Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 300(1): 105573, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38122901

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) oxidatively depolymerize recalcitrant polysaccharides, which is important for biomass conversion. The catalytic domains of many LPMOs are linked to carbohydrate-binding modules (CBMs) through flexible linkers, but the function of these CBMs in LPMO catalysis is not well understood. In this study, we utilized MtLPMO9L and MtLPMO9G derived from Myceliophthora thermophila to investigate the impact of CBMs on LPMO activity, with particular emphasis on their influence on H2O2 tolerance. Using truncated forms of MtLPMO9G generated by removing the CBM, we found reduced substrate binding affinity and enzymatic activity. Conversely, when the CBM was fused to the C terminus of the single-domain MtLPMO9L to create MtLPMO9L-CBM, we observed a substantial improvement in substrate binding affinity, enzymatic activity, and notably, H2O2 tolerance. Furthermore, molecular dynamics simulations confirmed that the CBM fusion enhances the proximity of the active site to the substrate, thereby promoting multilocal cleavage and impacting the exposure of the copper active site to H2O2. Importantly, the fusion of CBM resulted in more efficient consumption of H2O2 by LPMO, leading to improved enzymatic activity and reduced auto-oxidative damage of the copper active center.


Asunto(s)
Dominio Catalítico , Peróxido de Hidrógeno , Oxigenasas de Función Mixta , Polisacáridos , Sordariales , Cobre/metabolismo , Peróxido de Hidrógeno/efectos adversos , Peróxido de Hidrógeno/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Sordariales/enzimología , Sordariales/metabolismo , Simulación de Dinámica Molecular
2.
Biotechnol Bioeng ; 121(7): 2067-2078, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38678481

RESUMEN

Glycoside hydrolase (GH) 30 family xylanases are enzymes of biotechnological interest due to their capacity to degrade recalcitrant hemicelluloses, such as glucuronoxylan (GX). This study focuses on a subfamily 7 GH30, TtXyn30A from Thermothelomyces thermophilus, which acts on GX in an "endo" and "exo" mode, releasing methyl-glucuronic acid branched xylooligosaccharides (XOs) and xylobiose, respectively. The crystal structure of inactive TtXyn30A in complex with 23-(4-O-methyl-α-D-glucuronosyl)-xylotriose (UXX), along with biochemical analyses, corroborate the implication of E233, previously identified as alternative catalytic residue, in the hydrolysis of decorated xylan. At the -1 subsite, the xylose adopts a distorted conformation, indicative of the Michaelis complex of TtXyn30AEE with UXX trapped in the semi-functional active site. The most significant structural rearrangements upon substrate binding are observed at residues W127 and E233. The structures with neutral XOs, representing the "exo" function, clearly show the nonspecific binding at aglycon subsites, contrary to glycon sites, where the xylose molecules are accommodated via multiple interactions. Last, an unproductive ligand binding site is found at the interface between the catalytic and the secondary ß-domain which is present in all GH30 enzymes. These findings improve current understanding of the mechanism of bifunctional GH30s, with potential applications in the field of enzyme engineering.


Asunto(s)
Xilanos , Xilanos/metabolismo , Xilanos/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Sordariales/enzimología , Sordariales/genética , Dominio Catalítico , Eurotiales/enzimología , Especificidad por Sustrato , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/genética
3.
Arch Microbiol ; 206(5): 236, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676717

RESUMEN

Lignocellulolytic enzymes from a novel Myceliophthora verrucosa (5DR) strain was found to potentiate the efficacy of benchmark cellulase during saccharification of acid/alkali treated bagasse by ~ 2.24 fold, indicating it to be an important source of auxiliary enzymes. The De-novo sequencing and analysis of M. verrucosa genome (31.7 Mb) revealed to encode for 7989 putative genes, representing a wide array of CAZymes (366) with a high proportions of auxiliary activity (AA) genes (76). The LC/MS QTOF based secretome analysis of M. verrucosa showed high abundance of glycosyl hydrolases and AA proteins with cellobiose dehydrogenase (CDH) (AA8), being the most prominent auxiliary protein. A gene coding for lytic polysaccharide monooxygenase (LPMO) was expressed in Pichia pastoris and CDH produced by M. verrucosa culture on rice straw based solidified medium were purified and characterized. The mass spectrometry of LPMO catalyzed hydrolytic products of avicel showed the release of both C1/C4 oxidized products, indicating it to be type-3. The lignocellulolytic cocktail comprising of in-house cellulase produced by Aspergillus allahabadii strain spiked with LPMO & CDH exhibited enhanced and better hydrolysis of mild alkali deacetylated (MAD) and unwashed acid pretreated rice straw slurry (UWAP), when compared to Cellic CTec3 at high substrate loading rate.


Asunto(s)
Biomasa , Proteínas Fúngicas , Genoma Fúngico , Lignina , Saccharomycetales , Sordariales , Lignina/metabolismo , Sordariales/genética , Sordariales/enzimología , Sordariales/metabolismo , Hidrólisis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , Deshidrogenasas de Carbohidratos/genética , Celulosa/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Celulasa/metabolismo , Celulasa/genética
4.
Microb Cell Fact ; 23(1): 138, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750569

RESUMEN

BACKGROUND: Genome-scale metabolic models (GEMs) serve as effective tools for understanding cellular phenotypes and predicting engineering targets in the development of industrial strain. Enzyme-constrained genome-scale metabolic models (ecGEMs) have emerged as a valuable advancement, providing more accurate predictions and unveiling new engineering targets compared to models lacking enzyme constraints. In 2022, a stoichiometric GEM, iDL1450, was reconstructed for the industrially significant fungus Myceliophthora thermophila. To enhance the GEM's performance, an ecGEM was developed for M. thermophila in this study. RESULTS: Initially, the model iDL1450 underwent refinement and updates, resulting in a new version named iYW1475. These updates included adjustments to biomass components, correction of gene-protein-reaction (GPR) rules, and a consensus on metabolites. Subsequently, the first ecGEM for M. thermophila was constructed using machine learning-based kcat data predicted by TurNuP within the ECMpy framework. During the construction, three versions of ecGEMs were developed based on three distinct kcat collection methods, namely AutoPACMEN, DLKcat and TurNuP. After comparison, the ecGEM constructed using TurNuP-predicted kcat values performed better in several aspects and was selected as the definitive version of ecGEM for M. thermophila (ecMTM). Comparing ecMTM to iYW1475, the solution space was reduced and the growth simulation results more closely resembled realistic cellular phenotypes. Metabolic adjustment simulated by ecMTM revealed a trade-off between biomass yield and enzyme usage efficiency at varying glucose uptake rates. Notably, hierarchical utilization of five carbon sources derived from plant biomass hydrolysis was accurately captured and explained by ecMTM. Furthermore, based on enzyme cost considerations, ecMTM successfully predicted reported targets for metabolic engineering modification and introduced some new potential targets for chemicals produced in M. thermophila. CONCLUSIONS: In this study, the incorporation of enzyme constraint to iYW1475 not only improved prediction accuracy but also broadened the model's applicability. This research demonstrates the effectiveness of integrating of machine learning-based kcat data in the construction of ecGEMs especially in situations where there is limited measured enzyme kinetic parameters for a specific organism.


Asunto(s)
Aprendizaje Automático , Redes y Vías Metabólicas , Sordariales , Sordariales/metabolismo , Sordariales/enzimología , Sordariales/genética , Ingeniería Metabólica/métodos , Biomasa , Modelos Biológicos , Cinética , Genoma Fúngico
5.
Bioresour Technol ; 402: 130763, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692377

RESUMEN

The fungus Thermothelomyces thermophilus is a thermotolerant microorganism that has been explored as a reservoir for enzymes (hydrolytic enzymes and oxidoreductases). The functional analysis of a recombinant cellobiose dehydrogenase (MtCDHB) from T. thermophilus demonstrated a thermophilic behavior, an optimal pH in alkaline conditions for inter-domain electron transfer, and catalytic activity on cellooligosaccharides with different degree of polymerization. Its applicability was evaluated to the sustainable production of cellobionic acid (CBA), a potential pharmaceutical and cosmetic ingredient rarely commercialized. Dissolving pulp was used as a disaccharide source for MtCDHB. Initially, recombinant exoglucanases (MtCBHI and MtCBHII) from T. thermophilus hydrolyzed the dissolving pulp, resulting in 87% cellobiose yield, which was subsequently converted into CBA by MtCDHB, achieving a 66% CBA yield after 24 h. These findings highlight the potential of MtCDHB as a novel approach to obtaining CBA through the bioconversion of a plant-based source.


Asunto(s)
Deshidrogenasas de Carbohidratos , Proteínas Recombinantes , Deshidrogenasas de Carbohidratos/metabolismo , Proteínas Recombinantes/metabolismo , Concentración de Iones de Hidrógeno , Disacáridos/biosíntesis , Disacáridos/metabolismo , Temperatura , Celobiosa/metabolismo , Sordariales/enzimología , Hidrólisis , Eurotiales/enzimología
6.
Carbohydr Polym ; 342: 122387, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048228

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes which are categorized in the CAZy database under auxiliary activities families AA9-11, 13, 14-17. Secreted by various microorganisms, they play a crucial role in carbon recycling, particularly in fungal saprotrophs. LPMOs oxidize polysaccharides through monooxygenase/peroxygenase activities and exhibit peroxidase and oxidase activities, with variations among different families. AA16, a newly identified LPMO family, is noteworthy due to limited studies on its members, thus rendering the characterization of AA16 enzymes vital for addressing controversies around their functions. This study focused on heterologous expression and biochemical study of an AA16 LPMO from Thermothelomyces thermophilus (formerly known as Myceliophthora thermophila), namely MtLPMO16A. Substrate specificity evaluation of MtLPMO16A showed oxidative cleavage of hemicellulosic substrates and no activity on cellulose, accompanied by a strong oxidase activity. A comparative analysis with an LPMO from AA9 family explored correlations between these families, while MtLPMO16A was shown to boost the activity of some AA9 family LPMOs. The results offer new insights into the AA16 family's action mode and microbial hemicellulose decomposition mechanisms in nature.


Asunto(s)
Oxigenasas de Función Mixta , Polisacáridos , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Polisacáridos/química , Polisacáridos/metabolismo , Especificidad por Sustrato , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Sordariales/enzimología
7.
Electron. j. biotechnol ; 41: 60-71, sept. 2019. graf, tab, ilus
Artículo en Inglés | LILACS | ID: biblio-1087169

RESUMEN

Background: The aim of this work was to purify and characterize exo-ß-1,3-glucanase, namely, TtBgnA, from the thermophilic fungus Thielavia terrestris Co3Bag1 and to identify the purified enzyme. Results: The thermophilic biomass-degrading fungus T. terrestris Co3Bag1 displayed ß-1,3-glucanase activity when grown on 1% glucose. An exo-ß-1,3-glucanase, with an estimated molecular mass of 129 kDa, named TtBgnA, was purified from culture filtrates from T. terrestris Co3Bag1. The enzyme exhibited optimum activity at pH 6.0 and 70°C and half-lives (t1/2) of 54 and 37 min at 50 and 60°C, respectively. Substrate specificity analysis showed that laminarin was the best substrate studied for TtBgnA. When laminarin was used as the substrate, the apparent KM and Vmax values were determined to be 2.2 mg mL-1 and 10.8 U/mg, respectively. Analysis of hydrolysis products by thin-layer chromatography (TLC) revealed that TtBgnA displays an exo mode of action. Additionally, the enzyme was partially sequenced by tandem mass spectrometry (MS/MS), and the results suggested that TtBgnA from T. terrestris Co3Bag1 could be classified as a member of the GH-31 family. Conclusions: This report thus describes the purification and characterization of TtBgnA, a novel exo-ß-1,3-glucanase of the GH-31 family from the thermophilic fungus T. terrestris Co3Bag1. Based on the biochemical properties displayed by TtBgnA, the enzyme could be considered as a candidate for potential biotechnological applications.


Asunto(s)
Sordariales/enzimología , Glucano 1,3-beta-Glucosidasa/química , Temperatura , Estabilidad de Enzimas , Celulasas , Glucano 1,3-beta-Glucosidasa/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas en Tándem , Pruebas de Enzimas , Concentración de Iones de Hidrógeno
8.
Braz. j. microbiol ; 45(1): 279-286, 2014. graf, tab
Artículo en Inglés | LILACS | ID: lil-709463

RESUMEN

Cellulase production was evaluated in two reference strains (T. reesei Rut-C30 and T. reesei QM9414), two strains isolated from a sugarcane cultivation area (Trichoderma sp. IPT778 and T. harzianum rifai IPT821) and one strain isolated in a program for biodiversity preservation in São Paulo state (Myceliophthora thermophila M77). Solid state cultures were performed using sugarcane bagasse (C), wheat bran (W) and/or soybean bran (S). The highest FPA was 10.6 U/gdm for M77 in SC (10:90) at 80% moisture, which was 4.4 times higher than production in pure W. C was a strong inducer of cellulase production, given that the production level of 6.1 U/gdm in WC (40:60) was 2.5 times higher than in pure W for strain M77; T. reesei Rut-C30 did not respond as strongly with about 1.6-fold surplus production. S advantageously replaced W, as the surplus production on SC (20:80) was 2.3 times relative to WC (20:80) for M77.


Asunto(s)
Biotecnología/métodos , Celulasa/metabolismo , Medios de Cultivo/química , Hongos/enzimología , Hongos/crecimiento & desarrollo , Fibras de la Dieta/metabolismo , Saccharum/metabolismo , Sordariales/enzimología , Sordariales/crecimiento & desarrollo , Glycine max/metabolismo , Trichoderma/enzimología , Trichoderma/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA