Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 222, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272155

RESUMEN

Gulf War Illness (GWI) is a chronic multisymptom disorder that affects approximately 25-32% of Gulf War veterans and is characterized by a number of symptoms such as cognitive impairment, psychiatric disturbances, chronic fatigue and gastrointestinal distress, among others. While the exact etiology of GWI is unknown, it is believed to have been caused by toxic exposures encountered during deployment in combination with other factors such as stress. In the present study we sought to evaluate the hypothesis that exposure to the toxin permethrin could prime neuroinflammatory stress response and elicit psychiatric symptoms associated with GWI. Specifically, we developed a mouse model of GWI, to evaluate the effects of chronic permethrin exposure followed by unpredictable stress. We found that subjecting mice to 14 days of chronic permethrin exposure followed by 7 days of unpredictable stress resulted in the development of depression-like behavior. This behavioral change coincided with distinct alterations in the microglia phenotype, indicating microglial activation in the hippocampus. We revealed that blocking microglial activation through Gi inhibitory DREADD receptors in microglia effectively prevented the behavioral change associated with permethrin and stress exposure. To elucidate the transcriptional networks impacted within distinct microglia populations linked to depression-like behavior in mice exposed to both permethrin and stress, we conducted a single-cell RNA sequencing analysis using 21,566 single nuclei collected from the hippocampus of mice. For bioinformatics, UniCell Deconvolve was a pre-trained, interpretable, deep learning model used to deconvolve cell type fractions and predict cell identity across spatial datasets. Our bioinformatics analysis identified significant alterations in permethrin exposure followed by stress-associated microglia population, notably pathways related to neuronal development, neuronal communication, and neuronal morphogenesis, all of which are associated with neural synaptic plasticity. Additionally, we observed permethrin exposure followed by stress-mediated changes in signal transduction, including modulation of chemical synaptic transmission, regulation of neurotransmitter receptors, and regulation of postsynaptic neurotransmitter receptor activity, a known contributor to the pathophysiology of depression in a subset of the hippocampal pyramidal neurons in CA3 subregions. Our findings tentatively suggest that permethrin may prime microglia towards a state of inflammatory activation that can be triggered by psychological stressors, resulting in depression-like behavior and alterations of neural plasticity. These findings underscore the significance of synergistic interactions between multi-causal factors associated with GWI.


Asunto(s)
Depresión , Modelos Animales de Enfermedad , Microglía , Enfermedades Neuroinflamatorias , Permetrina , Síndrome del Golfo Pérsico , Animales , Permetrina/toxicidad , Ratones , Síndrome del Golfo Pérsico/inducido químicamente , Síndrome del Golfo Pérsico/patología , Microglía/efectos de los fármacos , Microglía/metabolismo , Depresión/inducido químicamente , Depresión/etiología , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/metabolismo , Masculino , Ratones Endogámicos C57BL , Estrés Psicológico
2.
J Pharmacol Exp Ther ; 388(2): 647-654, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37863487

RESUMEN

Approximately one-third of Gulf War veterans suffer from Gulf War Illness (GWI), which encompasses mood disorders and depressive symptoms. Deployment-related exposure to organophosphate compounds has been associated with GWI development. Epigenetic modifications have been reported in GWI veterans. We previously showed that epigenetic histone dysregulations were associated with decreased brain-derived neurotrophic factor (BDNF) expression in a GWI rat model. GWI has no effective therapies. Ketamine (KET) has recently been approved by the Food and Drug Administration for therapy-resistant depression. Interestingly, BDNF upregulation underlies KET's antidepressant effect in GWI-related depression. Here, we investigated whether KET's effect on histone mechanisms signals BDNF upregulations in GWI. Male Sprague-Dawley rats were injected once daily with diisopropyl fluorophosphate (DFP; 0.5 mg/kg, s.c., 5 days). At 6 months following DFP exposure, KET (10 mg/kg, i.p.) was injected, and brains were dissected 24 hours later. Western blotting was used for protein expression, and epigenetic studies used chromatin immunoprecipitation methods. Dil staining was conducted for assessing dendritic spines. Our results indicated that an antidepressant dose of KET inhibited the upregulation of histone deacetylase (HDAC) enzymes in DFP rats. Furthermore, KET restored acetylated histone occupancy at the Bdnf promoter IV and induced BDNF protein expression in DFP rats. Finally, KET treatment also increased the spine density and altered the spine diversity with increased T-type and decreased S-type spines in DFP rats. Given these findings, we propose that KET's actions involve the inhibition of HDAC expression, upregulation of BDNF, and dendritic modifications that together ameliorates the pathologic synaptic plasticity and exerts an antidepressant effect in DFP rats. SIGNIFICANCE STATEMENT: This study offers evidence supporting the involvement of epigenetic histone pathways in the antidepressant effects of ketamine (KET) in a rat model of Gulf War Illness (GWI)-like depression. This effect is achieved through the modulation of histone acetylation at the Bdnf promoter, resulting in elevated brain-derived neurotrophic factor expression and subsequent dendritic remodeling in the hippocampus. These findings underscore the rationale for considering KET as a potential candidate for clinical trials aimed at managing GWI-related depression.


Asunto(s)
Fluoruros , Ketamina , Síndrome del Golfo Pérsico , Fosfatos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Ketamina/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Guerra del Golfo , Síndrome del Golfo Pérsico/inducido químicamente , Síndrome del Golfo Pérsico/metabolismo , Síndrome del Golfo Pérsico/patología , Histonas , Hipocampo , Antidepresivos/efectos adversos
3.
Cell Mol Life Sci ; 78(21-22): 6941-6961, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34580742

RESUMEN

Gulf War Illness (GWI), a disorder suffered by approximately 200,000 veterans of the first Gulf War, was caused by exposure to low-level organophosphate pesticides and nerve agents in combination with battlefield stress. To elucidate the mechanistic basis of the brain-related symptoms of GWI, human-induced pluripotent stem cells (hiPSCs) derived from veterans with or without GWI were differentiated into forebrain glutamatergic neurons and then exposed to a Gulf War (GW) relevant toxicant regimen consisting of a sarin analog and cortisol, a human stress hormone. Elevated levels of total and phosphorylated tau, reduced microtubule acetylation, altered mitochondrial dynamics/transport, and decreased neuronal activity were observed in neurons exposed to the toxicant regimen. Some of the data are consistent with the possibility that some veterans may have been predisposed to acquire GWI. Wistar rats exposed to a similar toxicant regimen showed a mild learning and memory deficit, as well as cell loss and tau pathology selectively in the CA3 region of the hippocampus. These cellular responses offer a mechanistic explanation for the memory loss suffered by veterans with GWI and provide a cell-based model for screening drugs and developing personalized therapies for these veterans.


Asunto(s)
Síndrome del Golfo Pérsico/patología , Animales , Región CA3 Hipocampal/patología , Diferenciación Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Guerra del Golfo , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Trastornos de la Memoria/patología , Neuronas/patología , Ratas , Ratas Wistar , Veteranos
4.
J Neuroinflammation ; 15(1): 86, 2018 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-29549885

RESUMEN

BACKGROUND: Gulf War illness (GWI) is an archetypal, medically unexplained, chronic condition characterised by persistent sickness behaviour and neuroimmune and neuroinflammatory components. An estimated 25-32% of the over 900,000 veterans of the 1991 Gulf War fulfil the requirements of a GWI diagnosis. It has been hypothesised that the high physical and psychological stress of combat may have increased vulnerability to irreversible acetylcholinesterase (AChE) inhibitors leading to a priming of the neuroimmune system. A number of studies have linked high levels of psychophysiological stress and toxicant exposures to epigenetic modifications that regulate gene expression. Recent research in a mouse model of GWI has shown that pre-exposure with the stress hormone corticosterone (CORT) causes an increase in expression of specific chemokines and cytokines in response to diisopropyl fluorophosphate (DFP), a sarin surrogate and irreversible AChE inhibitor. METHODS: C57BL/6J mice were exposed to CORT for 4 days, and exposed to DFP on day 5, before sacrifice 6 h later. The transcriptome was examined using RNA-seq, and the epigenome was examined using reduced representation bisulfite sequencing and H3K27ac ChIP-seq. RESULTS: We show transcriptional, histone modification (H3K27ac) and DNA methylation changes in genes related to the immune and neuronal system, potentially relevant to neuroinflammatory and cognitive symptoms of GWI. Further evidence suggests altered proportions of myelinating oligodendrocytes in the frontal cortex, perhaps connected to white matter deficits seen in GWI sufferers. CONCLUSIONS: Our findings may reflect the early changes which occurred in GWI veterans, and we observe alterations in several pathways altered in GWI sufferers. These close links to changes seen in veterans with GWI indicates that this model reflects the environmental exposures related to GWI and may provide a model for biomarker development and testing future treatments.


Asunto(s)
Encéfalo/metabolismo , Citocinas/metabolismo , Epigénesis Genética/fisiología , Síndrome del Golfo Pérsico/tratamiento farmacológico , Síndrome del Golfo Pérsico/patología , Estrés Psicológico/metabolismo , Animales , Antiinflamatorios/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/patología , Inhibidores de la Colinesterasa/farmacología , Inmunoprecipitación de Cromatina , Corticosterona/toxicidad , Metilación de ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Hidrolasas de Triéster Fosfórico/farmacología , Factores de Tiempo
5.
J Neurochem ; 142(3): 444-455, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28500787

RESUMEN

Gulf War Illness (GWI) is a chronic multi-symptom disorder affecting veterans of the 1991 Gulf War. Among the symptoms of GWI are those associated with sickness behavior, observations suggestive of underlying neuroinflammation. We have shown that exposure of mice to the stress hormone, corticosterone (CORT), and to diisopropyl fluorophosphate (DFP), as a nerve agent mimic, results in marked neuroinflammation, findings consistent with a stress/neuroimmune basis of GWI. Here, we examined the contribution of irreversible and reversible acetylcholinesterase (AChE) inhibitors to neuroinflammation in our mouse model of GWI. Male C57BL/6J mice received 4 days of CORT (400 mg/L) in the drinking water followed by a single dose of chlorpyrifos oxon (CPO; 8 mg/kg, i.p.), DFP (4 mg/kg, i.p.), pyridostigmine bromide (PB; 3 mg/kg, i.p.), or physostigmine (PHY; 0.5 mg/kg, i.p.). CPO and DFP alone caused cortical and hippocampal neuroinflammation assessed by qPCR of tumor necrosis factor-alpha, IL-6, C-C chemokine ligand 2, IL-1ß, leukemia inhibitory factor and oncostatin M; CORT pretreatment markedly augmented these effects. Additionally, CORT exposure prior to DFP or CPO enhanced activation of the neuroinflammation signal transducer, signal transducer and activator of transcription 3 (STAT3). In contrast, PHY or PB alone or with CORT pretreatment did not produce neuroinflammation or STAT3 activation. While all of the CNS-acting AChE inhibitors (DFP, CPO, and PHY) decreased brain AChE activity, CORT pretreatment abrogated these effects for the irreversible inhibitors. Taken together, these findings suggest that irreversible AChE inhibitor-induced neuroinflammation and particularly its exacerbation by CORT, result from non-cholinergic effects of these compounds, pointing potentially to organophosphorylation of other neuroimmune targets.


Asunto(s)
Acetilcolinesterasa/metabolismo , Encéfalo/efectos de los fármacos , Inhibidores de la Colinesterasa/toxicidad , Corticosterona/farmacología , Guerra del Golfo , Organofosfatos/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Síndrome del Golfo Pérsico/patología , Bromuro de Piridostigmina/farmacología
6.
Toxicol Appl Pharmacol ; 316: 48-62, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28025109

RESUMEN

Exposure to DEET (N,N-diethyl-meta-toluamide) may have influenced the pattern of symptoms observed in soldiers with GWI (Gulf War Illness; Haley and Kurt, 1997). We examined how the addition of DEET (400mg/kg; 50% topical) to an exposure protocol of permethrin (2.6mg/kg; topical), chlorpyrifos (CP; 120mg/kg), and pyridostigmine bromide (PB;13mg/kg) altered the emergence and pattern of pain signs in an animal model of GWI pain (Nutter et al., 2015). Rats underwent behavioral testing before, during and after a 4week exposure: 1) hindlimb pressure withdrawal threshold; 2) ambulation (movement distance and rate); and 3) resting duration. Additional studies were conducted to assess the influence of acute DEET (10-100µM) on muscle and vascular nociceptor Kv7, KDR, Nav1.8 and Nav1.9. We report that a 50% concentration of DEET enhanced the development and persistence of pain-signs. Rats exposed to all 4 compounds exhibited ambulation deficits that appeared 5-12weeks post-exposure and persisted through weeks 21-24. Rats exposed to only three agents (CP or PB excluded), did not fully develop ambulation deficits. When PB was excluded, rats also developed rest duration pain signs, in addition to ambulation deficits. There was no evidence that physiological doses of DEET acutely modified nociceptor Kv7, KDR, Nav1.8 or Nav1.9 activities. Nevertheless, DEET augmented protocols decreased the conductance of Kv7 expressed in vascular nociceptors harvested from chronically exposed rats. We concluded that DEET enhanced the development and persistence of pain behaviors, but the anticholinesterases CP and PB played a determinant role.


Asunto(s)
Inhibidores de la Colinesterasa/toxicidad , Dolor Crónico/inducido químicamente , DEET/toxicidad , Modelos Animales de Enfermedad , Repelentes de Insectos/toxicidad , Síndrome del Golfo Pérsico/inducido químicamente , Animales , Inhibidores de la Colinesterasa/administración & dosificación , Dolor Crónico/patología , Sinergismo Farmacológico , Repelentes de Insectos/administración & dosificación , Masculino , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Síndrome del Golfo Pérsico/patología , Ratas , Ratas Sprague-Dawley
7.
Exp Brain Res ; 235(9): 2777-2786, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28634886

RESUMEN

Gulf War Illness (GWI) is a multisystem disorder that has affected a substantial number of veterans who served in the 1990-1991 Gulf War. The brain is prominently affected, as manifested by the presence of neurological, cognitive and mood symptoms. Although brain dysfunction in GWI has been well documented (EBioMedicine 12:127-32, 2016), abnormalities in brain structure have been debated. Here we report a substantial (~10%) subcortical brain atrophy in GWI comprising mainly the brainstem, cerebellum and thalamus, and, to a lesser extent, basal ganglia, amygdala and diencephalon. The highest atrophy was observed in the brainstem, followed by left cerebellum and right thalamus, then by right cerebellum and left thalamus. These findings indicate graded atrophy of regions anatomically connected through the brainstem via the crossed superior cerebellar peduncle (left cerebellum â†’ right thalamus, right cerebellum â†’ left thalamus). This distribution of atrophy, together with the observed systematic reduction in volume of other subcortical areas (basal ganglia, amygdala and diencephalon), resemble the distribution of atrophy seen in toxic encephalopathy (Am J Neuroradiol 13:747-760, 1992) caused by a variety of substances, including organic solvents. Given the potential exposure of Gulf War veterans to "a wide range of biological and chemical agents including sand, smoke from oil-well fires, paints, solvents, insecticides, petroleum fuels and their combustion products, organophosphate nerve agents, pyridostigmine bromide, …" (Institute of Medicine National Research Council. Gulf War and Health: Volume 1. Depleted uranium, pyridostigmine bromide, sarin, and vaccines. National Academies Press, Washington DC, 2000), it is reasonable to suppose that such exposures, alone or in combination, could underlie the subcortical atrophy observed.


Asunto(s)
Tronco Encefálico/patología , Cerebelo/patología , Síndromes de Neurotoxicidad/patología , Síndrome del Golfo Pérsico/patología , Tálamo/patología , Adulto , Anciano , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/patología , Atrofia/patología , Ganglios Basales/diagnóstico por imagen , Ganglios Basales/patología , Tronco Encefálico/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Diencéfalo/diagnóstico por imagen , Diencéfalo/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Síndrome del Golfo Pérsico/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Veteranos
8.
J Neurochem ; 133(5): 708-21, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25753028

RESUMEN

Gulf War Illness (GWI) is a multi-symptom disorder with features characteristic of persistent sickness behavior. Among conditions encountered in the Gulf War (GW) theater were physiological stressors (e.g., heat/cold/physical activity/sleep deprivation), prophylactic treatment with the reversible AChE inhibitor, pyridostigmine bromide (PB), the insect repellent, N,N-diethyl-meta-toluamide (DEET), and potentially the nerve agent, sarin. Prior exposure to the anti-inflammatory glucocorticoid, corticosterone (CORT), at levels associated with high physiological stress, can paradoxically prime the CNS to produce a robust proinflammatory response to neurotoxicants and systemic inflammation; such neuroinflammatory effects can be associated with sickness behavior. Here, we examined whether CORT primed the CNS to mount neuroinflammatory responses to GW exposures as a potential model of GWI. Male C57BL/6 mice were treated with chronic (14 days) PB/ DEET, subchronic (7-14 days) CORT, and acute exposure (day 15) to diisopropyl fluorophosphate (DFP), a sarin surrogate and irreversible AChE inhibitor. DFP alone caused marked brain-wide neuroinflammation assessed by qPCR of tumor necrosis factor-α, IL6, chemokine (C-C motif) ligand 2, IL-1ß, leukemia inhibitory factor, and oncostatin M. Pre-treatment with high physiological levels of CORT greatly augmented (up to 300-fold) the neuroinflammatory responses to DFP. Anti-inflammatory pre-treatment with minocycline suppressed many proinflammatory responses to CORT+DFP. Our findings are suggestive of a possible critical, yet unrecognized interaction between the stressor/environment of the GW theater and agent exposure(s) unique to this war. Such exposures may in fact prime the CNS to amplify future neuroinflammatory responses to pathogens, injury, or toxicity. Such occurrences could potentially result in the prolonged episodes of sickness behavior observed in GWI. Gulf War (GW) veterans were exposed to stressors, prophylactic medicines and, potentially, nerve agents in theater. Subsequent development of GW Illness, a persistent multi-symptom disorder with features characteristic of sickness behavior, may be caused by priming of the CNS resulting in exaggerated neuroinflammatory responses to pathogens/insults. Nerve agent, diisopropyl fluorophosphate (DFP), produced a neuroinflammatory response that was exacerbated by pre-treatment with levels of corticosterone simulating heightened stressor conditions. While prophylactic treatments reduced DFP-induced neuroinflammation, this effect was negated when those treatments were combined with corticosterone.


Asunto(s)
Antiinflamatorios/farmacología , Sustancias para la Guerra Química/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Corticosterona/farmacología , Encefalitis/inducido químicamente , Isoflurofato/toxicidad , Síndrome del Golfo Pérsico/patología , Animales , Antiinflamatorios/uso terapéutico , Corticosterona/antagonistas & inhibidores , DEET/toxicidad , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Repelentes de Insectos/toxicidad , Isoflurofato/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Minociclina/uso terapéutico
9.
Neuropathology ; 34(2): 109-27, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24118348

RESUMEN

Gulf War illness (GWI) is a currently untreatable multi-symptom disorder experienced by 1990-1991 Persian Gulf War (GW) veterans. The characteristic hallmarks of GWI include cognitive dysfunction, tremors, migraine, and psychological disturbances such as depression and anxiety. Meta-analyses of epidemiological studies have consistently linked these symptomatic profiles to the combined exposure of GW agents such as organophosphate-based and pyrethroid-based pesticides (e.g. chlorpyrifos (CPF) and permethrin (PER) respectively) and the prophylactic use of pyridostigmine bromide (PB) as a treatment against neurotoxins. Due to the multi-symptomatic presentation of this illness and the lack of available autopsy tissue from GWI patients, very little is currently known about the distinct early pathological profile implicated in GWI (including its influence on synaptic function and aspects of neurogenesis). In this study, we used preclinical models of GW agent exposure to investigate whether 6-month-old mice exposed to CPF alone, or a combined dose of CPF, PB and PER daily for 10 days, demonstrate any notable pathological changes in hippocampal, cortical (motor, piriform) or amygdalar morphometry. We report that at an acute post-exposure time point (after 3 days), both exposures resulted in the impairment of synaptic integrity (reducing synaptophysin levels) in the CA3 hippocampal region and altered neuronal differentiation in the dentate gyrus (DG), demonstrated by a significant reduction in doublecortin positive cells. Both exposures also significantly increased astrocytic GFAP immunoreactivity in the piriform cortex, motor cortex and the basolateral amygdala and this was accompanied by an increase in (basal) brain acetylcholine (ACh) levels. There was no evidence of microglial activation or structural deterioration of principal neurons in these regions following exposure to CPF alone or in combination with PB and PER. Evidence of subtle microvascular injury was demonstrated by the reduction of platelet endothelial cell adhesion molecule (PECAM)-1 levels in CPF+PB+PER exposed group compared to control. These data support early (subtle) neurotoxic effects on the brain following exposure to GW agents.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Sustancias para la Guerra Química/toxicidad , Guerra del Golfo , Insecticidas/toxicidad , Neuronas/efectos de los fármacos , Organofosfatos/toxicidad , Síndrome del Golfo Pérsico/patología , Sinapsis/efectos de los fármacos , Acetilcolina/metabolismo , Animales , Capilares/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL
10.
Sci Rep ; 14(1): 14981, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951546

RESUMEN

Gulf War Illness (GWI) describes a series of symptoms suffered by veterans of the Gulf war, consisting of cognitive, neurological and gastrointestinal dysfunctions. Two chemicals associated with GWI are the insecticide permethrin (PER) and the nerve gas prophylactic pyridostigmine-bromide (PB). In this study we assessed the effects of PER and PB exposure on the pathology and subsequent alcohol (EtOH)-induced liver injury, and the influence of a macrophage depletor, PLX3397, on EtOH-induced liver damage in PER/PB-treated mice. Male C57BL/6 mice were injected daily with vehicle or PER/PB for 10 days, followed by 4 months recovery, then treatment with PLX3397 and a chronic-plus-single-binge EtOH challenge for 10 days. PER/PB exposure resulted in the protracted increase in liver transaminases in the serum and induced chronic low-level microvesicular steatosis and inflammation in GWI vs Naïve mice up to 4 months after cessation of exposure. Furthermore, prior exposure to PER/PB also resulted in exacerbated response to EtOH-induced liver injury, with enhanced steatosis, ductular reaction and fibrosis. The enhanced EtOH-induced liver damage in GWI-mice was attenuated by strategies designed to deplete macrophages in the liver. Taken together, these data suggest that exposure to GWI-related chemicals may alter the liver's response to subsequent ethanol exposure.


Asunto(s)
Etanol , Ratones Endogámicos C57BL , Síndrome del Golfo Pérsico , Bromuro de Piridostigmina , Animales , Síndrome del Golfo Pérsico/inducido químicamente , Síndrome del Golfo Pérsico/patología , Masculino , Bromuro de Piridostigmina/farmacología , Ratones , Etanol/efectos adversos , Etanol/toxicidad , Permetrina/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Insecticidas/toxicidad , Insecticidas/efectos adversos , Modelos Animales de Enfermedad
11.
Lupus ; 21(2): 190-4, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22235052

RESUMEN

Gulf War syndrome (GWS) is a multi-symptom condition comprising a variety of signs and symptoms described in the literature, which not been fully resolved. The various symptoms of the condition include muscle fatigue and tiredness, malaise, myalgia, impaired cognition, ataxia, diarrhoea, bladder dysfunction, sweating disturbances, headaches, fever, arthralgia, skin rashes, and gastrointestinal and sleep disturbances. In addition, excessive chemical sensitivity and odour intolerance is reported. The aetiology of the condition is unclear, but many reviews and epidemiological analyses suggest association with pyridostigmine bromide (PB), certain vaccination regimes, a variety of possible chemical exposures, including smoke from oil-well fires or depleted uranium from shells, as well as physical and psychological stress. Recently, Shoenfeld et al. suggested that four conditions--siliconosis, macrophagic myofaciitis (MMF), GWS and post-vaccination phenomena--that share clinical and pathogenic resemblances, may be incorporated into common syndrome called 'Autoimmune (Autoinflammatory) Syndrome induced by Adjuvants' (ASIA). Symptoms and signs of the four conditions described by Shoenfeld et al. show that at least eight out of ten main symptoms are in correlation in all four conditions. Namely, myalgia, arthralgias, chronic fatigue, neurological cognitive impairment, gastrointestinal symptoms, respiratory symptoms, skin manifestations and appearance of autoantibodies. Regardless of the aetiology of GWS, be it exposure to environmental factors or chemical drugs, vaccinations or the adjuvants in them, GWS fits well with the definition of ASIA and is included as part of 'Shoenfeld's syndrome'.


Asunto(s)
Adyuvantes Inmunológicos/efectos adversos , Síndrome del Golfo Pérsico/inducido químicamente , Síndrome del Golfo Pérsico/inmunología , Síndrome del Golfo Pérsico/fisiopatología , Inhibidores de la Colinesterasa/efectos adversos , Humanos , Síndrome del Golfo Pérsico/patología , Bromuro de Piridostigmina/efectos adversos
12.
Stat Med ; 31(29): 3907-20, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22744932

RESUMEN

To properly formulate functional magnetic resonance imaging (fMRI) experiments with complex mental activity, it is advantageous to permit great flexibility in the statistical components of the design of these studies. The length of an experiment, the placement of various stimuli and the modeling approach used all affect the ability to detect mental activity. Major advances in understanding the implications of various designs of fMRI experiments have taken place over the last decade. Nevertheless, new and increasingly difficult issues relating to the modeling of hemodynamic responses and the detection of activated brain regions continue to arise because of the increasing complexity of the experiments. In this article, the D-optimality criterion is used in conjunction with a genetic algorithm to create probability-based design generators for the selection of designs in event-related fMRI experiments where the hemodynamic response function is modeled with a function that is nonlinear in the parameters. The designs produced by these generators are shown to perform well compared with locally D-optimal designs and provide insight into optimal design characteristics that investigators can utilize in the selection of interstimulus intervals. Designs with these characteristics are shown to be applicable to fMRI studies involving one or two stimulus types. The designs are also shown to be robust with respect to misspecification of an AR(1) error autocorrelation and compare favorably with a maximin procedure.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética/métodos , Dinámicas no Lineales , Algoritmos , Hemodinámica , Humanos , Síndrome del Golfo Pérsico/patología
13.
Life Sci ; 289: 120094, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34710444

RESUMEN

AIMS: To characterize exercise fatigue, metabolic phenotype and cognitive and mood deficits correlated with brain neuroinflammatory and gut microbiome changes in a chronic Gulf War Illness (GWI) mouse model. The latter have been described in an accompanying paper [1]. MAIN METHODS: Adult male C57Bl/6N mice were exposed for 28 days (5 days/week) to pyridostigmine bromide: 6.5 mg/kg, b.i.d., P.O. (GW1) or 8.7 mg/kg, q.d., P.O. (GW2); topical permethrin (1.3 mg/kg in 100% DMSO) and N,N-diethyl-meta-toluamide (DEET 33% in 70% EtOH) and restraint stress (5 min). Exercise, metabolic and behavioral endpoints were compared to sham stress control (CON/S). KEY FINDINGS: Relative to CON/S, GW2 presented persistent exercise intolerance (through post-treatment (PT) day 161), deficient associative learning/memory, and transient insulin insensitivity. In contrast to GW2, GW1 showed deficient long-term object recognition memory, milder associative learning/memory deficit, and behavioral despair. SIGNIFICANCE: Our findings demonstrate that GW chemicals dose-dependently determine the presentation of exercise fatigue and severity/type of cognitive/mood-deficient phenotypes that show persistence. Our comprehensive mouse model of GWI recapitulates the major multiple symptom domains characterizing GWI, including fatigue and cognitive impairment that can be used to more efficiently develop diagnostic tests and curative treatments for ill Gulf War veterans.


Asunto(s)
Fatiga , Glucosa/metabolismo , Discapacidades para el Aprendizaje , Síndrome del Golfo Pérsico , Bromuro de Piridostigmina/efectos adversos , Animales , Modelos Animales de Enfermedad , Fatiga/inducido químicamente , Fatiga/metabolismo , Fatiga/patología , Humanos , Discapacidades para el Aprendizaje/inducido químicamente , Discapacidades para el Aprendizaje/metabolismo , Discapacidades para el Aprendizaje/patología , Masculino , Ratones , Síndrome del Golfo Pérsico/inducido químicamente , Síndrome del Golfo Pérsico/metabolismo , Síndrome del Golfo Pérsico/patología , Bromuro de Piridostigmina/farmacología
14.
Life Sci ; 275: 119360, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33741418

RESUMEN

AIMS: Gulf War Illness (GWI) is a chronic multisymptom illness with debated etiology and pathophysiology. This systematic review catalogues studies of validated biological tests for diagnosing GWI and of associations between biological measures and GWI for their promise as biomarkers. MAIN METHODS: We searched multiple sources through February 2020 for studies of diagnostic tests of GWI and of associations between biological measures and GWI. We abstracted data on study design, demographics, and outcomes. We assessed the risk of bias of included studies. KEY FINDINGS: We did not identify any studies validating tests of biomarkers that distinguish cases of GWI from non-cases. We included the best-fitting studies, 32 completed and 24 ongoing or unpublished studies, of associations between GWI and biological measures. The less well-fitting studies (n = 77) were included in a Supplementary Table. Most studies were of the central nervous and immune systems and indicated a significant association of the biological measure with GWI case status. Biological measures were heterogeneous across studies. SIGNIFICANCE: Our review indicates that there are no existing validated biological tests to determine GWI case status. Many studies have assessed the potential association between a variety of biological measures and GWI, the majority of which pertain to the immune and central nervous systems. More importantly, while most studies indicated a significant association between biological measures and GWI case status, the biological measures across studies were extremely heterogeneous. Due to the heterogeneity, the focus of the review is to map out what has been examined, rather than synthesize information.


Asunto(s)
Síndrome del Golfo Pérsico/diagnóstico , Biomarcadores , Guerra del Golfo , Humanos , Síndrome del Golfo Pérsico/patología
15.
Life Sci ; 284: 119903, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453948

RESUMEN

AIMS: Gulf War Illness (GWI), a chronic debilitating disorder characterized by fatigue, joint pain, cognitive, gastrointestinal, respiratory, and skin problems, is currently diagnosed by self-reported symptoms. The Boston Biorepository, Recruitment, and Integrative Network (BBRAIN) is the collaborative effort of expert Gulf War Illness (GWI) researchers who are creating objective diagnostic and pathobiological markers and recommend common data elements for GWI research. MAIN METHODS: BBRAIN is recruiting 300 GWI cases and 200 GW veteran controls for the prospective study. Key data and biological samples from prior GWI studies are being merged and combined into retrospective datasets. They will be made available for data mining by the BBRAIN network and the GWI research community. Prospective questionnaire data include general health and chronic symptoms, demographics, measures of pain, fatigue, medical conditions, deployment and exposure histories. Available repository biospecimens include blood, plasma, serum, saliva, stool, urine, human induced pluripotent stem cells and cerebrospinal fluid. KEY FINDINGS: To date, multiple datasets have been merged and combined from 15 participating study sites. These data and samples have been collated and an online request form for repository requests as well as recommended common data elements have been created. Data and biospecimen sample requests are reviewed by the BBRAIN steering committee members for approval as they are received. SIGNIFICANCE: The BBRAIN repository network serves as a much needed resource for GWI researchers to utilize for identification and validation of objective diagnostic and pathobiological markers of the illness.


Asunto(s)
Síndrome del Golfo Pérsico/patología , Boston , Humanos , Difusión de la Información , Imagen por Resonancia Magnética , Síndrome del Golfo Pérsico/sangre , Tomografía de Emisión de Positrones , Saliva/metabolismo
16.
Life Sci ; 280: 119714, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34146554

RESUMEN

BACKGROUND: Altered red blood cell (RBC) deformability has been reported in Veterans with Gulf War Illness (GWI) who endorse exercise-induced symptom exacerbation and fatigue. However, it is unknown whether altered RBC deformability is worsened secondary to exercise. OBJECTIVE: To evaluate RBC deformability in response to maximal exercise in individuals with and without GWI. METHODS: Seventeen Veterans with GWI and 11 controls performed maximal exercise and provided blood samples (pre-, immediately post- and 60-min post-exercise). We calculated RBC deformation at infinite stress (EIMAX), shear stress for half-deformation (SS1/2) and their ratio (SS1/2/EIMAX) via repeated measures ANOVA with group and time as factors. RESULTS: A moderate interaction effect (p = 0.08, η2p = 0.10), large main effect for group (p = 0.02, η2p = 0.19) and moderate main effect for time (p = 0.20, η2p = 0.06) were observed for EIMAX, but only the main effect for group reached statistical significance. Changes in SS1/2 and SS1/2/EIMAX over time were similar between cases and controls as were main effects. CONCLUSIONS: Veterans with GWI had more deformable RBCs in comparison to controls that was unaffected by maximal exercise. Future studies to confirm our findings and identify associated mechanisms are warranted.


Asunto(s)
Ejercicio Físico , Hemorreología , Síndrome del Golfo Pérsico/sangre , Recuento de Células Sanguíneas , Deformación Eritrocítica , Eritrocitos/citología , Eritrocitos/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Síndrome del Golfo Pérsico/patología , Veteranos
17.
Life Sci ; 274: 119333, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33705732

RESUMEN

AIMS: Gulf War illness (GWI) is a disorder affecting military personnel deployed in the Gulf War (GW) from 1990 to 1991. Here, we will use a rat model of GWI to evaluate hippocampal function and cytokine levels. MATERIALS AND METHODS: Rats were exposed to diethyltoluamide and permethrin via dermal absorption and pyridostigmine bromide via gavage with or without a 5-min restraint for 28 days. Immediate and delayed effects of GW chemical exposure were evaluated using electrophysiology to quantitate hippocampal function, behavioral tests to assess cognitive effects and biochemical assays to measure neurotransmitter and cytokine levels. KEY FINDINGS: Behavioral data revealed a statistically significant increase in motor activity at 3 months following completion of exposures, potentially indicating increased excitability, and/or restlessness. Electrophysiology data revealed statistically significant changes in paired pulse facilitation and input-output function of CA1 hippocampal neurons within 24 h and 3 months following completion of exposures. There was also a statistically significant reduction in the frequency of spontaneous firing activity of hippocampal neurons within 24 h following exposures. Naïve hippocampal slices directly incubated in GW chemicals also resulted in similar changes in electrophysiological parameters. Biochemical measurements revealed reduced hippocampal glutamate level at 3 months post-exposure. Furthermore, there was a statistically significant increase in plasma and hippocampal levels of IL-13, as well as decrease in plasma level of IL-1ß. SIGNIFICANCE: Our data support an effect on glutamate signaling within the hippocampus as indicated by changes in PPF and hippocampal level of glutamate, with some activation of T helper type 2 immune response.


Asunto(s)
Citocinas/metabolismo , Modelos Animales de Enfermedad , Hipocampo/patología , Mediadores de Inflamación/metabolismo , Inflamación/complicaciones , Síndrome del Golfo Pérsico/patología , Animales , Conducta Animal , Hipocampo/inmunología , Hipocampo/metabolismo , Potenciación a Largo Plazo , Masculino , Síndrome del Golfo Pérsico/etiología , Ratas , Ratas Sprague-Dawley
18.
Life Sci ; 283: 119867, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34358550

RESUMEN

AIMS: A substantial contingent of veterans from the first Gulf War continues to suffer from a number of Gulf War-related illnesses (GWI) affecting the neurological and musculoskeletal systems; the most common symptoms include chronic pain and fatigue. Although animal models have recapitulated several aspects of cognitive impairments in GWI, the pain and fatigue symptoms have not been well documented to allow examination of potential pathogenic mechanisms. MAIN METHODS: We used a mouse model of GWI by exposing mice repeatedly to a combination of Gulf War chemicals (pyridostigmine bromide, permethrin, DEET, and chlorpyrifos) and mild immobilization stress, followed by investigating their pain susceptibilities and fatigue symptoms. To assess whether enhanced antioxidant capacity can counter the effects of GW agents, transgenic mice overexpressing extracellular superoxide dismutase (SOD3OE) were also examined. KEY FINDINGS: The mouse model recapitulated several aspects of the human illness, including hyperalgesia, impaired descending inhibition of pain, and increased tonic pain. There is a close association between chronic pain and fatigue in GWI patients. Consistent with this observation, the mouse model showed a significant reduction in physical endurance on the treadmill. Examination of skeletal muscles suggested reduction in mitochondrial functions may have contributed to the fatigue symptoms. Furthermore, the negative impacts of GW agents in pain susceptibilities were largely diminished in SOD3OE mice, suggesting that increased oxidative stress was associated with the emergence of these Gulf War symptoms. SIGNIFICANCE: the mouse model will be suitable for delineating specific defects in the pain pathways and mechanisms of fatigue in GWI.


Asunto(s)
Cloropirifos/efectos adversos , Dolor Crónico , DEET/efectos adversos , Fatiga , Permetrina/efectos adversos , Síndrome del Golfo Pérsico , Bromuro de Piridostigmina/efectos adversos , Animales , Cloropirifos/farmacología , Dolor Crónico/inducido químicamente , Dolor Crónico/metabolismo , Dolor Crónico/patología , DEET/farmacología , Modelos Animales de Enfermedad , Fatiga/inducido químicamente , Fatiga/metabolismo , Fatiga/patología , Humanos , Ratones , Permetrina/farmacología , Síndrome del Golfo Pérsico/inducido químicamente , Síndrome del Golfo Pérsico/metabolismo , Síndrome del Golfo Pérsico/patología , Bromuro de Piridostigmina/farmacología
19.
Life Sci ; 280: 119724, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34144059

RESUMEN

AIMS: Gulf War Illness (GWI) is manifested as multiple chronic symptoms, including chronic pain, chronic fatigue, sleep problems, neuropsychiatric disorders, respiratory, gastrointestinal, and skin problems. No single target tissue or unifying pathogenic process has been identified that accounts for this variety of symptoms. The brainstem has been suspected to contribute to this multiple symptomatology. The aim of this study was to assess the role of the brainstem in chronic sleep problems and pain in GWI veterans. MATERIALS AND METHODS: We enrolled 90 veterans (Age = 50 ± 5, 87% Male) who were deployed to the 1990-91 Gulf War and presented with GWI symptoms. Sleep quality was evaluated using the global Pittsburgh Sleep Quality Index. Pain intensities were obtained with the Brief Pain Inventory sum score. Volumes in cortical, subcortical, brainstem, and brainstem subregions and diffusion tensor metrics in 10 bilateral brainstem tracts were tested for correlations with symptom measures. KEY FINDINGS: Poorer sleep quality was significantly correlated with atrophy of the whole brainstem and brainstem subregions (including midbrain, pons, medulla). Poorer sleep quality also significantly correlated with lower fractional anisotropy in the nigrostriatal tract, medial forebrain tract, and the dorsal longitudinal fasciculus. There was a significant correlation between increased pain intensity and decreased fractional anisotropy in the dorsal longitudinal fasciculus. These correlations were not altered after controlling for age, sex, total intracranial volumes, or additional factors, e.g., depression and neurological conditions. SIGNIFICANCE: These findings suggest that the brainstem plays an important role in the aberrant neuromodulation of sleep and pain symptoms in GWI.


Asunto(s)
Tronco Encefálico/fisiopatología , Dolor/etiología , Síndrome del Golfo Pérsico/complicaciones , Síndrome del Golfo Pérsico/fisiopatología , Trastornos del Sueño-Vigilia/etiología , Tronco Encefálico/patología , Enfermedad Crónica , Femenino , Guerra del Golfo , Humanos , Masculino , Persona de Mediana Edad , Dolor/patología , Dolor/fisiopatología , Síndrome del Golfo Pérsico/patología , Sueño , Trastornos del Sueño-Vigilia/patología , Trastornos del Sueño-Vigilia/fisiopatología , Veteranos
20.
Life Sci ; 279: 119707, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34102195

RESUMEN

AIMS: The present study investigated if treatment with the immunotherapeutic, lacto-N-fucopentaose-III (LNFPIII), resulted in amelioration of acute and persisting deficits in synaptic plasticity and transmission as well as trophic factor expression along the hippocampal dorsoventral axis in a mouse model of Gulf War Illness (GWI). MAIN METHODS: Mice received either coadministered or delayed LNFPIII treatment throughout or following, respectively, exposure to a 15-day GWI induction paradigm. Subsets of animals were subsequently sacrificed 48 h, seven months, or 11 months post GWI-related (GWIR) exposure for hippocampal qPCR or in vitro electrophysiology experiments. KEY FINDINGS: Progressively worsened impairments in hippocampal synaptic plasticity, as well as a biphasic effect on hippocampal synaptic transmission, were detected in GWIR-exposed animals. Dorsoventral-specific impairments in hippocampal synaptic responses became more pronounced over time, particularly in the dorsal hippocampus. Notably, delayed LNFPIII treatment ameliorated GWI-related aberrations in hippocampal synaptic plasticity and transmission seven and 11 months post-exposure, an effect that was consistent with enhanced hippocampal trophic factor expression and absence of increased interleukin 6 (IL-6) in animals treated with LNFPIII. SIGNIFICANCE: Approximately a third of Gulf War Veterans have GWI; however, GWI therapeutics are presently limited to targeted and symptomatic treatments. As increasing evidence underscores the substantial role of persisting neuroimmune dysfunction in GWI, efficacious neuroactive immunotherapeutics hold substantial promise in yielding GWI remission. The findings in the present report indicate that LNFPIII may be an efficacious candidate for ameliorating persisting neurological abnormalities presented in GWI.


Asunto(s)
Amino Azúcares/farmacología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Síndrome del Golfo Pérsico/prevención & control , Polisacáridos/farmacología , Transmisión Sináptica/efectos de los fármacos , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Síndrome del Golfo Pérsico/etiología , Síndrome del Golfo Pérsico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA