Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Neuroinflammation ; 21(1): 182, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068433

RESUMEN

Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.


Asunto(s)
Envejecimiento , Ratones Transgénicos , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Tauopatías , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Ratones , FN-kappa B/metabolismo , Envejecimiento/efectos de los fármacos , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , Tauopatías/patología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Cognición/efectos de los fármacos , Cognición/fisiología , Ratones Endogámicos C57BL , Masculino
2.
Neurochem Res ; 49(9): 2273-2302, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38844706

RESUMEN

Alzheimer's disease (AD) is the most common type of human dementia and is responsible for over 60% of diagnosed dementia cases worldwide. Abnormal deposition of ß-amyloid and the accumulation of neurofibrillary tangles have been recognised as the two pathological hallmarks targeted by AD diagnostic imaging as well as therapeutics. With the progression of pathological studies, the two hallmarks and their related pathways have remained the focus of researchers who seek for AD diagnostic and therapeutic strategies in the past decades. In this work, we reviewed the development of the AD biomarkers and their corresponding target-specific small molecule drugs for both diagnostic and therapeutic applications, underlining their success, failure, and future possibilities.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Biomarcadores , Tauopatías , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico , Biomarcadores/metabolismo , Amiloidosis/tratamiento farmacológico , Amiloidosis/diagnóstico , Amiloidosis/metabolismo , Animales , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , Péptidos beta-Amiloides/metabolismo , Bibliotecas de Moléculas Pequeñas/uso terapéutico
3.
Alzheimers Dement ; 20(7): 4540-4558, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38884283

RESUMEN

INTRODUCTION: Intraneuronal inclusions composed of tau protein are found in Alzheimer's disease (AD) and other tauopathies. Tau normally binds microtubules (MTs), and its disengagement from MTs and misfolding in AD is thought to result in MT abnormalities. We previously identified triazolopyrimidine-containing MT-stabilizing compounds that provided benefit in AD mouse models and herein describe the characterization and efficacy testing of an optimized candidate, CNDR-51997. METHODS: CNDR-51997 underwent pharmacokinetic, pharmacodynamic, safety pharmacology, and mouse tolerability testing. In addition, the compound was examined for efficacy in 5XFAD amyloid beta (Aß) plaque mice and PS19 tauopathy mice. RESULTS: CNDR-51997 significantly reduced Aß plaques in 5XFAD mice and tau pathology in PS19 mice, with the latter also showing attenuated axonal dystrophy and gliosis. CNDR-51997 was well tolerated at doses that exceeded efficacy doses, with a good safety pharmacology profile. DISCUSSION: CNDR-51997 may be a candidate for advancement as a potential therapeutic agent for AD and/or other tauopathies. Highlights There is evidence of microtubule alterations (MT) in Alzheimer's disease (AD) brain and in mouse models of AD pathology. Intermittent dosing with an optimized, brain-penetrant MT-stabilizing small-molecule, CNDR-51997, reduced both Aß plaque and tau inclusion pathology in established mouse models of AD. CNDR-51997 attenuated axonal dystrophy and gliosis in a tauopathy mouse model, with a strong trend toward reduced hippocampal neuron loss. CNDR-51997 is well tolerated in mice at doses that are meaningfully greater than required for efficacy in AD mouse models, and the compound has a good safety pharmacology profile.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Ratones Transgénicos , Microtúbulos , Placa Amiloide , Proteínas tau , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Ratones , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/patología , Proteínas tau/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo , Tauopatías/tratamiento farmacológico , Tauopatías/patología , Humanos , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/uso terapéutico , Péptidos beta-Amiloides/metabolismo
4.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255905

RESUMEN

Tau is a microtubule-associated protein essential for microtubule assembly and stability in neurons. The abnormal intracellular accumulation of tau aggregates is a major characteristic of brains from patients with Alzheimer's disease (AD) and other tauopathies. In AD, the presence of neurofibrillary tangles (NFTs), which is composed of hyperphosphorylated tau protein, is positively correlated with the severity of the cognitive decline. Evidence suggests that the accumulation and aggregation of tau cause synaptic dysfunction and neuronal degeneration. Thus, the prevention of abnormal tau phosphorylation and elimination of tau aggregates have been proposed as therapeutic strategies for AD. However, currently tau-targeting therapies for AD and other tauopathies are limited. A number of dietary bioactive compounds have been found to modulate the posttranslational modifications of tau, including phosphorylation, small ubiquitin-like modifier (SUMO) mediated modification (SUMOylation) and acetylation, as well as inhibit tau aggregation and/or promote tau degradation. The advantages of using these dietary components over synthetic substances in AD prevention and intervention are their safety and accessibility. This review summarizes the mechanisms leading to tau pathology in AD and highlights the effects of bioactive compounds on the hyperphosphorylation, aggregation and clearance of tau protein. The potential of using these bioactive compounds for AD prevention and intervention is also discussed.


Asunto(s)
Productos Biológicos , Tauopatías , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Dieta , Ovillos Neurofibrilares , Proteínas tau , Tauopatías/tratamiento farmacológico , Productos Biológicos/uso terapéutico
5.
Angew Chem Int Ed Engl ; 63(18): e202402007, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38407551

RESUMEN

Pathological hyperphosphorylation and aggregation of microtubule-associated Tau protein contribute to Alzheimer's Disease (AD) and other related tauopathies. Currently, no cure exists for Alzheimer's Disease. Aptamers offer significant potential as next-generation therapeutics in biotechnology and the treatment of neurological disorders. Traditional aptamer selection methods for Tau protein focus on binding affinity rather than interference with pathological Tau. In this study, we developed a new selection strategy to enrich DNA aptamers that bind to surviving monomeric Tau protein under conditions that would typically promote Tau aggregation. Employing this approach, we identified a set of aptamer candidates. Notably, BW1c demonstrates a high binding affinity (Kd=6.6 nM) to Tau protein and effectively inhibits arachidonic acid (AA)-induced Tau protein oligomerization and aggregation. Additionally, it inhibits GSK3ß-mediated Tau hyperphosphorylation in cell-free systems and okadaic acid-mediated Tau hyperphosphorylation in cellular milieu. Lastly, retro-orbital injection of BW1c tau aptamer shows the ability to cross the blood brain barrier and gain access to neuronal cell body. Through further refinement and development, these Tau aptamers may pave the way for a first-in-class neurotherapeutic to mitigate tauopathy-associated neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo , Ácido Ocadaico/metabolismo , Ácido Ocadaico/farmacología , Ácido Ocadaico/uso terapéutico , Fosforilación , Proteínas tau/antagonistas & inhibidores , Proteínas tau/metabolismo , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , Tauopatías/patología , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología
6.
Methods Mol Biol ; 2754: 93-104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512662

RESUMEN

Aggregation of tau protein is a pathological hallmark of Alzheimer's disease and other neurodegenerative tauopathies. Inhibition of tau aggregation may provide a method for treatment of these disorders. Methods to identify tau aggregation inhibitors (TAIs) in vitro are useful and here we describe assays for TAIs using purified recombinant tau protein fragments in a cell-free immunoassay format and in a stably transfected cell model to create a more physiological environment.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , Inmunoensayo , Bioensayo
7.
Sci Bull (Beijing) ; 69(8): 1137-1152, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38341350

RESUMEN

Abnormal hyperphosphorylation and accumulation of tau protein play a pivotal role in neurodegeneration in Alzheimer's disease (AD) and many other tauopathies. Selective elimination of hyperphosphorylated tau is promising for the therapy of these diseases. We have conceptualized a strategy, named dephosphorylation-targeting chimeras (DEPTACs), for specifically hijacking phosphatases to tau to debilitate its hyperphosphorylation. Here, we conducted the step-by-step optimization of each constituent motif to generate DEPTACs with reasonable effectiveness in facilitating the dephosphorylation and subsequent clearance of pathological tau. Specifically, for one of the selected chimeras, D16, we demonstrated its significant efficiency in rescuing the neurodegeneration caused by neurotoxic K18-tau seeds in vitro. Moreover, intravenous administration of D16 also alleviated tau pathologies in the brain and improved memory deficits in AD mice. These results suggested DEPTACs as targeted modulators of tau phosphorylation, which hold therapeutic potential for AD and other tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas tau/genética , Tauopatías/tratamiento farmacológico , Fosforilación , Encéfalo/metabolismo
8.
Nat Commun ; 15(1): 1679, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396035

RESUMEN

Tauopathies such as Alzheimer's disease are characterized by aggregation and increased phosphorylation of the microtubule-associated protein tau. Tau's pathological changes are closely linked to neurodegeneration, making tau a prime candidate for intervention. We developed an approach to monitor pathological changes of aggregation-prone human tau in living neurons. We identified 2-phenyloxazole (PHOX) derivatives as putative polypharmacological small molecules that interact with tau and modulate tau kinases. We found that PHOX15 inhibits tau aggregation, restores tau's physiological microtubule interaction, and reduces tau phosphorylation at disease-relevant sites. Molecular dynamics simulations highlight cryptic channel-like pockets crossing tau protofilaments and suggest that PHOX15 binding reduces the protofilament's ability to adopt a PHF-like conformation by modifying a key glycine triad. Our data demonstrate that live-cell imaging of a tauopathy model enables screening of compounds that modulate tau-microtubule interaction and allows identification of a promising polypharmacological drug candidate that simultaneously inhibits tau aggregation and reduces tau phosphorylation.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , Proteínas tau/metabolismo , Microtúbulos/metabolismo , Enfermedad de Alzheimer/metabolismo , Citoesqueleto/metabolismo , Fosforilación
9.
Expert Opin Pharmacother ; 25(5): 571-584, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38653731

RESUMEN

INTRODUCTION: Tauopathies are a spectrum of clinicopathological neurodegenerative disorders with increased aggregates included in glia and/or neurons of hyperphosphorylated insoluble tau protein, a microtubule-associated protein. Progressive supranuclear palsy (PSP) is an atypical dopaminergic-resistant parkinsonian syndrome, considered as a primary tauopathy with possible alteration of tau isoform ratio, and tau accumulations characterized by 4 R tau species as the main neuropathological lesions. AREAS COVERED: In the present review article, we analyzed and discussed viable disease-modifying and some symptomatic pharmacological therapeutics for PSP syndrome (PSPS). EXPERT OPINION: Pharmacological therapy for PSPS may interfere with the aggregation process or promote the clearance of abnormal tau aggregates. A variety of past and ongoing disease-modifying therapies targeting tau in PSPS included genetic, microtubule-stabilizing compounds, anti-phosphorylation, and acetylation agents, antiaggregant, protein removal, antioxidant neuronal and synaptic growth promotion therapies. New pharmacological gene-based approaches may open alternative prevention pathways for the deposition of abnormal tau in PSPS such as antisense oligonucleotide (ASO)-based drugs. Moreover, kinases and ubiquitin-proteasome systems could also be viable targets.


Asunto(s)
Parálisis Supranuclear Progresiva , Proteínas tau , Humanos , Parálisis Supranuclear Progresiva/tratamiento farmacológico , Proteínas tau/metabolismo , Proteínas tau/antagonistas & inhibidores , Animales , Tauopatías/tratamiento farmacológico , Tauopatías/patología , Tauopatías/genética , Tauopatías/metabolismo
10.
Br J Pharmacol ; 181(1): 87-106, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37553894

RESUMEN

BACKGROUND AND PURPOSE: Tau pathology contributes to a bidirectional relationship between sleep disruption and neurodegenerative disease. Tau transgenic rTg4510 mice model tauopathy symptoms, including sleep/wake disturbances, which manifest as marked hyperarousal. This phenotype can be prevented by early transgene suppression; however, whether hyperarousal can be rescued after onset is unknown. EXPERIMENTAL APPROACH: Three 8-week experiments were conducted with wild-type and rTg4510 mice after age of onset of hyperarousal (4.5 months): (1) Tau transgene suppression with doxycycline (200 ppm); (2) inactive phase rapid eye movement (REM) sleep enhancement with the dual orexin receptor antagonist suvorexant (50 mg·kg-1 ·day-1 ); or (3) Active phase non-NREM (NREM) and REM sleep enhancement using the selective orexin 2 (OX2 ) receptor antagonist MK-1064 (40 mg·kg-1 ·day-1 ). Sleep was assessed using polysomnography, cognition using the Barnes maze, and tau pathology using immunoblotting and/or immunohistochemistry. KEY RESULTS: Tau transgene suppression improved tauopathy and hippocampal-dependent spatial memory, but did not modify hyperarousal. Pharmacological rescue of REM sleep deficits did not improve spatial memory or tau pathology. In contrast, normalising hyperarousal by increasing both NREM and REM sleep via OX2 receptor antagonism restored spatial memory, independently of tauopathy, but only in male rTg4510 mice. OX2 receptor antagonism induced only short-lived hypnotic responses in female rTg4510 mice and did not improve spatial memory, indicating a tau- and sex-dependent disruption of OX2 receptor signalling. CONCLUSIONS AND IMPLICATIONS: Pharmacologically reducing hyperarousal corrects tau-induced sleep/wake and cognitive deficits. Tauopathy causes sex-dependent disruptions of OX2 receptor signalling/function, which may have implications for choice of hypnotic therapeutics in tauopathies.


Asunto(s)
Enfermedades Neurodegenerativas , Receptores de Orexina , Trastornos del Sueño-Vigilia , Tauopatías , Animales , Femenino , Masculino , Ratones , Cognición , Modelos Animales de Enfermedad , Hipnóticos y Sedantes/farmacología , Ratones Transgénicos , Orexinas , Sueño/fisiología , Tauopatías/tratamiento farmacológico , Tauopatías/genética , Tauopatías/patología , Vigilia/fisiología , Receptores de Orexina/metabolismo , Antagonistas de los Receptores de Orexina/farmacología , Antagonistas de los Receptores de Orexina/uso terapéutico
11.
Cells ; 13(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38607082

RESUMEN

Basal forebrain cholinergic dysfunction, most likely linked with tau protein aggregation, is a characteristic feature of Alzheimer's disease (AD). Recent evidence suggests that tau protein is a putative target for the treatment of dementia, and the tau aggregation inhibitor, hydromethylthionine mesylate (HMTM), has emerged as a potential disease-modifying treatment. However, its efficacy was diminished in patients already receiving approved acetylcholinesterase inhibitors. In this study, we ask whether this negative interaction can also be mimicked in experimental tau models of AD and whether the underlying mechanism can be understood. From a previous age profiling study, 6-month-old line 1 (L1) tau transgenic mice were characterized by a severe reduction in several cholinergic markers. We therefore assessed whether long-term pre-exposure with the acetylcholinesterase inhibitor rivastigmine alone and in conjunction with the tau aggregation inhibitor HMTM can reverse cholinergic deficits in L1. Rivastigmine and HMTM, and combinations of the two compounds were administered orally for 11 weeks to both L1 and wild-type mice. The brains were sectioned with a focus on the basal forebrain, motor cortex and hippocampus. Immunohistochemical staining and quantification of choline acetyltransferase (ChAT), tyrosine kinase A (TrkA)-positive neurons and relative optical intensity (ROI) for vesicular acetylcholine transporter (VAChT), and acetylcholinesterase (AChE) reactivity confirmed reversal of the diminished cholinergic phenotype of interneurons (nucleus accumbens, striatum) and projection neurons (medial septum, nucleus basalis magnocellularis) by HMTM, to a greater extent than by rivastigmine alone in L1 mice. Combined administration did not yield additivity but, in most proxies, led to antagonistic effects in which rivastigmine decreased the benefits shown with HMTM alone. Local markers (VAChT and AChE) in target structures of the basal forebrain, motor cortex and hippocampal CA3 seemed to be normalized by HMTM, but not by rivastigmine or the combination of both drugs. HMTM, which was developed as a tau aggregation inhibitor, strongly decreased the tau load in L1 mice, however, not in combination with rivastigmine. Taken together, these data confirm a cholinergic phenotype in L1 tau transgenic mice that resembles the deficits observed in AD patients. This phenotype is reversible by HMTM, but at the same time appears to be subject to a homeostatic regulation induced by chronic pre-treatment with an acetylcholinesterase inhibitor, which interferes with the efficacy of HMTM. The strongest phenotypic reversal coincided with a normalization of the tau load in the cortex and hippocampus of L1, suggesting that tau accumulation underpins the loss of cholinergic markers in the basal forebrain and its projection targets.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Ratones , Animales , Lactante , Rivastigmina/farmacología , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa/metabolismo , Neuroprotección , Neuronas Colinérgicas/metabolismo , Tauopatías/tratamiento farmacológico , Colinérgicos , Ratones Transgénicos
12.
J Alzheimers Dis ; 98(2): 549-562, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38393915

RESUMEN

Background: Repurposing dantrolene to treat Alzheimer's disease has been shown to be effective in amyloid transgenic mouse models but has not been examined in a model of tauopathy. Objective: The effects of a nanoparticle intranasal formulation, the Eagle Research Formulation of Ryanodex (ERFR), in young adult and aged wild type and PS19 tau transgenic mice was investigated. Methods: The bioavailability of intranasal ERFR was measured in 2 and 9-11-month-old C57BL/6J mice. Blood and brain samples were collected 20 minutes after a single ERFR dose, and the plasma and brain concentrations were analyzed. Baseline behavior was assessed in untreated PS19 tau transgenic mice at 6 and 9 months of age. PS19 mice were treated with intranasal ERFR, with or without acrolein (to potentiate cognitive dysfunction), for 3 months, beginning at 2 months of age. Animal behavior was examined, including cognition (cued and contextual fear conditioning, y-maze), motor function (rotarod), and olfaction (buried food test). Results: The dantrolene concentration in the blood and brain decreased with age, with the decrease greater in the blood resulting in a higher brain to blood concentration ratio. The behavioral assays showed no significant changes in cognition, olfaction, or motor function in the PS19 mice compared to controls after chronic treatment with intranasal ERFR, even with acrolein. Conclusions: Our studies suggest the intranasal administration of ERFR has higher concentrations in the brain than the blood in aged mice and has no serious systemic side effects with chronic use in PS19 mice.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Animales , Ratones Transgénicos , Dantroleno/farmacología , Administración Intranasal , Acroleína , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Tauopatías/tratamiento farmacológico , Proteínas tau/metabolismo , Modelos Animales de Enfermedad
13.
Exp Gerontol ; 192: 112458, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735597

RESUMEN

Reducing neuroinflammation, a key contributor to brain aging and neurodegenerative diseases, is a promising strategy for improving cognitive function in these settings. The FDA-approved nucleoside reverse transcriptase inhibitor 3TC (Lamivudine) has been reported to improve cognitive function in old wild-type mice and multiple mouse models of neurodegenerative disease, but its effects on the brain have not been comprehensively investigated. In the current study, we used transcriptomics to broadly characterize the effects of long-term supplementation with a human-equivalent therapeutic dose of 3TC on the hippocampal transcriptome in male and female rTg4510 mice (a commonly studied model of tauopathy-associated neurodegeneration). We found that tauopathy increased hippocampal transcriptomic signatures of neuroinflammation/immune activation, but 3TC treatment reversed some of these effects. We also found that 3TC mitigated tauopathy-associated activation of key transcription factors that contribute to neuroinflammation and immune activation, and these changes were related to improved recognition memory performance. Collectively, our findings suggest that 3TC exerts protective effects against tauopathy in the hippocampus by modulating inflammation and immune activation, and they may provide helpful insight for ongoing clinical efforts to determine if 3TC and/or related therapeutics hold promise for treating neurodegeneration.


Asunto(s)
Modelos Animales de Enfermedad , Hipocampo , Lamivudine , Inhibidores de la Transcriptasa Inversa , Tauopatías , Transcriptoma , Animales , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Tauopatías/tratamiento farmacológico , Tauopatías/genética , Ratones , Masculino , Inhibidores de la Transcriptasa Inversa/farmacología , Femenino , Lamivudine/farmacología , Lamivudine/uso terapéutico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/genética , Ratones Transgénicos , Inflamación/tratamiento farmacológico
14.
Brain Res Bull ; 212: 110955, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38677558

RESUMEN

In clinical trials for Alzheimer's disease (AD), hydromethylthionine mesylate (HMTM) showed reduced efficacy when administered as an add-on to symptomatic treatments, while it produced a significant improvement of cognitive function when taken as monotherapy. Interference of cholinesterase inhibition with HMTM was observed also in a tau transgenic mouse model, where rivastigmine reduced the pharmacological activity of HMTM at multiple brain levels including hippocampal acetylcholine release, synaptosomal glutamate release and mitochondrial activity. Here, we examined the effect of HMTM, given alone or in combination with the acetylcholinesterase inhibitor, rivastigmine, at the level of expression of selected pre-synaptic proteins (syntaxin-1; SNAP-25, VAMP-2, synaptophysin-1, synapsin-1, α-synuclein) in brain tissue harvested from tau-transgenic Line 1 (L1) and wild-type mice using immunohistochemistry. L1 mice overexpress the tau-core unit that induces tau aggregation and results in an AD-like phenotype. Synaptic proteins were lower in hippocampus and cortex but greater in basal forebrain regions in L1 compared to wild-type mice. HMTM partially normalised the expression pattern of several of these proteins in basal forebrain. This effect was diminished when HMTM was administered in combination with rivastigmine, where mean protein expression seemed supressed. This was further confirmed by group-based correlation network analyses where important levels of co-expression correlations in basal forebrain regions were lost in L1 mice and partially re-established when HMTM was given alone but not in combination with rivastigmine. These data indicate a reduction in pharmacological activity of HMTM when given as an add-on therapy, a result that is consistent with the responses observed in the clinic. Attenuation of the therapeutic effects of HMTM by cholinergic treatments may have important implications for other potential AD therapies.


Asunto(s)
Inhibidores de la Colinesterasa , Modelos Animales de Enfermedad , Ratones Transgénicos , Rivastigmina , Tauopatías , Animales , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , Inhibidores de la Colinesterasa/farmacología , Rivastigmina/farmacología , Ratones , Proteínas tau/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Masculino , Azul de Metileno/análogos & derivados
15.
Neurotherapeutics ; 21(2): e00321, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278659

RESUMEN

The tauopathies encompass over 20 adult neurodegenerative diseases and are characterized by the dysfunction and accumulation of insoluble tau protein. Among them, Alzheimer's disease, frontotemporal dementia, and progressive supranuclear palsy collectively impact millions of patients and their families worldwide. Despite years of drug development using a variety of mechanisms of action, no therapeutic directed against tau has been approved for clinical use. This raises important questions about our current model of tau pathology and invites thoughtful consideration of our approach to nonclinical models and clinical trial design. In this article, we review what is known about the biology and genetics of tau, placing it in the context of current and failed clinical trials. We highlight potential reasons for the lack of success to date and offer suggestions for new pathways in therapeutic development. Overall, our viewpoint to the future is optimistic for this important group of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , Parálisis Supranuclear Progresiva/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo
16.
Cell Signal ; 121: 111269, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38909930

RESUMEN

Glutamatergic neurotransmission, important for learning and memory, is disrupted in different ways in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD) tauopathies. We have previously reported that two tau transgenic mouse models, L1 and L66, produce different phenotypes resembling AD and FTD, respectively. The AD-like L1 model expresses the truncated core aggregation domain of the AD paired helical filament (PHF) form of tau (tau296-390) whereas the FTD-like L66 model expresses full-length tau carrying two mutations at P301S/G335D. We have used synaptosomes isolated from these mice to investigate K+-evoked glutamate release and, if abnormal, to determine responsiveness to hydromethylthionine, a tau aggregation inhibitor previously shown to reduce tau pathology in these models. We report that the transgenes in these two mouse lines cause opposite abnormalities in glutamate release. Over-expression of the core tau unit in L1 produces a significant reduction in glutamate release and a loss of Ca2+-dependency compared with wild-type control mice. Full-length mutant tau produces an increase in glutamate release that retains normal Ca2+-dependency. Chronic pre-treatment with hydromethylthionine normalises both reduced (L1) and excessive glutamate (L66) and restores normal Ca2+-dependency in L1 mice. This implies that both patterns of impairment are the result of tau aggregation, but that the direction and Ca2+-dependency of the abnormality is determined by expression of the disease-specific transgene. Our results lead to the conclusion that the tauopathies need not be considered a single entity in terms of the downstream effects of pathological aggregation of tau protein. In this case, directionally opposite abnormalities in glutamate release resulting from different types of tau aggregation in the two mouse models can be corrected by hydromethylthionine. This may help to explain the activity of hydromethylthionine on cognitive decline and brain atrophy in both AD and behavioural-variant FTD.


Asunto(s)
Ácido Glutámico , Ratones Transgénicos , Sinaptosomas , Proteínas tau , Animales , Proteínas tau/metabolismo , Ácido Glutámico/metabolismo , Sinaptosomas/metabolismo , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Modelos Animales de Enfermedad , Calcio/metabolismo , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/genética , Tauopatías/metabolismo , Tauopatías/tratamiento farmacológico , Humanos , Azul de Metileno/análogos & derivados
17.
Neuron ; 112(10): 1676-1693.e12, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513667

RESUMEN

Neuronal loss is the central issue in Alzheimer's disease (AD), yet no treatment developed so far can halt AD-associated neurodegeneration. Here, we developed a monoclonal antibody (mAb2A7) against 217 site-phosphorylated human tau (p-tau217) and observed that p-tau217 levels positively correlated with brain atrophy and cognitive impairment in AD patients. Intranasal administration efficiently delivered mAb2A7 into male PS19 tauopathic mouse brain with target engagement and reduced tau pathology/aggregation with little effect on total soluble tau. Further, mAb2A7 treatment blocked apoptosis-associated neuronal loss and brain atrophy, reversed cognitive deficits, and improved motor function in male tauopathic mice. Proteomic analysis revealed that mAb2A7 treatment reversed alterations mainly in proteins associated with synaptic functions observed in murine tauopathy and AD brain. An antibody (13G4) targeting total tau also attenuated tau-associated pathology and neurodegeneration but impaired the motor function of male tauopathic mice. These results implicate p-tau217 as a potential therapeutic target for AD-associated neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos Monoclonales , Tauopatías , Proteínas tau , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/tratamiento farmacológico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/administración & dosificación , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Inmunoterapia/métodos , Ratones Transgénicos , Degeneración Nerviosa/patología , Degeneración Nerviosa/tratamiento farmacológico , Fosforilación , Proteínas tau/metabolismo , Tauopatías/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA