Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 559
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 389, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649849

RESUMEN

BACKGROUND: The genus Sulfitobacter, a member of the family Roseobacteraceae, is widely distributed in the ocean and is believed to play crucial roles in the global sulfur cycle. However, gene clusters associated with sulfur oxidation in genomes of the type strains of this genus have been poorly studied. Furthermore, taxonomic errors have been identified in this genus, potentially leading to significant confusion in ecological and evolutionary interpretations in subsequent studies of the genus Sulfitobacter. This study aims to investigate the taxonomic status of this genus and explore the metabolism associated with sulfur oxidation. RESULTS: This study suggests that Sulfitobacter algicola does not belong to Sulfitobacter and should be reclassified into a novel genus, for which we propose the name Parasulfitobacter gen. nov., with Parasulfitobacter algicola comb. nov. as the type species. Additionally, enzymes involved in the sulfur oxidation process, such as the sulfur oxidization (Sox) system, the disulfide reductase protein family, and the sulfite dehydrogenase (SoeABC), were identified in almost all Sulfitobacter species. This finding implies that the majority of Sulfitobacter species can oxidize reduced sulfur compounds. Differences in the modular organization of sox gene clusters among Sulfitobacter species were identified, along with the presence of five genes with unknown function located in some of the sox gene clusters. Lastly, this study revealed the presence of the demethylation pathway and the cleavage pathway used by many Sulfitobacter species to degrade dimethylsulfoniopropionate (DMSP). These pathways enable these bacteria to utilize DMSP as important source of sulfur and carbon or as a defence strategy. CONCLUSIONS: Our findings contribute to interpreting the mechanism by which Sulfitobacter species participate in the global sulfur cycle. The taxonomic rearrangement of S. algicola into the novel genus Parasulfitobacter will prevent confusion in ecological and evolutionary interpretations in future studies of the genus Sulfitobacter.


Asunto(s)
Genoma Bacteriano , Familia de Multigenes , Oxidación-Reducción , Filogenia , Rhodobacteraceae , Azufre , Azufre/metabolismo , Rhodobacteraceae/genética , Rhodobacteraceae/clasificación
2.
Environ Microbiol ; 26(6): e16639, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899733

RESUMEN

The Great Pacific Garbage Patch, a significant collection of plastic introduced by human activities, provides an ideal environment to study bacterial lifestyles on plastic substrates. We proposed that bacteria colonizing the floating plastic debris would develop strategies to deal with the ultraviolet-exposed substrate, such as the production of antioxidant pigments. We observed a variety of pigmentation in 67 strains that were directly cultivated from plastic pieces sampled from the Garbage Patch. The genomic analysis of four representative strains, each distinct in taxonomy, revealed multiple pathways for carotenoid production. These pathways include those that produce less common carotenoids and a cluster of photosynthetic genes. This cluster appears to originate from a potentially new species of the Rhodobacteraceae family. This represents the first report of an aerobic anoxygenic photoheterotrophic bacterium from plastic biofilms. Spectral analysis showed that the bacteria actively produce carotenoids, such as beta-carotene and beta-cryptoxanthin, and bacteriochlorophyll a. Furthermore, we discovered that the genetic ability to synthesize carotenoids is more common in plastic biofilms than in the surrounding water communities. Our findings suggest that plastic biofilms could be an overlooked source of bacteria-produced carotenoids, including rare forms. It also suggests that photoreactive molecules might play a crucial role in bacterial biofilm communities in surface water.


Asunto(s)
Biopelículas , Carotenoides , Pigmentos Biológicos , Plásticos , Carotenoides/metabolismo , Biopelículas/crecimiento & desarrollo , Pigmentos Biológicos/metabolismo , Plásticos/metabolismo , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Rhodobacteraceae/clasificación , Filogenia , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Océano Pacífico
3.
Appl Environ Microbiol ; 90(6): e0057024, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38809046

RESUMEN

The complex interactions between bacterioplankton and phytoplankton have prompted numerous studies that investigate phytoplankton microbiomes with the aim of characterizing beneficial or opportunistic taxa and elucidating core bacterial members. Oftentimes, this knowledge is garnered through 16S rRNA gene profiling of microbiomes from phytoplankton isolated across spatial and temporal scales, yet these studies do not offer insight into microbiome assembly and structuring. In this study, we aimed to identify taxa central to structuring and establishing the microbiome of the ubiquitous diatom Asterionellopsis glacialis. We introduced a diverse environmental bacterial community to A. glacialis in nutrient-rich or nutrient-poor media in a continuous dilution culture setup and profiled the bacterial community over 7 days. 16S rRNA amplicon sequencing showed that cyanobacteria (Coleofasciculaceae) and Rhodobacteraceae dominate the microbiome early on and maintain a persistent association throughout the experiment. Differential abundance, co-abundance networks, and differential association analyses revealed that specific members of the family Rhodobacteraceae, particularly Sulfitobacter amplicon sequence variants, become integral members in microbiome assembly. In the presence of the diatom, Sulfitobacter species and other Rhodobacteraceae developed positive associations with taxa that are typically in high abundance in marine ecosystems (Pelagibacter and Synechococcus), leading to restructuring of the microbiome compared to diatom-free controls. These positive associations developed predominantly under oligotrophic conditions, highlighting the importance of investigating phytoplankton microbiomes in as close to natural conditions as possible to avoid biases that develop under routine laboratory conditions. These findings offer further insight into phytoplankton-bacteria interactions and illustrate the importance of Rhodobacteraceae, not merely as phytoplankton symbionts but as key taxa involved in microbiome assembly. IMPORTANCE: Most, if not all, microeukaryotic organisms harbor an associated microbial community, termed the microbiome. The microscale interactions that occur between these partners have global-scale consequences, influencing marine primary productivity, carbon cycling, and harmful algal blooms to name but a few. Over the last decade, there has been a growing interest in the study of phytoplankton microbiomes, particularly within the context of bloom dynamics. However, long-standing questions remain regarding the process of phytoplankton microbiome assembly. The significance of our research is to tease apart the mechanism of microbiome assembly with a particular focus on identifying bacterial taxa, which may not merely be symbionts but architects of the phytoplankton microbiome. Our results strengthen the understanding of the ecological mechanisms that underpin phytoplankton-bacteria interactions in order to accurately predict marine ecosystem responses to environmental perturbations.


Asunto(s)
Diatomeas , Microbiota , ARN Ribosómico 16S , Rhodobacteraceae , Diatomeas/microbiología , ARN Ribosómico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/clasificación , Rhodobacteraceae/fisiología , Rhodobacteraceae/aislamiento & purificación , Fitoplancton/microbiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38869492

RESUMEN

Two novel strains, designated APW6T and APW11T, were isolated from artificial pond water, and one novel strain, designated PFR6T, was isolated from a Viola mandshurica root. These strains were found to be Gram-negative, rod-shaped, motile by means of flagella, and oxidase-positive. Growth conditions of the type strains were as follows: APW6T, 15-43 °C (optimum, 28 °C), pH 6.0-12.0 (optimum, pH 7.0), with no salinity; APW11T, 4-35 °C (optimum, 25 °C), pH 6.0-11.0 (optimum, pH 9.0), with 0-1 % NaCl (w/v, optimum 0 %); PFR6T, 10-38 °C (optimum 28 °C), pH 6.0-12.0 (optimum, pH 7.0), with 0-2 % NaCl (w/v; optimum, 0 %). Strains APW6T, APW11T, and PFR6T belonged to the genus Roseateles, having the most 16S rRNA gene sequence similarity to Roseateles saccharophilus DSM 654T (98.1 %), Roseateles oligotrophus CHU3T (98.7 %), and Roseateles puraquae CCUG 52769T (98.1 %). The estimated genome sizes of APW6T, APW11T, and PFR6T were 50 50 473, 56 70 008, and 52 16 869 bp, respectively and the G+C contents were 69.5, 66, and 68.5 mol%. The digital DNA-DNA hybridization, average amino acid identity, and average nucleotide identity values among the novel strains and related taxa were all lower than 22.4, 74.7, and 78.9 %, respectively. The predominant cellular fatty acids (>10 %) of all strains were summed feature 3 (comprising C16 : 1 ω6c and/or C16 : 1 ω7c) and C16 : 0. PFR6T also had summed feature 8 (comprising C18 :  1 ω7c and/or C18 :  1 ω6c) as a major fatty acid. The polar lipid profile of all strains contained phosphatidylethanolamine, phosphoaminoglycolipid, and phosphoglycolipid. The distinct phylogenetic, physiological, and chemotaxonomic features reported in this study indicate that strains APW6T, APW11T, and PFR6T represent novel species within the genus Roseateles, for which the names Roseateles subflavus sp. nov., with the type strain APW6T (=KACC 22877T=TBRC 16606T), Roseateles aquae sp. nov., with the type strain APW11T (=KACC 22878T=TBRC 16607T), and Roseateles violae sp. nov (=KACC 23257T=TBRC 17653T) are respectively proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , Raíces de Plantas , Estanques , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Estanques/microbiología , ARN Ribosómico 16S/genética , Ácidos Grasos/química , ADN Bacteriano/genética , Raíces de Plantas/microbiología , Rhodobacteraceae/aislamiento & purificación , Rhodobacteraceae/genética , Rhodobacteraceae/clasificación , Hibridación de Ácido Nucleico , Microbiología del Agua
5.
Curr Microbiol ; 81(7): 178, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758299

RESUMEN

A novel Gram-stain-negative, strictly aerobic, short-rod-shaped, and chemo-organoheterotrophic bacterium, designated KMU-50T, was isolated from seawater gathered from Dadaepo Harbor in South Korea. The microorganism grew at 0-4.0% NaCl concentrations (w/v), pH 6.0-8.0, and 4-37 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain KMU-50T is a novel member of the family Roseobacteraceae and were greatly related to Aliiroseovarius crassostreae CV919-312T with sequence similarity of 98.3%. C18:1 ω7c was the main fatty acid and ubiquinone-10 was the only isoprenoid quinone. The dominant polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified phospholipids, an unidentified aminolipid, and an unidentified lipid. The genome size of strain KMU-50T was 3.60 Mbp with a DNA G+C content of 56.0%. The average nucleotide identity (ANI) and average amino acid identity (AAI) values between the genomes of strain KMU-50T and its closely related species were 76.0-81.2% and 62.2-81.5%, respectively. The digital DNA-DNA hybridization (dDDH) value of strain KMU-50T with the strain of A. crassostreae CV919-312T was 25.1%. The genome of the strain KMU-50T showed that it encoded many genes involved in the breakdown of bio-macromolecules, thus showing a high potential as a producer of industrially useful enzymes. Consequently, the strain is described as a new species in the genus Aliiroseovarius, for which the name Aliiroseovarius salicola sp. nov., is proposed with the type strain KMU-50T (= KCCM 90480T = NBRC 115482T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Fosfolípidos , Filogenia , ARN Ribosómico 16S , Rhodobacteraceae , Agua de Mar , Agua de Mar/microbiología , ARN Ribosómico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/clasificación , Rhodobacteraceae/aislamiento & purificación , Rhodobacteraceae/fisiología , Ácidos Grasos/química , ADN Bacteriano/genética , República de Corea , Fosfolípidos/análisis , Ubiquinona/química , Análisis de Secuencia de ADN , Genoma Bacteriano , Hibridación de Ácido Nucleico
6.
Curr Microbiol ; 81(6): 150, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647555

RESUMEN

A Gram-stain-negative, aerobic, rod-shaped, motile, flagellated bacterial strain, designated as CAU 1639T, was isolated from the tidal flat sediment on the Yellow Sea in the Republic of Korea. Growth of the isolate was observed at 20-37 °C, at pH 5.0-10.5 and with 0-7% (w/v) NaCl. The genomic DNA G + C content was 60.8%. Phylogenetic analysis, grounded on 16S rRNA gene sequencing, revealed that strain CAU 1639T was closely related to species within the genus Roseibium. It shared the highest similarity with Roseibium album CECT 5095T, followed by Roseibium aggregatum IAM 12614T and Roseibium salinum Cs25T, with 16S rRNA gene sequence similarity ranging from 98.0-98.4%. It was observed that the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values ranged between 72.5-79.5 and 20.0-22.9%, respectively. The polyphasic taxonomic analysis reveals that strain CAU 1639T represents a novel species in the genus Roseibium with the proposed name Roseibium sediminicola sp. nov. The type strain is CAU 1639T (= KCTC 82430T = MCCC 1K06081T).


Asunto(s)
Composición de Base , ADN Bacteriano , Sedimentos Geológicos , Filogenia , ARN Ribosómico 16S , Agua de Mar , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , República de Corea , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Rhodobacteraceae/clasificación , Rhodobacteraceae/genética , Rhodobacteraceae/aislamiento & purificación , Análisis de Secuencia de ADN , Hibridación de Ácido Nucleico , Ácidos Grasos/análisis , Ácidos Grasos/química , ADN Ribosómico/genética
7.
Arch Microbiol ; 205(10): 331, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698663

RESUMEN

Known for its species abundance and evolutionary status complexity, family Roseobacteraceae is an important subject of many studies on the discovery, identification, taxonomic status, and ecological properties of marine bacteria. This study compared and analyzed the phylogenetic, genomic, biochemical, and chemo taxonomical properties of seven species from three genera (Psychromarinibacter, Lutimaribacter, and Maritimibacter) of the family Roseobacteraceae. Moreover, a novel strain, named C21-152T was isolated from solar saltern sediment in Weihai, China. The values of 16S rRNA gene sequence similarity, the average nucleotide identity (ANI), the average amino acid identity (AAI), and the digital DNA-DNA hybridization (dDDH) between genomes of the novel strain and Psychromarinibacter halotolerans MCCC 1K03203T were 97.19, 78.49, 73.45, and 21.90%, respectively. Genome sequencing of strain C21-152T revealed a complete Sox enzyme system related to thiosulfate oxidization as well as a complete pathway for the final conversion of hydroxyproline to α-ketoglutarate. In addition, strain C21-152T was resistant to many antibiotics and had the ability to survive below 13% salinity. This strain had versatile survival strategies in saline environments including salt-in, compatible solute production and compatible solute transport. Some of its physiological features enriched and complemented the knowledge of the characteristics of the genus Psychromarinibacter. Optimum growth of strain C21-152T occurred at 37 â„ƒ, with 5-6% (w/v) NaCl and at pH 7.5. According to the results of the phenotypic, chemotaxonomic characterization, phylogenetic properties and genome analysis, strain C21-152T should represent a novel specie of the genus Psychromarinibacter, for which the name Psychromarinibacter sediminicola sp. nov. is proposed. The type strain is C21-152T (= MCCC 1H00808T = KCTC 92746T = SDUM1063002T).


Asunto(s)
ADN , Rhodobacteraceae , Mapeo Cromosómico , Filogenia , ARN Ribosómico 16S/genética , Rhodobacteraceae/clasificación
8.
Artículo en Inglés | MEDLINE | ID: mdl-36748596

RESUMEN

Two Gram-stain-negative, strictly aerobic, catalase- and oxidase-positive and non-motile rod-shaped bacteria, strains D2-3T and G9-8T, were isolated from a marine red alga. Both strains contained ubiquinone-10 as the sole isoprenoid quinone. As the major cellular fatty acids (>5.0 %), D2-3T contained C16 : 0, 11-methyl-C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), whereas G9-8T contained C16 : 0, 11-methyl-C18 : 1ω7c, C12 : 1 3-OH, and summed feature 8. The DNA G+C contents of D2-3T and G9-8T were 54.4 % and 56.0 %, respectively. As the major polar lipids, phosphatidylglycerol, diphosphatidylglycerol and unidentified phospholipid, aminolipid and lipid were identified from both strains, and phosphatidylcholine was additionally detected from G9-8T only. The 16S rRNA gene sequence similarity of D2-3T and G9-8T was 98.5 % and their digital DNA-DNA hybridization (DDH) value was 19.1 %. Phylogenetic analyses based on 16S rRNA gene and genome sequences revealed that D2-3T and G9-8T formed respectively distinct phylogenetic lineages within the genus Octadecabacter. D2-3T and G9-8T were most closely related to Octadecabacter ascidiaceicola RA1-3T and Octadecabacter antarcticus 307T, with 98.9 % and 98.5 % 16S rRNA gene sequence similarities, respectively, and digital DDH values between D2-3T and O. ascidiaceicola and between G9-8T and O. antarcticus were 18.3 % and 19.5 %, respectively. Phenotypic, chemotaxonomic and molecular features support the hypothesis that D2-3T and G9-8T represent two novel species of the genus Octadecabacter, for which the names Octadecabacter algicola sp. nov. and Octadecabacter dasysiphoniae sp. nov. are proposed. The type strains of O. algicola and O. dasysiphoniae are D2-3T (=KACC 22493T =JCM 34969T) and G9-8T (=KACC 22488T =JCM 34973T), respectively.


Asunto(s)
Filogenia , Rhodobacteraceae , Rhodophyta , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos , Rhodophyta/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química , Rhodobacteraceae/clasificación , Rhodobacteraceae/aislamiento & purificación
9.
Artículo en Inglés | MEDLINE | ID: mdl-37561014

RESUMEN

A Gram-stain-negative, facultatively anaerobic, non-motile, rod-shaped bacterial strain, designated HL-MP18T, was isolated from Arctic seawater after a prolonged incubation employing polypropylene as the sole carbon source. Phylogenetic analyses of the 16S rRNA gene sequence revealed that strain HL-MP18T was affiliated to the genus Roseovarius with close relatives Roseovarius carneus LXJ103T (96.8 %) and Roseovarius litorisediminis KCTC 32327T (96.5 %). The complete genome sequence of strain HL-MP18T comprised a circular chromosome of 3.86 Mbp and two circular plasmids of 0.17 and 0.24 Mbp. Genomic comparisons based on average nucleotide identity and digital DNA-DNA hybridization showed that strain HL-MP18T was consistently discriminated from its closely related taxa in the genus Roseovarius. Strain HL-MP18T showed optimal growth at 25 °C, pH 7.0 and 2.5 % (w/v) sea salts. The major cellular fatty acids were C18 : 1 ω6c and/or C18 : 1 ω7c (49.6 %), C19 : 0 cyclo ω8c (13.5 %), and C16 : 0 (12.8 %). The major respiratory quinone was ubiquinone-10. The polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid and three unidentified lipids. The genomic DNA G+C content of the strain was 59.2 mol%. The phylogenetic, genomic, phenotypic and chemotaxonomic results indicate that strain HL-MP18T is distinguishable from the recognized species of the genus Roseovarius. Therefore, we propose that strain HL-MP18T represents a novel species belonging to the genus Roseovarius, for which the name Roseovarius pelagicus sp. nov. is proposed. The type strain is HL-MP18T (=KCCM 90405T=JCM 35639T).


Asunto(s)
Bacterias Anaerobias Gramnegativas , Polipropilenos , Rhodobacteraceae , Regiones Árticas , Rhodobacteraceae/clasificación , Rhodobacteraceae/enzimología , Rhodobacteraceae/genética , Rhodobacteraceae/aislamiento & purificación , Genoma Bacteriano/genética , Bacterias Anaerobias Gramnegativas/clasificación , Bacterias Anaerobias Gramnegativas/genética , Bacterias Anaerobias Gramnegativas/aislamiento & purificación , Polipropilenos/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Especificidad de la Especie
10.
Artículo en Inglés | MEDLINE | ID: mdl-37022765

RESUMEN

A novel species of the genus Limimaricola, designated ASW11-118T, was isolated from an intertidal sand sample of the Yellow Sea, PR China. Growth of strain ASW11-118T occurred at 10-40 °C (optimum, 28 °C), pH 5.5-8.5 (optimum, pH 7.5) and with 0.5-8.0 % (w/v) NaCl (optimum, 1.5%). Strain ASW11-118T has the highest 16S rRNA gene sequence similarity to Limimaricola cinnabarinus LL-001T (98.8%) and 98.6 % to Limimaricola hongkongensis DSM 17492T. Phylogenetic analysis based on genomic sequences indicated that strain ASW11-118T belongs to the genus Limimaricola. The genome size of strain ASW11-118T was 3.8 Mb and DNA G+C content was 67.8 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain ASW11-118T and other members of the genus Limimaricola were below 86.6 and 31.3 %, respectively. The predominant respiratory quinone was ubiquinone-10. The predominant cellular fatty acid was C18 : 1 ω7c. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and one unknown aminolipid. On the basis of the data presented, strain ASW11-118T is considered to represent a novel species of the genus Limimaricola, for which the name Limimaricola litoreus sp. nov. is proposed. The type strain is ASW11-118T (=MCCC 1K05581T=KCTC 82494T).


Asunto(s)
Filogenia , Rhodobacteraceae , Arena , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Arena/microbiología , Análisis de Secuencia de ADN , Ubiquinona/química , Rhodobacteraceae/clasificación , Rhodobacteraceae/aislamiento & purificación
11.
Extremophiles ; 27(2): 19, 2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37481751

RESUMEN

Although several species of purple sulfur bacteria inhabit soda lakes, Rhodobaca bogoriensis is the first purple nonsulfur bacterium cultured from such highly alkaline environments. Rhodobaca bogoriensis strain LBB1T was isolated from Lake Bogoria, a soda lake in the African Rift Valley. The phenotype of Rhodobaca bogoriensis is unique among purple bacteria; the organism is alkaliphilic but not halophilic, produces carotenoids absent from other purple nonsulfur bacteria, and is unable to grow autotrophically or fix molecular nitrogen. Here we analyze the draft genome sequence of Rhodobaca bogoriensis to gain further insight into the biology of this extremophilic purple bacterium. The strain LBB1T genome consists of 3.91 Mbp with no plasmids. The genome sequence supports the defining characteristics of strain LBB1T, including its (1) production of a light-harvesting 1-reaction center (LH1-RC) complex but lack of a peripheral (LH2) complex, (2) ability to synthesize unusual carotenoids, (3) capacity for both phototrophic (anoxic/light) and chemotrophic (oxic/dark) energy metabolisms, (4) utilization of a wide variety of organic compounds (including acetate in the absence of a glyoxylate cycle), (5) ability to oxidize both sulfide and thiosulfate despite lacking the capacity for autotrophic growth, and (6) absence of a functional nitrogen-fixation system for diazotrophic growth. The assortment of properties in Rhodobaca bogoriensis has no precedent among phototrophic purple bacteria, and the results are discussed in relation to the organism's soda lake habitat and evolutionary history.


Asunto(s)
Lagos , Rhodobacteraceae , Rhodobacteraceae/clasificación , Rhodobacteraceae/genética , Rhodobacteraceae/aislamiento & purificación , Rhodobacteraceae/fisiología , Lagos/microbiología , Filogenia , Metabolismo Energético , Carbono/metabolismo , Redes y Vías Metabólicas , Acetatos/metabolismo , Vitaminas/metabolismo , Polihidroxialcanoatos/metabolismo
12.
Antonie Van Leeuwenhoek ; 116(12): 1337-1344, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37833447

RESUMEN

In this study, we reported a Gram-stain-negative, rod-shaped, atrichous, and aerobic bacterial strain named YMD87T, which was isolated from the intertidal zone sediment of Chinese Yellow Sea. Growth of strain YMD87T occurred at 10.0-40.0 °C (optimum, 25-30 °C), pH 4.0-12.0 (optimum, 8.0) and with 0-6.0% (w/v) NaCl (optimum, 0.0-2.0%). Phylogenetic tree analysis based on 16S rRNA gene sequence indicated that strain YMD87T belonged to the genus Tropicibacter and was closely related to Tropicibacter alexandrii LMIT003T (97.2% sequence similarity). Genomic analysis indicated that strain YMD87T contains a circular chromosome of 3,932,460 bp with G + C content of 63.8% and three circular plasmids of 116,492 bp, 49,209 bp and 49,673 bp, with G + C content of 64.3%. Genomic functional analysis revealed that strain YMD87T is potential a novel sulfur-metabolizing bacteria. The predominant respiratory quinone of YMD87T was ubiquinone-10 (Q-10). The major polar lipids of YMD87T contained phosphatidylglycerol, phosphatidylethanolamine, five unidentified lipids, five unidentified phospholipids, phosphatidylcholine, unidentified glycolipid and five unidentified aminolipids. The major fatty acids of strain YMD87T contained C12:1 3-OH, C16:0, and summed feature 8 (C18:1 ω7c or/and C18:1 ω6c). Phylogenetic, physiological, biochemical and morphological analyses suggested that strain YMD87T represents a novel species of the genus Tropicibacter, and the name Tropicibacter oceani sp. nov is proposed. The type strain is YMD87T (= MCCC 1K08473T = KCTC 92856 T).


Asunto(s)
Rhodobacteraceae , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , Rhodobacteraceae/clasificación , Rhodobacteraceae/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Azufre , Ubiquinona/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-35099369

RESUMEN

A Gram-stain-negative, oxidase- and catalase-positive, rod-shaped, creamy white coloured bacterial strain, DMG-N-6T, was isolated from a water sample of Lake Ferto/Neusiedler See (Hungary). Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain forms a distinct linage within the family Rhodobacteraceae. Its closest relatives are Tabrizicola alkalilacus DJCT (96.76% similarity) and Tabrizicola piscis K13M18T (96.76%), followed by Tabrizicola sediminis DRYC-M-16T (96.69 %), Rhodobacter sediminicola JA983T (96.62 %), Tabrizicola aquatica RCRI19T (96.47 %) and Cereibacter johrii JA192T (96.18 %). The novel bacterial strain favours an alkaline environment (pH 8.0-12.0) and grows optimally at 18-28°C in the presence of 2-4 % (w/v) NaCl. Cells of DMG-N-6T were motile by a single subpolar flagellum. Bacteriochlorophyll a was not detected. The predominant respiratory quinone was ubiquinone Q-10. The major cellular fatty acid was C18:1 ω7c. The polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, an unidentified phospholipid and five unidentified lipids. The assembled draft genome of strain DMG-N-6T had 52 contigs with a total length of 4 219 778 bp and a G+C content of 64.3 mol%. Overall genome-related indices (ANI <77.8 %, AAI <69.0 %, dDDH <19.6 %) with respect to close relatives were all significantly below the corresponding threshold to demarcate bacterial genus and species. Strain DMG-N-6T (=DSM 108208T=NCAIM B.02645T) is strongly different from its closest relatives and is suggested as the type strain of a novel species of a new genus in the family Rhodobacteraceae, for which the name Szabonella alba gen. nov., sp. nov. is proposed.


Asunto(s)
Álcalis , Lagos , Filogenia , Rhodobacteraceae , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hungría , Lagos/microbiología , Fosfolípidos/química , ARN Ribosómico 16S/genética , Rhodobacteraceae/clasificación , Rhodobacteraceae/aislamiento & purificación , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
14.
Arch Microbiol ; 203(7): 4493-4498, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34148113

RESUMEN

A Gram-stain-negative, oval or short rod-shaped, non-motile, aerobic bacterium, designated strain S1109LT, was isolated from a marine sediment in Weihai, PR China. Cells were oxidase positive and catalase positive. Growth of strain S1109LT occurred at 10-40 °C (optimum, 30-33 °C), pH 6.5-10.0 (optimum, 7.0-8.0) and in the presence of 1-21% (optimum, 4-6%) (w/v) NaCl. 16S rRNA gene sequence phylogeny indicated that strain S1109LT was associated with the genus Pontibaca of the family Rhodobacteraceae because it showed the highest sequence similarity to Pontibaca methylaminivorans KCTC 22497T (97.5%). The average nucleotide identity (ANI) and the digital DNA-DNA hybridization (dDDH) scores between strain S1109LT and Pontibaca methylaminivorans KCTC 22497T were 74.6% and 18.7%. The major cellular fatty acids of strain S1109LT were C19:0 cyclo ω8c and C18:1 ω7c. The polar lipids profiles of strain S1109LT were phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and two unidentified lipids. Strain S1109LT contained ubiquinone-10 as the major respiratory quinone. The genomic DNA G + C content was 55.9 mol%. On the basis of the evidence presented in this study, strain S1109LT is considered to represent a novel species of the genus Pontibaca, for which the name Pontibaca salina sp. nov. is proposed. The type strain of is S1109LT (= KCTC 82411T = MCCC 1H00441T).


Asunto(s)
Sedimentos Geológicos , Rhodobacteraceae , China , Ácidos Grasos/análisis , Sedimentos Geológicos/microbiología , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Rhodobacteraceae/clasificación , Rhodobacteraceae/genética , Especificidad de la Especie
15.
Arch Microbiol ; 203(7): 3973-3979, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34036410

RESUMEN

A Gram-negative, non-motile bacterium КMM 3653T was isolated from a sediment sample from the Sea of Japan seashore, Russia. On the basis of the 16S rRNA gene sequence analysis the strain КMM 3653T was positioned within the family Rhodobacteraceae (class Alphaproteobacteria) forming a distinct lineage with the highest gene sequence similarities to the members of the genera Pacificibacter (95.2-94.7%) and Nioella (95.1-94.5%), respectively. According to the phylogenomic tree based on 400 conserved protein sequences, strain КMM 3653T was placed in the cluster comprising Vannielia litorea, Nioella nitratireducens, Litoreibacter albidus and Pseudoruegeria aquimaris as a separate lineage adjacent to V. litorea KCTC 32083T. The average nucleotide identity values between strain КMM 3653T and V. litorea KCTC 32083T, N. nitratireducens KCTC 32417T, L. albidus KMM 3851T, and P. aquimaris CECT 7680T were 71.1, 70.3, 69.6, and 71.0%, respectively. Strain КMM 3653T contained Q-10 as the predominant ubiquinone and C18:1ω7c as the major fatty acid followed by C16:0. The polar lipids were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid, two unidentified aminolipids, and five unidentified lipids. The DNA G+C content of 61.8% was calculated from the genome sequence. Based on the phylogenetic evidence and distinctive phenotypic characteristics, we proposed strain KMM 3653T (= KCTC 82575T) to be classified as a novel genus and species Harenicola maris gen. nov., sp. nov.


Asunto(s)
Sedimentos Geológicos , Rhodobacteraceae , Sedimentos Geológicos/microbiología , Océanos y Mares , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Rhodobacteraceae/clasificación , Rhodobacteraceae/genética , Federación de Rusia , Especificidad de la Especie
16.
Arch Microbiol ; 203(6): 3229-3234, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33835235

RESUMEN

A Gram-stain-negative, strictly aerobic, non-flagellated, rod-shaped bacterium, designated GSB7T, was isolated from seawater collected at the Yellow Sea coast of South Korea. Catalase and oxidase activities were positive. Growth occurred at pH 6.0-9.0 (optimum pH 7.0), 10-40 °C (optimum 30 °C) and with 0-8% NaCl (optimum 1-2%). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GSB7T belonged to the genus Marivivens, showing the sequence similarities of 96.3, 96.1, and 96.0% with Marivivens niveibacter HSLHS2T, Limimaricola hongkongensis DSM17492T, and Marivivens donghaensis AM-4T, respectively. The respiratory quinone was ubiquinone-10 and the major fatty acids were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C18:1 ω7c 11-methyl, C16:0 and C10:0 3-OH. The polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminolipid, and five unidentified lipids. The DNA G + C content calculated from the whole-genome sequence was 60.6 mol%. On the basis of phenotypic, chemotaxonomic and genotypic characteristics presented in this study, strain GSB7T is suggested to represent a novel species of the genus Marivivens, for which the name Marivivens aquimaris sp. nov. is proposed. The type strain is GSB7T (= KCTC 82026T = JCM 34042T).


Asunto(s)
Rhodobacteraceae , Agua de Mar , Ácidos Grasos/análisis , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , República de Corea , Rhodobacteraceae/clasificación , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Agua de Mar/microbiología , Especificidad de la Especie
17.
Arch Microbiol ; 203(6): 3201-3207, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33830285

RESUMEN

An aerobic, Gram-negative, non-pigmented non-motile bacterium designed КMM 8518T was isolated from a seawater sampled from the Sea of Japan seashore. Strain КMM 8518T grew at 7-42 °C and in the presence of 1-7% NaCl. The phylogenetic analyses based on 16S rRNA gene and whole-genome sequences placed the novel strain КMM 8518T into the genus Thalassobius as a separate lineage. Strain КMM 8518T shared the highest 16S rRNA gene sequence similarity of 98% to Thalassobius gelatinovorus KCTC 22092T and similarity values of ≤ 97% to other recognized Thalassobius species. The average nucleotide identity and digital DNA-DNA hybridization values between strain КMM 8518T and T. gelatinovorus KCTC 22092T were 79.6% and 23.5%, respectively. The major respiratory quinone was ubiquinone-10. The major fatty acid was C18:1ω7c followed by 11-methyl C18:1ω7c. Polar lipids comprised phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminolipid, an unidentified phospholipid, and three unidentified lipids. The DNA G+C content of 62.7% was calculated from genome sequence analysis. Based on the phylogenetic analyses and distinctive phenotypic characteristics, the marine bacterium КMM 8518T is concluded to represent a novel species of the genus Thalassobius for which the name Thalassobius aquimarinus sp. nov. is proposed. The type strain of the species is strain KMM 8518T (= KCTC 82576T).


Asunto(s)
Ácidos Grasos , Fosfolípidos , Filogenia , Rhodobacteraceae , Ácidos Grasos/análisis , Japón , Océanos y Mares , Fosfolípidos/análisis , ARN Ribosómico 16S/genética , Rhodobacteraceae/clasificación , Rhodobacteraceae/genética , Agua de Mar/microbiología , Especificidad de la Especie
18.
Arch Microbiol ; 203(5): 2351-2356, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33655407

RESUMEN

A novel Gram-stain-negative, aerobic, non-flagellated, non-motile, oval-rod-shaped and light pink to light tawny-pigmented bacterial strain (designated 1151T) were isolated from marine green algae obtained from the coastal seawater of Weihai, China. Strain 1151T was found to grow at 15-37 °C (optimum, 33 °C), pH 7.0-9.5 (optimum, 7.5-8.5) and in the presence of 1-6% (w/v) NaCl (optimum, 3%). Cells were oxidase-positive and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 1151T was a member of the genus Sulfitobacter and exhibited the hightest sequence similarity to Sulfitobacter indolifex DSM 14862T (96.6%), followed by the sequence similarity to Sulfitobacter aestuarii hydD52T (96.5%) and Sulfitobacter profundi SAORIC-263T (96.5%). The average nucleotide identity and digital DDH values between strain 1151T and Sulfitobacter indolifex DSM 14862T were 69.9% and 20.9%, respectively. The average amino acid identity between strain 1151T and Sulfitobacter pontiacus DSM 10014T (type strain of the type species) was 62.3%. Q-10 was detected as the sole respiratory quinone. The dominant cellular fatty acids were sum feature 8 (C18: 1ω7c; 44.1%), C20: 1ω7c (29.7%) and C18: 0 (11.7%). The DNA G + C content of strain 1151T was 51.8 mol%. The polar lipids included phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and three unidentified lipids (L1, L2 and L3). Based on the phylogenetic and phenotypic characteristics, strain 1151T is considered to represent a novel species of the genus Sulfitobacter, for which the name Sulfitobacter algicola sp. nov. is proposed. The type strain is 1151T (= KCTC 72513T = MCCC 1H00384T).


Asunto(s)
Chlorophyta/microbiología , Filogenia , Rhodobacteraceae/clasificación , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Gammaproteobacteria/genética , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Rhodobacteraceae/aislamiento & purificación , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
19.
Artículo en Inglés | MEDLINE | ID: mdl-33332260

RESUMEN

A Gram-negative, aerobic, rod-shaped, non-motile bacterium, designated strain HQ09T, was isolated from a marine sponge off the coast of Fields Peninsula, West Antarctica. Strain HQ09T grew at 4-35 °C (optimum, 25 °C), pH 5-9 (optimum, pH 7.0), and with 1-10% NaCl (optimum, 2 %). Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain HQ09T was affiliated with the genus Pseudopuniceibacterium in the family Rhodobacteraceae, sharing 99.64 % identity with the type strain of Pseudopuniceibacterium sediminis, the only known species in the genus. However, the low digital DNA-DNA hybridization (dDDH) (27.2 %) and average nucleotide identity (ANI) (83.63 %) values between strain HQ09T and the type strain of Pseudopuniceibacterium sediminis indicated that they did not belong to the same species. Strain HQ09T could also be differentiated from Pseudopuniceibacterium sediminis by many phenotypic characteristics. The major fatty acids (>5 %) of strain HQ09T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), 11-methyl C18 : 1 ω7c, C16 : 0 and C19 : 0 cyclo ω8c. The polar lipids included phosphatidylglycerol, phosphatidylcholine, two unidentified aminolipids and one unidentified phospholipid. The predominant respiratory quinone was ubiquinone 10 (Q-10). The genomic DNA G+C content was 62.63 mol%. Four secondary metabolite biosynthetic gene clusters were detected in the genome, potentially producing ectoine and three types of unknown compounds. On the basis of the polyphasic evidences obtained in this study, strain HQ09T represents a novel species of the genus Pseudopuniceibacterium, for which the name Pseudopuniceibacterium antarcticum sp. nov. is proposed, with the type strain being HQ09T (=KCTC 52229T=CGMCC 1.15538T).


Asunto(s)
Filogenia , Poríferos/microbiología , Rhodobacteraceae/clasificación , Animales , Regiones Antárticas , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Rhodobacteraceae/aislamiento & purificación , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
20.
Artículo en Inglés | MEDLINE | ID: mdl-33433309

RESUMEN

A novel Gram-stain-negative, facultatively anaerobic, rod-shaped and non-motile bacterial strain, designated as 4C16AT, was isolated from a tidal flat sediment and characterized by using a polyphasic taxonomic approach. Strain 4C16AT was found to grow at 10-40 °C (optimum, 28 °C), at pH 5.0-10.0 (optimum, pH 6.0-7.0) and in 0-6 % (w/v) NaCl (optimum, 1 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 4C16AT fell into the genus Roseibium, and shared the highest identity of 98.9 % with the closest type strain Roseibium suaedae KACC 13772T and less than 98.0 % identity with other type strains of recognized species within this genus. The phylogenomic analysis indicated that strain 4C16AT formed an independent branch within this genus. The 28.6 % digital DNA-DNA hybridization estimate and 85.0 % average nucleotide identity between strains 4C16AT and R. suaedae KACC 13772T were the highest, but still far below their respective threshold for species definition, implying that strain 4C16AT should represent a novel genospecies. The predominant cellular fatty acid was summed feature 8; the polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylmonomethylethanolamine; the respiratory quinones were Q-9 and Q-10. The genomic DNA G+C content was 59.8mol %. Based on phylogenetic analyses and phenotypic and chemotaxonomic characteristics, strain 4C16AT is concluded to represent a novel species of the genus Roseibium, for which the name Roseibium litorale sp. nov. is proposed. The type strain of the species is 4C16AT (=GDMCC 1.1932T=KACC 22078T). We also propose the reclassification of Labrenzia polysiphoniae as Roseibium polysiphoniae comb. nov. and 'Labrenzia callyspongiae' as Roseibium callyspongiae sp. nov.


Asunto(s)
Sedimentos Geológicos/microbiología , Filogenia , Rhodobacteraceae/clasificación , Agua de Mar , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Rhodobacteraceae/aislamiento & purificación , Análisis de Secuencia de ADN , Ubiquinona/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA