Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 510
Filtrar
Más filtros

Intervalo de año de publicación
1.
Environ Res ; 247: 118192, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38224939

RESUMEN

In this investigation, synthesis of a surface-functionalized chitosan known as amino-rich chitosan (ARCH) was achieved by successful modification of chitosan by polyethyleneimine (PEI). The synthesized ARCH was characterized by a specific surface area of 8.35 m2 g-1 and a microporous structure, with pore sizes predominantly under 25 nm. The Zeta potential of ARCH maintained a strong positive charge across a wide pH range of 3-11. These characteristics contribute to its high adsorption efficiency in aqueous solutions, demonstrated by its application in removing various anionic dyes, including erioglaucine disodium salt (EDS), methyl orange (MO), amaranth (ART), tartrazine (TTZ), and hexavalent chromium ions (Cr(VI)). The adsorption capacities (Qe) for these contaminants were measured at 1301.15 mg g-1 for EDS, 1025.45 mg g-1 for MO, 940.72 mg g-1 for ART, 732.96 mg g-1 for TTZ, and 350.15 mg g-1 for Cr(VI). A significant observation was the rapid attainment of adsorption equilibrium, occurring within 10 min for ARCH. The adsorption behavior was well-described by the Pseudo-second-order and Langmuir models. Thermodynamic studies indicated that the adsorption process is spontaneous and endothermic in nature. Additionally, an increase in temperature was found to enhance the adsorption capacity of ARCH. The material demonstrated robust stability and selective adsorption capabilities in varied conditions, including different organic compounds, pH environments, sodium salt presence, and in the face of interfering ions. After five cycles of adsorption, ARCH maintained about 60% of its initial adsorption capacity. Due to its efficient adsorption performance, simple synthesis process, low biological toxicity, and cost-effectiveness, ARCH is a promising candidate for future water treatment technologies.


Asunto(s)
Compuestos Azo , Quitosano , Contaminantes Químicos del Agua , Purificación del Agua , Quitosano/química , Polietileneimina/química , Colorantes , Aniones , Cromo/análisis , Colorante de Amaranto , Tartrazina , Adsorción , Cinética , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
2.
Environ Res ; 247: 118279, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246301

RESUMEN

The presence of hazardous dyes in wastewater poses significant threats to both ecosystems and the natural environment. Conventional methods for treating dye-contaminated water have several limitations, including high costs and complex operational processes. This study investigated a sustainable bio-sorbent composite derived from the Capparis decidua plant and eggshells, and evaluated its effectiveness in removing anionic dyes namely tartrazine (E-102), methyl orange (MO), and their mixed system. The research examines the influence of initial concentration, contact time, pH, adsorbent dosage, and temperature on the adsorption properties of anionic dyes. Optimal removal of tartrazine (E-102), methyl orange (MO), and their mixed system was achieved at a pH of 3. The equilibrium was achieved at 80 min for MO and mixed systems, and 100 min for E-102. The adsorption process showed an exothermic nature, indicating reduced capacity with increasing temperature, consistent with heat release during adsorption. Positive entropy values indicated increased disorder at the solid-liquid interface, attributed to molecular rearrangements and interactions between dye molecules and the adsorbent. Isotherm analysis using Langmuir, Freundlich, Temkin, and Redlich-Peterson models revealed that the Langmuir model best fit the experimental data. The maximum adsorption capacities of 50.97 mg/g, 52.24 mg/g, and 56.23 mg/g were achieved for E-102, MO, and the mixed system under optimized conditions, respectively. The pseudo-second-order kinetic model demonstrated the best fit, indicating that adsorption occurs through physical and chemical interactions such as electrostatic attraction, pore filling, and hydrogen bonding. Hence, the developed bio-sorbent could be a sustainable and cost-effective solution for the treatment of anionic dyes from industrial effluents.


Asunto(s)
Compuestos Azo , Capparis , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Femenino , Colorantes/química , Tartrazina , Cáscara de Huevo/química , Ecosistema , Purificación del Agua/métodos , Indicadores y Reactivos , Decidua/química , Adsorción , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis
3.
Endocr Res ; 49(2): 106-116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597376

RESUMEN

BACKGROUND: Phytoestrogens have been praised for their beneficial health effects, whereas synthetic xenoestrogens have been connected to ailments. AIMS: To ascertain whether the toxicities of natural and synthetic estrogens differ, we examined the potent phytoestrogen 8-prenylnaringenin (8-PN), the common synthetic xenoestrogen tartrazine, and the physiological estrogen 17ß-estradiol (E2). METHODS: These three compounds were tested for cytotoxicity, cell proliferation and genotoxicity in human HepG2 and rat H4IIE hepatoma cells. RESULTS: All three estrogens elicited cytotoxicity at high concentrations in both cell lines. They also inhibited cell proliferation, with E2 being the most effective. They all tended to increase micronuclei formation. CONCLUSION: Natural estrogens were no less toxic than a synthetic one.


Asunto(s)
Proliferación Celular , Estradiol , Flavanonas , Tartrazina , Humanos , Animales , Ratas , Estradiol/farmacología , Flavanonas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Tartrazina/farmacología , Carcinoma Hepatocelular , Neoplasias Hepáticas/inducido químicamente , Células Hep G2 , Estrógenos/farmacología , Congéneres del Estradiol/farmacología , Fitoestrógenos/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38613456

RESUMEN

In the current work, a rapid, selective, and sensitive technique was developed for the detection of Alizarin Red S (ARS) by applying poly leucine modified carbon paste electrode (PLMCPE). Electrochemical impedance spectroscopy (EIS) and Scanning electron microscopy (SEM) were utilized to study the surface morphology of unmodified carbon paste electrode (UMCPE) and PLMCPE. The active surface area for UMCPE and PLMCPE was found to be 0.0012 cm2 and 0.0026 cm2 respectively. The electrochemical response of ARS at UMCPE and PLMCPE was analyzed using cyclic voltammetry (CV) in the potential window of 0.4 to 1.0 V. The cyclic voltammogram obtained for varying the pH of 0.2 M phosphate buffer (PB) solution showed maximum current for the oxidation of ARS at pH 6.5. The electrochemical reaction of ARS was found to be irreversible and adsorption controlled. The effect of variation of concentration of ARS on the oxidation peak current was evaluated using CV and linear scan voltammetry (LSV). A linear relationship between the concentration variation and current was obtained in the linear range of 1.5 µM-3.5 µM and 0.2 µM-5.0 µM for CV and LSV respectively. The limit of detection (LOD) of 0.68 µM for the CV method and 0.29 µM for the LSV method was exhibited by the developed sensor. The simultaneous study of ARS along with tartrazine (TZ) showed good selectivity for ARS. The interferents of foreign molecules showed no effect on the selectivity of the electrode. The applicability of PLMCPE on real samples gave good recovery ranging from 97.46-101.2%; hence, the sensor can be utilized on real samples. The developed sensor has good stability and sensitivity.


Asunto(s)
Antraquinonas , Carbono , Tartrazina , Carbono/química , Leucina , Electrodos , Técnicas Electroquímicas/métodos
5.
Environ Monit Assess ; 196(5): 431, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38580863

RESUMEN

Effluent containing tartrazine can affect the environment and human health significantly prompting the current study into degradation using a sonochemical reactor operated individually and combined with advanced oxidation processes. The optimum conditions for ultrasound treatment were established as dye concentration of 10 ppm, pH of 3, temperature as 35 °C, and power as 90 W. The combination approach of H2O2/UV, H2O2/US, and H2O2/UV/US resulted in higher degradation of 25.44%, 57.4%, and 74.36% respectively. Use of ZnO/UV/US approach increased the degradation significantly to 85.31% whereas maximum degradation as 93.11% was obtained for the US/UV/Fenton combination. COD reduction was found maximum as 83.78% for the US/UV/Fenton combination. The kinetic analysis showed that tartrazine dye degradation follows pseudo first-order kinetics for all the studied processes. Combination of Fenton with UV and US was elucidated as the best approach for degradation of tartrazine.


Asunto(s)
Oxidantes , Tartrazina , Humanos , Peróxido de Hidrógeno , Cinética , Hierro , Monitoreo del Ambiente , Rayos Ultravioleta , Oxidación-Reducción
6.
Neurochem Res ; 48(1): 131-141, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36018437

RESUMEN

Tartrazine (E-102) is one of the most widely used artificial food azo-colors that can be metabolized to highly sensitizing aromatic amines such as sulphanilic acid. These metabolites are oxidized to N-hydroxy derivatives that cause neurotoxicity. Melatonin is a neurohormone. That possesses a free-radical scavenging effect. The present work was mainly designed to evaluate the possible ameliorative role of melatonin against tartrazine induced neurotoxicity in cerebral cortex and cerebellum of male rats. Adult male rats were administered orally with tartrazine (7.5 mg/kg) with or without melatonin (10 mg/kg) daily for four weeks. The data revealed that tartrazine induced redox disruptions as measured by significant (p < 0.05) increased malondialdehyde (MDA) level and inhibition of (GSH) concentration and catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) antioxidant enzyme activities. Besides, brain acetyl cholin (Ach) and gamma-aminobutyric acid (GABA) were elevated while, dopamine (DA) was depleted in trtrazine -treated rats. Moreover, tartrazine caused a significant (p < 0.05) increase in the brain interleukin-6 (IL-6), interleukin-1ß (IL-1 ß) and tumor necrosis factor-α (TNFα). At the tissue level, tartrazine caused severe histopathological changes in the cerebellum and cerebral cortex of rats. The immunohistochemical results elucidated strong positive expression for Caspase-3 and GFAP and weak immune reaction for BcL2 and synaptophysin in tatrazine- treated rats. The administration of melatonin to tartrazine -administered rats remarkably alleviated all the aforementioned tartrzine-induced effects. It could be concluded that, melatonin has a potent ameliorative effect against tartrazine induced neurotoxicity via the attenuation of oxidative/antioxidative responses.


Asunto(s)
Melatonina , Tartrazina , Ratas , Masculino , Animales , Tartrazina/toxicidad , Melatonina/farmacología , Ratas Wistar , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Malondialdehído/metabolismo , Glutatión Peroxidasa/metabolismo
7.
Analyst ; 148(22): 5597-5604, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37846523

RESUMEN

A simple, green and low-cost method was developed for the synthesis of highly fluorescent N,S-doped carbon dots (N,S-CDs) via the hydrothermal treatment of Gandha Prasarini (GP) leaves as a natural source of carbon, nitrogen and sulfur. The as-prepared N,S-CDs exhibited excitation-dependent green fluorescence emission (λex = 450 nm, λem = 525 nm) with excellent stability, and were used as a fluorescent probe for the selective detection of tartrazine with a limit of detection of 0.18 µM. The fluorescence quenching of N,S-CDs was due to the inner filter effect. The developed method has been employed for the determination of tartrazine in honey and soft drinks with satisfactory recovery ranging from 92 to 110.2%. In addition, the antibacterial activity of the N,S-CDs was explored against both Gram-negative bacteria, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), and Gram-positive bacteria, Staphylococcus aureus (S. aureus). The antibacterial mechanism of the N,S-CDs was investigated. The results indicated that the antibacterial activity was due to the membrane damage of the bacteria by the N,S-CDs. Besides, the N,S-CDs showed negligible lytic effects on human erythrocytes. These findings will inspire further exploitation of CD-based nano-bactericides in biomedical applications.


Asunto(s)
Puntos Cuánticos , Tartrazina , Humanos , Puntos Cuánticos/toxicidad , Escherichia coli , Staphylococcus aureus , Carbono , Nitrógeno , Colorantes Fluorescentes
8.
Cell Biochem Funct ; 41(8): 1462-1476, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010705

RESUMEN

Tartrazine is a yellow colouring agent that is commonly used in foods; however, high dosages of Tartrazine affect fertility and create oxidative stress by generating free radicals. A plant species known as Stevia rebaudiana has natural antioxidants that show promise for protecting testicular tissue. Consequently, this study was intended to examine the ameliorative effect of the aqueous extract of S. rebaudiana (Stevia) on the fertility of male Wistar rats induced by the daily oral intake of Tartrazine. Utilizing gas chromatography-mass spectrometry, phytochemical identification was accomplished for Stevia extract. Study groups were separated into several groups: the first group (the control) got distilled water for up to 56 days; the Stevia group (1000 mg/kg), the Tartrazine group (300 mg/kg) and the Stevia and Tartrazine group (the group was given Tartrazine after 1 h of Stevia extract intake). Also, the oxidative damage in testicular tissues was assessed by measuring the levels of malondialdehyde (MDA) and antioxidants (catalase [CAT], superoxide dismutase [SOD] and glutathione reductase [GSH]). Further, histological alterations were examined. In addition, cyclic AMP-responsive element modulator (Crem) gene expression levels and their relative proteins were measured in the testicular tissues using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assays, respectively. Sperm analysis and testosterone concentration were also performed. SPSS version 25 was used for the analysis of results while (p < .05) was regarded as significant. Compared with the control group, the results demonstrated that Tartrazine caused a significant reduction (p < .05) in the testosterone hormone level (0.70 ± 0.21) and the Crem protein quantity (1.21 ± 0.23) in the treated Tartrazine group. Also, it had a significant decrease (p < .05) in sperm motility, viability, count and antioxidant levels. Moreover, there was a significant increase (p < .05) in sperm abnormalities, MDA level (7.40 ± 1.10), kidney and liver function parameters, and DNA degradation in the treated Tartrazine group compared with the control group. On the contrary, the Stevia extract intake enhanced the testosterone (2.50 ± 0.60), antioxidants and Crem protein levels (2.33 ± 0.10) with an improvement in sperm quality in the Stevia and Tartrazine-treated group compared with the Tartrazine group. Stevia also caused a significant decrease (p < .05) in the MDA level (3.20 ± 0.20), and sperm abnormalities with an enhancement of the liver and kidney function parameters in the Stevia and Tartrazine-treated group compared to the Tartrazine group. Stevia administration has a protective effect on the testicular tissues and sperm quality against toxicity induced by Tartrazine exposure, so it will be a good antioxidant drug to be administered daily before daily administration of Tartrazine.


Asunto(s)
Antioxidantes , Stevia , Masculino , Ratas , Animales , Ratas Wistar , Antioxidantes/farmacología , Antioxidantes/metabolismo , Stevia/química , Stevia/metabolismo , Tartrazina/toxicidad , Tartrazina/metabolismo , Motilidad Espermática , Semillas/metabolismo , Estrés Oxidativo , Testosterona/farmacología , Superóxido Dismutasa/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Agua/metabolismo , Agua/farmacología , Testículo
9.
J Water Health ; 21(8): 1017-1031, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37632378

RESUMEN

Orange peel powder was activated using different methods and was used to remove tartrazine (E102) from an aqueous solution. The following three adsorbents were synthethized: orange peel powder activated thermally (POAT), orange peel powder activated with sulfuric acid (POAA), orange peel powder activated with soda (POAS). These adsorbents were then characterized by Fourier Transform Infra-Red Spectrometry (FTIR), Raman spectroscopy, powder X-Ray Diffraction (XRD), and point-of-zero charge. The experimental parameters such as contact time, dose of adsorbent, initial concentration of tartrazine, pH, and temperature were studied. The adsorption capacities of tartrazine for the optimal POAT, POAA, and POAS were found to be 121.74, 122.25, and 116.35 mg/g, respectively. The experimental data were analyzed by Freundlich and Temkin isotherm models, as well as the pseudo-second-order kinetic model.


Asunto(s)
Citrus sinensis , Tartrazina , Adsorción , Polvos , Cinética
10.
Mikrochim Acta ; 190(8): 290, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37442817

RESUMEN

A cationic perylene probe was designed and synthesized for sensitive determination of tartrazine. In the presence of tartrazine, the fluorescence of the perylene probe was quenched by efficient supramolecular self-assembly of the perylene derivate. The quenching is caused by the synergistic effect of noncovalent interactions including static electricity, π-π stacking, and hydrophobic interaction. Benefiting from these advantages, the probe exhibited excellent sensing performance to tartrazine within 2 min. The detection and quantification limit of tartrazine are as low as 2.42 and 8.07 nmol L-1, respectively, with a wide linear operation range from 15 to 500 nmol L-1. Most importantly, due to the high binding affinity (3.22 × 107 mol L-1) between the perylene probe and tartrazine, the sensing system shows great anti-interference capacity. Subsequently, the visualization application of the approach was evaluated by portable device, and the limits of detection for visual detection for test strip, membrane, and hydrogel were 0.5, 0.5, and 5 µmol L-1, respectively. The approach has been applied to monitor tartrazine in various food condiments with recoveries in the range 91.29-108.83%. As far as we know, this is the first report of using perylene-based probe for tartrazine determination, offering a promising strategy for the construction of perylene-based detection system in the field of food safety.


Asunto(s)
Perileno , Tartrazina , Colorantes Fluorescentes/química , Perileno/química , Imidas/química
11.
AAPS PharmSciTech ; 24(4): 93, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37002451

RESUMEN

The focus of the current work is to study and demonstrate the impact of the design, the scale, and settings of fluid-bed coating equipment on the differences in pellet coating thickness, which in case of prolonged-release pellets dictates the drug release. In the first set of coating experiments, the pellet cores were coated with the Tartrazine dye with the aim of estimating the coating equipment performance in terms of coating thickness distribution, assessed through color hue. In the second set, drug-layered pellets were film-coated with prolonged-release coating and dissolution profile tests were performed to estimate the thickness and uniformity of the coating thickness among differently sized pellets. In both study parts, film coating was performed at the laboratory and the pilot scale and essentially two types of distribution plate and different height adjustments of the draft tube were compared. The dye coating study proved to be extremely useful, as the results enable process correction and the optimal use of the process equipment in combination with the appropriate process parameters. Preferential film coating of larger drug-containing pellets was confirmed on the laboratory scale, while on the pilot scale, it was possible to achieve preferential coating of smaller pellets using rational alternatives of settings, which is desirable in terms of particle size-independent drug release profile of such prolonged-release dosage forms.


Asunto(s)
Preparaciones de Acción Retardada , Tamaño de la Partícula , Tartrazina , Implantes de Medicamentos , Liberación de Fármacos , Excipientes
12.
Analyst ; 147(3): 436-442, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35048914

RESUMEN

Tartrazine, as a synthetic food colorant, is harmful to health upon excessive intake. In this study, we developed a simple, sensitive and ultrafast method to detect tartrazine effectively. Specifically, we successfully used ascorbic acid-functionalized anti-aggregated Au nanoparticles (AuNPs) as enhanced substrates to detect tartrazine in drinks using metal enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS) piecewise linearly. The fluorescence intensity and Raman signals of the tartrazine solution enhanced after the addition of AuNPs. There was a good linear correlation between the fluorescence intensity and the concentration of tartrazine from 2.0 µM to 40.0 µM, and the limit of detection (LoD) was 15.4 nM. In addition, the Raman intensity also increased linearly with an increase in the concentration of tartrazine in a wide range (1.0 × 10-5 µM to 1.0 × 10-1 µM) and a lower LoD (0.8 pM) was achieved compared with the results from the fluorescence technique. Both fluorescence and SERS can immediately detect tartrazine in drinks after the substrate was mixed with analytes. Hence, the as-prepared anti-aggregated AuNPs as substrate material achieved a highly sensitive, selective and ultrafast detection of tartrazine via fluorescence and Raman techniques in a wide detection range, providing a novel strategy for the detection of food additives.


Asunto(s)
Nanopartículas del Metal , Tartrazina , Ácido Ascórbico , Oro , Límite de Detección , Espectrometría Raman
13.
Environ Res ; 204(Pt A): 111965, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34453900

RESUMEN

In the present work, the surface of montmorillonite K10 was successfully modified by hexadecylamine surfactant (Mt-HDA) and its intercalation and characteristics were assessed by XRD, FTIR, SEM, EDX and BET methods. Also, its adsorption performance was systematically examined in the removal of Tartrazine (TZ), as a sulfonated azo dye model, from aqueous phase. Our results showed that the HDA modification remarkably improved the adsorption ability of montmorillonite toward TZ molecules. The highest adsorption efficiency was achieved >98% at the pH range of 4-6 within a fast process (less than 30 min). The maximum adsorption capacity Mt-HDA toward TZ molecules was found to be ~59 mg/g at 45 °C. The kinetic study indicated that the adsorption kinetic follows pseudo-second-order model, which shows the chemisorption process between Mt-HDA and TZ molecules. Besides, the adsorption isotherm showed the monolayer coverage of Mt-HDA surface adsorption sites, which was fitted with the Langmuir isotherm model in an exothermic process. The adsorption mechanism was studied.


Asunto(s)
Bentonita , Contaminantes Químicos del Agua , Adsorción , Aminas , Hidrocarburos , Concentración de Iones de Hidrógeno , Cinética , Tartrazina , Contaminantes Químicos del Agua/análisis
14.
Environ Res ; 213: 113722, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35728638

RESUMEN

Employing dyes in different industrial sectors has produced a serious threat to the environment and living organisms of water bodies and land. For the decontamination of such toxic dyes, efforts have been made to develop an efficient, feasible, and low maintenance processes. In this context, chitosan-zinc selenide (CS-ZnSe) nanoparticles were prepared through chemical reduction method as the efficient photocatalysts for the decontamination of toxic dyes through photocatalysis. Photocatalyst's synthesis was confirmed with the help of FTIR spectroscopy. XRD indicated the hexagonal crystal structure of the CS-ZnSe with a crystallite size of 12 nm. SEM micrographs showed the average nano photocatalyst size as 25 nm. EDX analysis was employed to determine the elemental composition of the CS-ZnSe. An excellent photocatalytic degradation efficiency for tartrazine and sunset yellow dyes was obtained using CS-ZnSe. The results showed a 98% and 97% degradation efficiency for tartrazine dye and sunset yellow (SY) dye at optimized conditions of time (3 h), pH (5), dye concentration (30 ppm), catalyst dosage (0.09 g and 0.01 g) , and at a temperature of 35 °C. Findings of the photocatalytic degradation process fitted well with first-order kinetics for both the dyes. Rate constant, 'K' value was found to be 0.001362 min-1 and 0.001257 min-1 for tartrazine and SY dyes, respectively. While value for (correlation coefficient, R2) was 0.99307 and 0.99277 for tartrazine and sunset yellow dyes, respectively. Recyclability of the photocatalyst was confirmed using it for consecutive cycles to degrade organic dyes. Results showed that the CH-ZnS possesses excellent efficiency in decontaminating organic dyes from industrial wastewater.


Asunto(s)
Quitosano , Nanopartículas , Compuestos Azo/química , Colorantes/química , Compuestos de Selenio , Tartrazina/análisis , Tartrazina/química , Compuestos de Zinc
15.
Environ Res ; 204(Pt B): 111961, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34492277

RESUMEN

In this study, the ionic liquid (Aliquat-336) and anionic surfactant (cetyltrimethylammonium bromide, CTAB) bi-functionalized chitosan beads were prepared and characterised using different techniques, including FTIR, XRD, SEM, EDS and BET surface area analysis. The characteristic analysis confirmed the successful conjugation of chitosan beads with both surfactant and ionic liquid. The novel fabricated beads (CS-CTAB-AL) were efficiently employed, as a high-performance adsorbent, for the removal of Tartrazine (TZ), an anionic food dye, from polluted water. The optimum adsorption of TZ onto the CS-CTAB-AL was found at 2 g L-1 of adsorbent in the wide pH range of 4-11, whereas just 45 min was required to reach more than 90% adsorption efficiency in the studied conditions. Also, the adsorption and kinetic studies showed that the experimental data well fitted the pseudo-first-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity of prepared beads was found to be 45.95 mg g-1 at 45 °C. The adsorption properties of enabling CS-CTAB-AL conjugation introduced a new type of adsorbents, exploited the combination of ionic liquid and surfactant capabilities for wastewater treatment.


Asunto(s)
Quitosano , Líquidos Iónicos , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Tensoactivos , Tartrazina , Contaminantes Químicos del Agua/análisis
16.
Environ Res ; 215(Pt 3): 114317, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36174758

RESUMEN

In the current research work, the activated carbon synthesized from the plant species Delonix regia is doped with iron oxide nanoparticles and enforced as a nanosorbent for the effective extermination of Tartrazine (TAR) and Methylene blue (MB) dyes. This nanosorbent is prepared from the bark powder of the Delonix regia and subjected to chemical activation; Furthermore, the synthesized biosorbent were characterized using FTIR, SEM, TGA, and XRD to understand their functional properties and structural morphology. The optimum effectiveness adsorption of Tartrazine and Methylene blue has been investigated by using different key parameters. The conclusions have shown the highest removal percentage at a pH of 3 and 6 for Tartrazine and Methylene blue, respectively. For the various initial concentrations, the adsorption percentage reached equilibrium after 60 min and 90 min for TAR and MB. The adsorption equilibrium values were applied to various isotherms models. The adsorbent showed a higher removal capacity of 357.142 mg g-1 and 147.058 mg g-1 and for MB and TAR respectively. The kinetic data were best fits to pseudo second order model. The thermodynamic parameters indicated that this adsorption process was found to be spontaneous, exothermic and feasible at different temperatures. These results have shown that the prepared adsorbent is an environmentally friendly and suitable material for the elimination of TAR and MB from water systems.


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Colorantes/química , Concentración de Iones de Hidrógeno , Hierro , Cinética , Azul de Metileno/química , Polvos , Tartrazina , Termodinámica , Agua , Contaminantes Químicos del Agua/análisis
17.
Sensors (Basel) ; 22(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684711

RESUMEN

The paper describes the development of an electrochemical sensor to be used for the determination of synthetic food colorants such as Sunset Yellow FCF (SY) and Tartrazine (TZ). The sensor is a carbon paper (CP) electrode, manufactured by using hot lamination technology and volume modified with fine-grained graphite powder (GrP). The sensor (GrP/CP) was characterized by scanning electron microscopy, energy dispersive spectrometry, electrochemical impedance analysis, cyclic, linear sweep and differential pulse voltammetry. The mechanism of SY and TZ electrochemical oxidation on GrP/CP was studied. The developed sensor has good electron transfer characteristics and low electron resistance, high sensitivity and selectivity. Applying the differential pulse mode, linear dynamic ranges of 0.005-1.0 µM and 0.02-7.5 µM with limits of detection of 0.78 nM and 8.2 nM for SY and TZ, respectively, were obtained. The sensor was used to detect SY and TZ in non-alcoholic and alcoholic drinks. The results obtained from drink analysis prove good reproducibility (RSD ≤ 0.072) and accuracy (recovery 96-104%).


Asunto(s)
Grafito , Tartrazina , Compuestos Azo , Carbono/química , Técnicas Electroquímicas/métodos , Electrodos , Grafito/química , Límite de Detección , Polvos , Reproducibilidad de los Resultados , Tartrazina/análisis , Tartrazina/química
18.
J Environ Sci Health B ; 57(6): 489-496, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35435151

RESUMEN

The present work describes a method (SWASV) techniques for measure of tartrazine color a harmful compound present in real samples, and the extremely harmful to humans and animals even at low concentrations using G-C3N4 nanosheets sensor. Here, we report the use of an electrochemical approach for analytical determination of toxic tartrazine that takes 150 s. The calibration curve was linear in range of the (0.02-18.0 µmol L-1). The current response was linearly proportional to the tartrazine concentration with a R2∼ 0.999. We demonstrated a sensitivity a limit of detection of (0.022 µmol L-1). Finally, sensor nanosheets G-C3N4/CPE introduced to measure toxic tartrazine in different drink and foodstuff samples was used and the chemical nanosheets G-C3N4/CPE sensor made it possible as an excellent sensor with reproducibility for determination other samples.


Asunto(s)
Técnicas Electroquímicas , Tartrazina , Técnicas Electroquímicas/métodos , Electrodos , Reproducibilidad de los Resultados
19.
Environ Monit Assess ; 194(12): 907, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253651

RESUMEN

In this study, CuFe2O4 ferrite was supported on biochar produced from malt biomass residues as a photocatalyst for degradation of methylene blue (MB), methyl orange (MO), and tartrazine (TZ) dyes. XRD, FT-IR, and FE-SEM were used to characterize the crystallinity and morphology of the samples. The characterization showed that the ferrite was uniformly supported on the surface of the biochar, confirming the formation of the composite. Degradation tests showed that CuFe2O4 degraded approximately 50, 47, and 62% of MB, MO, and TZ dyes, respectively, after 60 min of reaction. On the other hand, the CuFe2O4/biochar composite showed a significant increase in dye degradation, ~ 100%, for all three dyes. This increase in degradation efficiency may be due to less agglomeration of supported particles and due to decreased recombination of electron/hole pairs. Thus, results showed that the photocatalyst composite produced in this study is an effective alternative for removing dyes from wastewater.


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Compuestos Azo , Carbón Orgánico , Colorantes/química , Monitoreo del Ambiente , Compuestos Férricos , Azul de Metileno/química , Espectroscopía Infrarroja por Transformada de Fourier , Tartrazina , Aguas Residuales , Contaminantes Químicos del Agua/análisis
20.
J Fluoresc ; 31(1): 185-193, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33196957

RESUMEN

This article has introduced and examined a novel and green approach for the very first time, which had been developed for the synthesis of carbon dots (CDs) and performed through the utilization of Elaeagnus angustifolia (E. A) as a natural carbon source. This straightforward procedure has been based upon a hydrothermal treatment with a quantum yield of 16.8% that had been designed to synthesize water-soluble CDs in one step and result in a satisfying fluorescence. Additionally, we have attempted to assess the sensing system that had been exerted through the usage of CDs for the detection of food colorant tartrazine, since they can function as a fluorescent sensor due to the interplay that occurs among tartrazine and CDs leading to the quenching of their fluorescence. The detection limit has been measured to be equaled to 0.086 µM (86 nM) and the linear range has been observed to be 0.47-234 µM. The proposed highly sensitive and simple method has exhibited an excellent selectivity and proved to be effectively applicable for distinguishing the tartrazine of real samples.


Asunto(s)
Elaeagnaceae/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Tartrazina/análisis , Tecnología Química Verde , Espectrometría de Fluorescencia , Tartrazina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA