Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 845-872, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28301742

RESUMEN

Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: (a) anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; (b) cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and


Asunto(s)
Optogenética/métodos , Proteínas de Plantas/química , Retinoides/química , Rodopsinas Microbianas/química , Rodopsinas Sensoriales/química , Chlorophyta/clasificación , Chlorophyta/genética , Chlorophyta/metabolismo , Evolución Molecular , Expresión Génica , Luz , Fototransducción , Potenciales de la Membrana/fisiología , Modelos Moleculares , Procesos Fotoquímicos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Retinoides/metabolismo , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo
2.
Q Rev Biophys ; 57: e1, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831008

RESUMEN

Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.


Asunto(s)
Neurociencias , Rodopsinas Microbianas , Rodopsinas Microbianas/genética , Optogenética , Neuronas , Biofisica
3.
Chem Soc Rev ; 53(7): 3327-3349, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38391026

RESUMEN

Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.


Asunto(s)
Optogenética , Rodopsinas Microbianas , Rodopsinas Microbianas/genética , Transducción de Señal
4.
Biochemistry ; 63(11): 1505-1512, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38745402

RESUMEN

Exiguobacterium sibiricum rhodopsin (ESR) functions as a light-driven proton pump utilizing Lys96 for proton uptake and maintaining its activity over a wide pH range. Using a combination of methodologies including the linear Poisson-Boltzmann equation and a quantum mechanical/molecular mechanical approach with a polarizable continuum model, we explore the microscopic mechanisms underlying its pumping activity. Lys96, the primary proton uptake site, remains deprotonated owing to the loss of solvation in the ESR protein environment. Asp85, serving as a proton acceptor group for Lys96, does not form a low-barrier H-bond with His57. Instead, deprotonated Asp85 forms a salt-bridge with protonated His57, and the proton is predominantly located at the His57 moiety. Glu214, the only acidic residue at the end of the H-bond network exhibits a pKa value of ∼6, slightly elevated due to solvation loss. It seems likely that the H-bond network [Asp85···His57···H2O···Glu214] serves as a proton-conducting pathway toward the protein bulk surface.


Asunto(s)
Exiguobacterium , Enlace de Hidrógeno , Exiguobacterium/metabolismo , Exiguobacterium/química , Protones , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bombas de Protones/metabolismo , Bombas de Protones/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética
5.
Biochemistry ; 62(12): 1849-1857, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37243673

RESUMEN

Microbial rhodopsins are light-receptive proteins with various functions triggered by the photoisomerization of the retinal chromophore from the all-trans to 13-cis configuration. A retinal chromophore is covalently bound to a lysine residue in the middle of the seventh transmembrane helix via a protonated Schiff base. Bacteriorhodopsin (BR) variants lacking a covalent bond between the side chain of Lys-216 and the main chain formed purple pigments and exhibited a proton-pumping function. Therefore, the covalent bond linking the lysine residue and the protein backbone is not considered a prerequisite for microbial rhodopsin function. To further examine this hypothesis regarding the role of the covalent bond at the lysine side chain for rhodopsin functions, we investigated K255G and K255A variants of sodium-pumping rhodopsin, Krokinobacter rhodopsin 2 (KR2), with an alkylamine retinal Schiff base (prepared by mixing ethyl- or n-propylamine and retinal (EtSB or nPrSB)). The KR2 K255G variant incorporated nPrSB and EtSB as similarly to the BR variants, whereas the K255A variant did not incorporate these alkylamine Schiff bases. The absorption maximum of K255G + nPrSB was 524-516 nm, which was close to the 526 nm absorption maximum of the wild-type + all-trans retinal (ATR). However, the K255G + nPrSB did not exhibit any ion transport activity. Since the KR2 K255G variant easily released nPrSB during light illumination and did not form an O intermediate, we concluded that a covalent bond at Lys-255 is important for the stable binding of the retinal chromophore and formation of an O intermediate to achieve light-driven Na+ pump function in KR2.


Asunto(s)
Flavobacteriaceae , Rodopsina , Rodopsina/química , Bases de Schiff/química , Lisina/metabolismo , Flavobacteriaceae/metabolismo , Transporte Iónico , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Sodio/metabolismo , Luz
6.
Mol Biol Evol ; 39(5)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35524714

RESUMEN

For billions of years, life has continuously adapted to dynamic physical conditions near the Earth's surface. Fossils and other preserved biosignatures in the paleontological record are the most direct evidence for reconstructing the broad historical contours of this adaptive interplay. However, biosignatures dating to Earth's earliest history are exceedingly rare. Here, we combine phylogenetic inference of primordial rhodopsin proteins with modeled spectral features of the Precambrian Earth environment to reconstruct the paleobiological history of this essential family of photoactive transmembrane proteins. Our results suggest that ancestral microbial rhodopsins likely acted as light-driven proton pumps and were spectrally tuned toward the absorption of green light, which would have enabled their hosts to occupy depths in a water column or biofilm where UV wavelengths were attenuated. Subsequent diversification of rhodopsin functions and peak absorption frequencies was enabled by the expansion of surface ecological niches induced by the accumulation of atmospheric oxygen. Inferred ancestors retain distinct associations between extant functions and peak absorption frequencies. Our findings suggest that novel information encoded by biomolecules can be used as "paleosensors" for conditions of ancient, inhabited niches of host organisms not represented elsewhere in the paleontological record. The coupling of functional diversification and spectral tuning of this taxonomically diverse protein family underscores the utility of rhodopsins as universal testbeds for inferring remotely detectable biosignatures on inhabited planetary bodies.


Asunto(s)
Rodopsina , Rodopsinas Microbianas , Planeta Tierra , Filogenia , Planetas , Rodopsina/genética , Rodopsinas Microbianas/genética
7.
J Cell Sci ; 134(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34821363

RESUMEN

Rhodopsins are photoreceptive membrane proteins consisting of a common heptahelical transmembrane architecture that contains a retinal chromophore. Rhodopsin was first discovered in the animal retina in 1876, but a different type of rhodopsin, bacteriorhodopsin, was reported to be present in the cell membrane of an extreme halophilic archaeon, Halobacterium salinarum, 95 years later. Although these findings were made by physiological observation of pigmented tissue and cell bodies, recent progress in genomic and metagenomic analyses has revealed that there are more than 10,000 microbial rhodopsins and 9000 animal rhodopsins with large diversity and tremendous new functionality. In this Cell Science at a Glance article and accompanying poster, we provide an overview of the diversity of functions, structures, color discrimination mechanisms and optogenetic applications of these two rhodopsin families, and will also highlight the third distinctive rhodopsin family, heliorhodopsin.


Asunto(s)
Genómica , Rodopsina , Rodopsinas Microbianas , Rodopsina/genética , Rodopsinas Microbianas/genética
8.
Photochem Photobiol Sci ; 22(8): 1809-1823, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37036621

RESUMEN

A putative xanthorhodopsin-encoding gene, XR34, was found in the genome of the moderately halophilic gammaproteobacterium Salinivibrio socompensis S34, isolated from modern stromatolites found on the shore of Laguna Socompa (3570 m), Argentina Puna. XR-encoding genes were clustered together with genes encoding X-carotene, retinal (vitamin-A aldehyde), and carotenoid biosynthesis enzymes while the carotene ketolase gene critical for the salinixanthin antenna compound was absent. To identify its functional behavior, we herein overexpressed and characterized this intriguing microbial rhodopsin. Recombinant XR34 showed all the salient features of canonical microbial rhodopsin and covalently bound retinal as a functional chromophore with λmax = 561 nm (εmax ca. 60,000 M-1 cm-1). Two canonical counterions with pK values of around 6 and 3 were identified by pH titration of the recombinant protein. With a recovery time of approximately half an hour in the dark, XR34 shows light-dark adaptation shifting the absorption maximum from 551 to 561 nm. Laser-flash induced photochemistry at pH 9 (deprotonated primary counterion) identified a photocycle starting with a K-like intermediate, followed by an M-state (λmax ca. 400 nm, deprotonated Schiff base), and a final long wavelength-absorbing N- or O-like intermediate before returning to the parental 561 nm-state. Initiating the photocycle at pH 5 (protonated counterion) yields only bathochromic intermediates, due to the lacking capacity of the counterion to accept the Schiff base proton. Illumination of the membrane-embedded protein yielded a capacitive transport current. The presence of the M-intermediate under these conditions was demonstrated by a blue light-induced shunt process.


Asunto(s)
Bacteriorodopsinas , Bases de Schiff , Bases de Schiff/química , Carotenoides/metabolismo , Retinaldehído/química , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Concentración de Iones de Hidrógeno
9.
Biochemistry ; 61(18): 1936-1944, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36007110

RESUMEN

Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria, and thousands of PRs are classified as blue-absorbing PRs (BPR; λmax ∼ 490 nm) and green-absorbing PRs (GPR; λmax ∼ 525 nm). We previously converted BPR into GPR using an anomalous pH effect, which was achieved by an irreversible process at around pH 2. Recent size-exclusion chromatography (SEC) and atomic force microscopy (AFM) analyses of BPR from Vibrio califitulae (VcBPR) revealed the anomalous pH effect owing to the irreversible transition from pentamer to monomer. Different pKa values of the Schiff base counterion between pentamer and monomer lead to different colors at the same pH. Here, we incorporate systematic mutation into VcBPR and examine the anomalous pH effect. The anomalous pH effect was observed for the mutants of key residues near the retinal chromophore such as D76N, D206N, and Q84L, indicating that the Schiff base counterions and the L/Q switch do not affect the irreversible transition from pentamer to monomer at pH ∼ 2. We then focus on the two specific interactions at the intermonomer interface in a pentamer, E29/R30/D31 and W13/H54. Single mutants such as E29Q, R30A, W13A, and H54A and the wild type (WT) exhibited an anomalous pH effect. In contrast, the anomalous pH effect was lost for E29Q/H54A, R30A/H54A, and W13A/E29Q. Size-exclusion chromatography (SEC) and atomic force microscopy (AFM) measurements showed monomer forms in the original states of the double mutants, being a clear contrast to the pentamer forms of all single mutants in the original states. It was concluded that the pentamer structure of VcBPR was stabilized by an electrostatic interaction in the E29/R30/D31 region and a hydrogen-bonding interaction in the W13/H54 region, which was disrupted at pH 2 and converted into monomers.


Asunto(s)
Rodopsina , Bases de Schiff , Hidrógeno , Concentración de Iones de Hidrógeno , Bombas de Protones , Rodopsina/química , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Bases de Schiff/química , Sulfonamidas
10.
Metab Eng ; 72: 227-236, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35346842

RESUMEN

In microbial fermentative production, ATP regeneration, while crucial for cellular processes, conflicts with efficient target chemical production because ATP regeneration exhausts essential carbon sources also required for target chemical biosynthesis. To wrestle with this dilemma, we harnessed the power of microbial rhodopsins with light-driven proton pumping activity to supplement with ATP, thereby facilitating the bioproduction of various chemicals. We first demonstrated a photo-driven ATP supply and redistribution of metabolic carbon flows to target chemical synthesis by installing already-known delta rhodopsin (dR) in Escherichia coli. In addition, we identified novel rhodopsins with higher proton pumping activities than dR, and created an engineered cell for in vivo self-supply of the rhodopsin-activator, all-trans-retinal. Our concept exploiting the light-powering ATP supplier offers a potential increase in carbon use efficiency for microbial productions through metabolic reprogramming.


Asunto(s)
Bombas de Protones , Rodopsina , Adenosina Trifosfato/genética , Carbono/metabolismo , Luz , Optogenética , Bombas de Protones/química , Bombas de Protones/genética , Bombas de Protones/metabolismo , Protones , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo , Rodopsinas Microbianas/genética
11.
Plant Physiol ; 187(2): 572-589, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35237820

RESUMEN

Microbial rhodopsins have advanced optogenetics since the discovery of channelrhodopsins almost two decades ago. During this time an abundance of microbial rhodopsins has been discovered, engineered, and improved for studies in neuroscience and other animal research fields. Optogenetic applications in plant research, however, lagged largely behind. Starting with light-regulated gene expression, optogenetics has slowly expanded into plant research. The recently established all-trans retinal production in plants now enables the use of many microbial opsins, bringing extra opportunities to plant research. In this review, we summarize the recent advances of rhodopsin-based plant optogenetics and provide a perspective for future use, combined with fluorescent sensors to monitor physiological parameters.


Asunto(s)
Técnicas Biosensibles/métodos , Imagen Molecular/métodos , Optogenética , Plantas/genética , Rodopsina/genética , Rodopsinas Microbianas/genética , Colorantes Fluorescentes , Fenómenos Fisiológicos de las Plantas , Rodopsina/metabolismo , Rodopsinas Microbianas/metabolismo
12.
Chemistry ; 28(28): e202200139, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35307890

RESUMEN

Proteorhodopsin (PR) is a photoactive proton pump found in marine bacteria. There are two phenotypes of PR exhibiting an environmental adaptation to the ocean's depth which tunes their maximum absorption: blue-absorbing proteorhodopsin (BPR) and green-absorbing proteorhodopsin (GPR). This blue/green color-shift is controlled by a glutamine to leucine substitution at position 105 which accounts for a 20 nm shift. Typically, spectral tuning in rhodopsins is rationalized by the external point charge model but the Q105L mutation is charge neutral. To study this tuning mechanism, we employed the hybrid QM/MM method with sampling from molecular dynamics. Our results reveal that the positive partial charge of glutamine near the C14 -C15 bond of retinal shortens the effective conjugation length of the chromophore compared to the leucine residue. The derived mechanism can be applied to explain the color regulation in other retinal proteins and can serve as a guideline for rational design of spectral shifts.


Asunto(s)
Glutamina , Rodopsinas Microbianas , Glutamina/química , Leucina/química , Rodopsina/química , Rodopsina/genética , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Electricidad Estática
13.
Proc Natl Acad Sci U S A ; 116(34): 17051-17060, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31371514

RESUMEN

Genetically encoded voltage indicators (GEVIs) based on microbial rhodopsins utilize the voltage-sensitive fluorescence of all-trans retinal (ATR), while in electrochromic FRET (eFRET) sensors, donor fluorescence drops when the rhodopsin acts as depolarization-sensitive acceptor. In recent years, such tools have become widely used in mammalian cells but are less commonly used in invertebrate systems, mostly due to low fluorescence yields. We systematically assessed Arch(D95N), Archon, QuasAr, and the eFRET sensors MacQ-mCitrine and QuasAr-mOrange, in the nematode Caenorhabditis elegans ATR-bearing rhodopsins reported on voltage changes in body wall muscles (BWMs), in the pharynx, the feeding organ [where Arch(D95N) showed approximately 128% ΔF/F increase per 100 mV], and in neurons, integrating circuit activity. ATR fluorescence is very dim, yet, using the retinal analog dimethylaminoretinal, it was boosted 250-fold. eFRET sensors provided sensitivities of 45 to 78% ΔF/F per 100 mV, induced by BWM action potentials, and in pharyngeal muscle, measured in simultaneous optical and sharp electrode recordings, MacQ-mCitrine showed approximately 20% ΔF/F per 100 mV. All sensors reported differences in muscle depolarization induced by a voltage-gated Ca2+-channel mutant. Optogenetically evoked de- or hyperpolarization of motor neurons increased or eliminated action potential activity and caused a rise or drop in BWM sensor fluorescence. Finally, we analyzed voltage dynamics across the entire pharynx, showing uniform depolarization but compartmentalized repolarization of anterior and posterior parts. Our work establishes all-optical, noninvasive electrophysiology in live, intact C. elegans.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Músculos , Neuronas , Rodopsinas Microbianas/metabolismo , Animales , Animales Modificados Genéticamente/genética , Caenorhabditis elegans/genética , Músculos/citología , Músculos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Rodopsinas Microbianas/genética
14.
J Biol Chem ; 295(44): 14793-14804, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32703899

RESUMEN

Microbial rhodopsins are versatile and ubiquitous retinal-binding proteins that function as light-driven ion pumps, light-gated ion channels, and photosensors, with potential utility as optogenetic tools for altering membrane potential in target cells. Insights from crystal structures have been central for understanding proton, sodium, and chloride transport mechanisms of microbial rhodopsins. Two of three known groups of anion pumps, the archaeal halorhodopsins (HRs) and bacterial chloride-pumping rhodopsins, have been structurally characterized. Here we report the structure of a representative of a recently discovered third group consisting of cyanobacterial chloride and sulfate ion-pumping rhodopsins, the Mastigocladopsis repens rhodopsin (MastR). Chloride-pumping MastR contains in its ion transport pathway a unique Thr-Ser-Asp (TSD) motif, which is involved in the binding of a chloride ion. The structure reveals that the chloride-binding mode is more similar to HRs than chloride-pumping rhodopsins, but the overall structure most closely resembles bacteriorhodopsin (BR), an archaeal proton pump. The MastR structure shows a trimer arrangement reminiscent of BR-like proton pumps and shows features at the extracellular side more similar to BR than the other chloride pumps. We further solved the structure of the MastR-T74D mutant, which contains a single amino acid replacement in the TSD motif. We provide insights into why this point mutation can convert the MastR chloride pump into a proton pump but cannot in HRs. Our study points at the importance of precise coordination and exact location of the water molecule in the active center of proton pumps, which serves as a bridge for the key proton transfer.


Asunto(s)
Cianobacterias/química , Mutación , Bombas de Protones/química , Rodopsinas Microbianas/química , Sitios de Unión , Biopolímeros/química , Cristalografía por Rayos X , Transporte Iónico , Conformación Proteica , Bombas de Protones/genética , Protones , Retinaldehído/metabolismo , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo
15.
Proteins ; 89(3): 301-310, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33064333

RESUMEN

It is known that a hyperthermostable protein tolerable at temperatures over 100°C can be designed from a soluble globular protein by introducing mutations. To expand the applicability of this technology to membrane proteins, here we report a further thermo-stabilization of the thermophilic rhodopsin from Thermus thermophilus JL-18 as a model membrane protein. Ten single mutations in the extramembrane regions were designed based on a computational prediction of folding free-energy differences upon mutation. Experimental characterizations using the UV-visible spectroscopy and the differential scanning calorimetry revealed that four of ten mutations were thermo-stabilizing: V79K, T114D, A115P, and A116E. The mutation-structure relationship of the TR constructs was analyzed using molecular dynamics simulations at 300 K and at 1800 K that aimed simulating structures in the native and in the random-coil states, respectively. The native-state simulation exhibited an ion-pair formation of the stabilizing V79K mutant as it was designed, and suggested a mutation-induced structural change of the most stabilizing T114D mutant. On the other hand, the random-coil-state simulation revealed a higher structural fluctuation of the destabilizing mutant S8D when compared to the wild type, suggesting that the higher entropy in the random-coil state deteriorated the thermal stability. The present thermo-stabilization design in the extramembrane regions based on the free-energy calculation and the subsequent evaluation by the molecular dynamics may be useful to improve the production of membrane proteins for structural studies.


Asunto(s)
Proteínas Bacterianas , Proteínas de la Membrana , Rodopsinas Microbianas , Thermus thermophilus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calor , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo
16.
Phys Chem Chem Phys ; 23(3): 2072-2079, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33433533

RESUMEN

We carried out the low-temperature Raman measurement of a sodium pump rhodopsin from Indibacter alkaliphilus (IaNaR) and examined the primary structural change for the light-driven Na+ pump. We observed that photoexcitation of IaNaR produced the distorted 13-cis retinal chromophore in the presence of Na+, while the structural distortion was significantly relaxed in the absence of Na+. This structural difference of the chromophore with/without Na+ was attributed to the Na+ binding to the protein, which alters the active site. Using the spectral sensitivity to the ion binding, we found that IaNaR had a second Na+ binding site in addition to the one already specified on the extracellular surface. To date, the Na+ binding has not been considered as a prerequisite for Na+ transport. However, this study provides insight that the protein structural change induced by the ion binding involved the formation of an R108-D250 salt bridge, which has critical importance in the active transport of Na+.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroidetes/química , Proteínas de Transporte de Catión/metabolismo , Rodopsinas Microbianas/metabolismo , Sodio/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/efectos de la radiación , Transporte Biológico Activo , Dominio Catalítico , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/efectos de la radiación , Frío , Cristalografía por Rayos X , Diterpenos/química , Conformación Molecular , Mutación , Retinaldehído/química , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/efectos de la radiación , Espectrometría Raman
17.
Adv Exp Med Biol ; 1293: 3-19, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33398804

RESUMEN

The first light-sensing proteins used in optogenetics were rhodopsins. The word "rhodopsin" originates from the Greek words "rhodo" and "opsis," indicating rose and sight, respectively. Although the classical meaning of rhodopsin is the red-colored pigment in our eyes, the modern meaning of rhodopsin encompasses photoactive proteins containing a retinal chromophore in animals and microbes. Animal and microbial rhodopsins possess 11-cis and all-trans retinal, respectively, to capture light in seven transmembrane α-helices, and photoisomerizations into all-trans and 13-cis forms, respectively, initiate each function. We are able to find ion-transporting proteins in microbial rhodopsins, such as light-gated channels and light-driven pumps, which are the main tools in optogenetics. In this chapter, historical aspects and molecular properties of rhodopsins are introduced. In the first part, "what is rhodopsin?", general introduction of rhodopsin is presented. Then, molecular mechanism of bacteriorodopsin, a light-driven proton pump and the best-studied microbial rhodopsin, is described. In the section of channelrhodopsin, the light-gated ion channel, molecular properties, and several variants are introduced. As the history has proven, understanding the molecular mechanism of microbial rhodopsins is a prerequisite for useful functional design of optogenetics tools in future.


Asunto(s)
Luz , Rodopsina/metabolismo , Animales , Transporte Iónico/efectos de la radiación , Optogenética/métodos , Rodopsina/genética , Rodopsina/efectos de la radiación , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efectos de la radiación
18.
Adv Exp Med Biol ; 1293: 153-165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33398812

RESUMEN

The cyclic nucleotides cAMP and cGMP are ubiquitous secondary messengers that regulate multiple biological functions including gene expression, differentiation, proliferation, and cell survival. In sensory neurons, cyclic nucleotides are responsible for signal modulation, amplification, and encoding. For spatial and temporal manipulation of cyclic nucleotide dynamics, optogenetics have a great advantage over pharmacological approaches. Enzymerhodopsins are a unique family of microbial rhodopsins. These molecules are made up of a membrane-embedded rhodopsin domain, which binds an all trans-retinal to form a chromophore, and a cytoplasmic water-soluble catalytic domain. To date, three kinds of molecules have been identified from lower eukaryotes such as fungi, algae, and flagellates. Among these, histidine kinase rhodopsin (HKR) is a light-inhibited guanylyl cyclase. Rhodopsin GC (Rh-GC) functions as a light-activated guanylyl cyclase, while rhodopsin PDE (Rh-PDE) functions as a light-activated phosphodiesterase that degrades cAMP and cGMP. These enzymerhodopsins have great potential in optogenetic applications for manipulating the intracellular cyclic nucleotide dynamics of living cells. Here we introduce the molecular function and applicability of these molecules.


Asunto(s)
Guanilato Ciclasa/metabolismo , Optogenética , Hidrolasas Diéster Fosfóricas/metabolismo , Rodopsinas Microbianas/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Guanilato Ciclasa/genética , Hidrolasas Diéster Fosfóricas/genética , Rodopsinas Microbianas/genética
19.
Adv Exp Med Biol ; 1293: 89-126, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33398809

RESUMEN

Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.


Asunto(s)
Bombas Iónicas/metabolismo , Bombas Iónicas/efectos de la radiación , Luz , Optogenética/métodos , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efectos de la radiación , Bombas Iónicas/genética , Transporte Iónico/efectos de la radiación , Rodopsinas Microbianas/genética
20.
Environ Microbiol ; 22(9): 3823-3837, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32643243

RESUMEN

Despite the widespread distribution of proteorhodopsin (PR)-containing bacteria in the oceans, the use of light-derived energy to promote bacterial growth has only been shown in a few bacterial isolates, and there is a paucity of data describing the metabolic effects of light on environmental photoheterotrophic taxa. Here, we assessed the effects of light on the taxonomic composition, cell integrity and growth responses of microbial communities in monthly incubations between spring and autumn under different environmental conditions. The photoheterotrophs expressing PR in situ were dominated by Pelagibacterales and SAR116 in July and November, while members of Euryarchaeota, Gammaproteobacteria and Bacteroidetes dominated the PR expression in spring. Cell-membrane integrity decreased under dark conditions throughout most of the assessment, with maximal effects in summer, under low-nutrient conditions. A positive effect of light on growth was observed in one incubation (out of nine), coinciding with a declining phytoplankton bloom. Light-enhanced growth was found in Gammaproteobacteria (Alteromonadales) and Bacteroidetes (Polaribacter and Tenacibaculum). Unexpectedly, some Pelagibacterales also exhibited higher growth rates under light conditions. We propose that the energy harvested by PRs helps to maintain cell viability in dominant coastal photoheterotrophic oligotrophs while promoting the growth of some widespread taxa benefiting from the decline of phytoplankton blooms.


Asunto(s)
Luz , Microbiota/fisiología , Agua de Mar/microbiología , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Membrana Celular/fisiología , Procesos Heterotróficos , Océanos y Mares , Fitoplancton/clasificación , Fitoplancton/crecimiento & desarrollo , Fitoplancton/metabolismo , Fitoplancton/fisiología , Rodopsinas Microbianas/genética , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA