2 is crucial for recruiting homologous recombination factors to the sites of the MMR-dependent replication stress to resolve the arrested replication fork and counteract O6-methylguanine-triggered MMR-dependent apoptosis.


Asunto(s)
Apoptosis , Reparación de la Incompatibilidad de ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Guanina , Humanos , Reparación de la Incompatibilidad de ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Apoptosis/genética , Apoptosis/efectos de los fármacos , Guanina/metabolismo , Guanina/análogos & derivados , Células HeLa , Daño del ADN , Metilnitrosourea/toxicidad , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética
20.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 40-45, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38372116

RESUMEN

The purpose of this study was to explore the differential expression of Pax3, Rad51 and VEGF-C in esophageal gastric junction adenocarcinoma and distal gastric adenocarcinoma and their relationship with cancer occurrence and development. 57 patients with gastric cancer were included and divided into esophageal gastric junction adenocarcinoma group (n=28) and distal gastric adenocarcinoma group (n=29). The positive expressions of Pax3, Rad51 and VEGF-C in the control group were lower than those in the esophageal gastric junction adenocarcinoma group and distal gastric adenocarcinoma group respectively (P<0.05). In esophageal gastric junction adenocarcinoma with low differentiation, positive expressions of Pax3, Rad51, and VEGF-C surpassed those in high/medium differentiation (P<0.05). Serosa-infiltrated cases exhibited higher Pax3 and Rad51 expressions compared to non-infiltrated cases (P<0.05). Rad51 and VEGF-C positivity were notably elevated in cases with lymph node metastasis compared to those without (P<0.05). Distal gastric adenocarcinoma displayed higher VEGF expression than middle/low differentiated adenocarcinomas. Rad51 expression was significantly higher in women than in men (P<0.05). The positive rates of Pax3, Rad51, and VEGF-C were markedly increased in esophageal gastric junction adenocarcinoma and distal gastric adenocarcinoma compared to normal gastric tissue, and these were associated with the degree of differentiation, depth of invasion, and lymph node metastasis in patients. Particularly, Rad51 exhibited a positive correlation with cancer cell differentiation, invasion depth, and lymph node metastasis in cancer tissue.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Factor de Transcripción PAX3 , Recombinasa Rad51 , Neoplasias Gástricas , Factor C de Crecimiento Endotelial Vascular , Femenino , Humanos , Masculino , Adenocarcinoma/genética , Adenocarcinoma/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Metástasis Linfática , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Factores de Transcripción , Factor C de Crecimiento Endotelial Vascular/genética , Factor de Transcripción PAX3/genética , Recombinasa Rad51/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA