Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.680
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 172(6): 1228-1238, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29522744

RESUMEN

Antibiotic tolerance, the capacity of genetically susceptible bacteria to survive the lethal effects of antibiotic treatment, plays a critical and underappreciated role in the disease burden of bacterial infections. Here, we take a pathogen-by-pathogen approach to illustrate the clinical significance of antibiotic tolerance and discuss how the physiology of specific pathogens in their infection environments impacts the mechanistic underpinnings of tolerance. We describe how these insights are leading to the development of species-specific therapeutic strategies for targeting antibiotic tolerance and highlight experimental platforms that are enabling us to better understand the complexities of drug-tolerant pathogens in in vivo settings.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Tolerancia a Medicamentos , Animales , Bacterias/clasificación , Infecciones Bacterianas/microbiología , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Especificidad de la Especie
2.
Cell ; 166(6): 1368-1370, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27610563

RESUMEN

The reprioritization of feeding motivations during disease is proposed to optimize host defense strategies against infection. Now, Wang et al. identify that sickness-induced anorexia differentially shapes the metabolic requirements of cellular stress adaptations, leading to opposite impact on disease tolerance upon bacterial versus viral infections.


Asunto(s)
Anorexia/microbiología , Tolerancia Inmunológica , Encéfalo , Tolerancia a Medicamentos , Humanos , Virosis
3.
Annu Rev Physiol ; 86: 1-25, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38029388

RESUMEN

The harmful side effects of opioid drugs such as respiratory depression, tolerance, dependence, and abuse potential have limited the therapeutic utility of opioids for their entire clinical history. However, no previous attempt to develop effective pain drugs that substantially ameliorate these effects has succeeded, and the current opioid epidemic affirms that they are a greater hindrance to the field of pain management than ever. Recent attempts at new opioid development have sought to reduce these side effects by minimizing engagement of the regulatory protein arrestin-3 at the mu-opioid receptor, but there is significant controversy around this approach. Here, we discuss the ongoing effort to develop safer opioids and its relevant historical context. We propose a new model that reconciles results previously assumed to be in direct conflict to explain how different signaling profiles at the mu-opioid receptor contribute to opioid tolerance and dependence. Our goal is for this framework to inform the search for a new generation of lower liability opioid analgesics.


Asunto(s)
Analgésicos Opioides , Transducción de Señal , Humanos , Analgésicos Opioides/efectos adversos , Tolerancia a Medicamentos
4.
Nat Rev Neurosci ; 22(7): 439-454, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34045693

RESUMEN

Acute cannabis intoxication may induce neurocognitive impairment and is a possible cause of human error, injury and psychological distress. One of the major concerns raised about increasing cannabis legalization and the therapeutic use of cannabis is that it will increase cannabis-related harm. However, the impairing effect of cannabis during intoxication varies among individuals and may not occur in all users. There is evidence that the neurocognitive response to acute cannabis exposure is driven by changes in the activity of the mesocorticolimbic and salience networks, can be exacerbated or mitigated by biological and pharmacological factors, varies with product formulations and frequency of use and can differ between recreational and therapeutic use. It is argued that these determinants of the cannabis-induced neurocognitive state should be taken into account when defining and evaluating levels of cannabis impairment in the legal arena, when prescribing cannabis in therapeutic settings and when informing society about the safe and responsible use of cannabis.


Asunto(s)
Cannabinoides/farmacología , Cannabis , Cognición/efectos de los fármacos , Envejecimiento , Atención/efectos de los fármacos , Variación Biológica Individual , Biotransformación/genética , Encéfalo/efectos de los fármacos , Cannabinoides/administración & dosificación , Cannabinoides/farmacocinética , Estado de Conciencia/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Dronabinol/administración & dosificación , Dronabinol/farmacocinética , Dronabinol/farmacología , Tolerancia a Medicamentos , Femenino , Humanos , Aprendizaje/efectos de los fármacos , Masculino , Fumar Marihuana , Red Nerviosa/efectos de los fármacos , Neurotransmisores/farmacología , Personalidad , Desempeño Psicomotor/efectos de los fármacos , Psicotrópicos/administración & dosificación , Psicotrópicos/farmacología , Caracteres Sexuales , Humo
5.
Cell ; 145(1): 39-53, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21376383

RESUMEN

Treatment of tuberculosis, a complex granulomatous disease, requires long-term multidrug therapy to overcome tolerance, an epigenetic drug resistance that is widely attributed to nonreplicating bacterial subpopulations. Here, we deploy Mycobacterium marinum-infected zebrafish larvae for in vivo characterization of antitubercular drug activity and tolerance. We describe the existence of multidrug-tolerant organisms that arise within days of infection, are enriched in the replicating intracellular population, and are amplified and disseminated by the tuberculous granuloma. Bacterial efflux pumps that are required for intracellular growth mediate this macrophage-induced tolerance. This tolerant population also develops when Mycobacterium tuberculosis infects cultured macrophages, suggesting that it contributes to the burden of drug tolerance in human tuberculosis. Efflux pump inhibitors like verapamil reduce this tolerance. Thus, the addition of this currently approved drug or more specific efflux pump inhibitors to standard antitubercular therapy should shorten the duration of curative treatment.


Asunto(s)
Tolerancia a Medicamentos , Macrófagos/microbiología , Mycobacterium marinum/fisiología , Mycobacterium tuberculosis/fisiología , Tuberculosis/microbiología , Animales , Antituberculosos/uso terapéutico , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Granuloma/fisiopatología , Humanos , Larva/microbiología , Moduladores del Transporte de Membrana/farmacología , Proteínas de Transporte de Membrana/metabolismo , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/patología , Infecciones por Mycobacterium no Tuberculosas/fisiopatología , Mycobacterium marinum/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Tuberculosis/patología , Tuberculosis/fisiopatología , Verapamilo/farmacología , Pez Cebra/microbiología
6.
Proc Natl Acad Sci U S A ; 120(7): e2215512120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36763530

RESUMEN

Tuberculosis treatment requires months-long combination chemotherapy with multiple drugs, with shorter treatments leading to relapses. A major impediment to shortening treatment is that Mycobacterium tuberculosis becomes tolerant to the administered drugs, starting early after infection and within days of infecting macrophages. Multiple lines of evidence suggest that macrophage-induced drug tolerance is mediated by mycobacterial drug efflux pumps. Here, using assays to directly measure drug efflux, we find that M. tuberculosis transports the first-line antitubercular drug rifampicin through a proton gradient-dependent mechanism. We show that verapamil, a known efflux pump inhibitor, which inhibits macrophage-induced rifampicin tolerance, also inhibits M.tuberculosis rifampicin efflux. As with macrophage-induced tolerance, the calcium channel-inhibiting property of verapamil is not required for its inhibition of rifampicin efflux. By testing verapamil analogs, we show that verapamil directly inhibits M. tuberculosis drug efflux pumps through its human P-glycoprotein (PGP)-like inhibitory activity. Screening commonly used drugs with incidental PGP inhibitory activity, we find many inhibit rifampicin efflux, including the proton pump inhibitors (PPIs) such as omeprazole. Like verapamil, the PPIs inhibit macrophage-induced rifampicin tolerance as well as intramacrophage growth, which has also been linked to mycobacterial efflux pump activity. Our assays provide a facile screening platform for M. tuberculosis efflux pump inhibitors that inhibit in vivo drug tolerance and growth.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Rifampin/farmacología , Inhibidores de la Bomba de Protones/farmacología , Antituberculosos/farmacología , Verapamilo/farmacología , Macrófagos , Tuberculosis/tratamiento farmacológico , Tolerancia a Medicamentos , Proteínas Bacterianas , Pruebas de Sensibilidad Microbiana
7.
Trends Biochem Sci ; 46(4): 315-328, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33127216

RESUMEN

Opioid receptors (ORs) are undisputed targets for the treatment of pain. Unfortunately, targeting these receptors therapeutically poses significant challenges including addiction, dependence, tolerance, and the appearance of side effects, such as respiratory depression and constipation. Moreover, misuse of prescription and illicit narcotics has resulted in the current opioid crisis. The mu-opioid receptor (MOR) is the cellular mediator of the effects of most commonly used opioids, and is a prototypical G protein-coupled receptor (GPCR) where new pharmacological, signalling and cell biology concepts have been coined. This review summarises the knowledge of the life cycle of this therapeutic target, including its biogenesis, trafficking to and from the plasma membrane, and how the regulation of these processes impacts its function and is related to pathophysiological conditions.


Asunto(s)
Analgésicos Opioides , Receptores Opioides , Analgésicos Opioides/farmacología , Animales , Tolerancia a Medicamentos , Estadios del Ciclo de Vida
8.
PLoS Pathog ; 19(4): e1011338, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37075064

RESUMEN

Fungal pathogens overcome antifungal drug therapy by classic resistance mechanisms, such as increased efflux or changes to the drug target. However, even when a fungal strain is susceptible, trailing or persistent microbial growth in the presence of an antifungal drug can contribute to therapeutic failure. This trailing growth is caused by adaptive physiological changes that enable the growth of a subpopulation of fungal cells in high drug concentrations, in what is described as drug tolerance. Mechanistically, antifungal drug tolerance is incompletely understood. Here we report that the transcriptional activator Rpn4 is important for drug tolerance in the human fungal pathogen Candida albicans. Deletion of RPN4 eliminates tolerance to the commonly used antifungal drug fluconazole. We defined the mechanism and show that Rpn4 controls fluconazole tolerance via two target pathways. First, Rpn4 activates proteasome gene expression, which enables sufficient proteasome capacity to overcome fluconazole-induced proteotoxicity and the accumulation of ubiquitinated proteins targeted for degradation. Consistently, inhibition of the proteasome with MG132 eliminates fluconazole tolerance and resistance, and phenocopies the rpn4Δ/Δ mutant for loss of tolerance. Second, Rpn4 is required for wild type expression of the genes required for the synthesis of the membrane lipid ergosterol. Our data indicates that this function of Rpn4 is required for mitigating the inhibition of ergosterol biosynthesis by fluconazole. Based on our findings, we propose that Rpn4 is a central hub for fluconazole tolerance in C. albicans by coupling the regulation of protein homeostasis (proteostasis) and lipid metabolism to overcome drug-induced proteotoxicity and membrane stress.


Asunto(s)
Antifúngicos , Complejo de la Endopetidasa Proteasomal , Humanos , Antifúngicos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteostasis , Fluconazol , Candida albicans/metabolismo , Tolerancia a Medicamentos , Ergosterol , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana
9.
Brain ; 147(7): 2507-2521, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577773

RESUMEN

Opioid pain medications, such as morphine, remain the mainstay for treating severe and chronic pain. Prolonged morphine use, however, triggers analgesic tolerance and hyperalgesia (OIH), which can last for a long period after morphine withdrawal. How morphine induces these detrimental side effects remains unclear. Here, we show that morphine tolerance and OIH are mediated by Tiam1-coordinated synaptic structural and functional plasticity in the spinal nociceptive network. Tiam1 is a Rac1 GTPase guanine nucleotide exchange factor that promotes excitatory synaptogenesis by modulating actin cytoskeletal dynamics. We found that prolonged morphine treatment activated Tiam1 in the spinal dorsal horn and Tiam1 ablation from spinal neurons eliminated morphine antinociceptive tolerance and OIH. At the same time, the pharmacological blockade of Tiam1-Rac1 signalling prevented the development and reserved the established tolerance and OIH. Prolonged morphine treatment increased dendritic spine density and synaptic NMDA receptor activity in spinal dorsal horn neurons, both of which required Tiam1. Furthermore, co-administration of the Tiam1 signalling inhibitor NSC23766 was sufficient to abrogate morphine tolerance in chronic pain management. These findings identify Tiam1-mediated maladaptive plasticity in the spinal nociceptive network as an underlying cause for the development and maintenance of morphine tolerance and OIH and provide a promising therapeutic target to reduce tolerance and prolong morphine use in chronic pain management.


Asunto(s)
Analgésicos Opioides , Tolerancia a Medicamentos , Hiperalgesia , Morfina , Plasticidad Neuronal , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Animales , Morfina/farmacología , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Tolerancia a Medicamentos/fisiología , Ratones , Analgésicos Opioides/farmacología , Masculino , Ratones Endogámicos C57BL , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Proteína de Unión al GTP rac1/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(23): e2118566119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35648826

RESUMEN

Recent work indicates that killing of bacteria by diverse antimicrobial classes can involve reactive oxygen species (ROS), as if a common, self-destructive response to antibiotics occurs. However, the ROS-bacterial death theory has been challenged. To better understand stress-mediated bacterial death, we enriched spontaneous antideath mutants of Escherichia coli that survive treatment by diverse bactericidal agents that include antibiotics, disinfectants, and environmental stressors, without a priori consideration of ROS. The mutants retained bacteriostatic susceptibility, thereby ruling out resistance. Surprisingly, pan-tolerance arose from carbohydrate metabolism deficiencies in ptsI (phosphotransferase) and cyaA (adenyl cyclase); these genes displayed the activity of upstream regulators of a widely shared, stress-mediated death pathway. The antideath effect was reversed by genetic complementation, exogenous cAMP, or a Crp variant that bypasses cAMP binding for activation. Downstream events comprised a metabolic shift from the TCA cycle to glycolysis and to the pentose phosphate pathway, suppression of stress-mediated ATP surges, and reduced accumulation of ROS. These observations reveal how upstream signals from diverse stress-mediated lesions stimulate shared, late-stage, ROS-mediated events. Cultures of these stable, pan-tolerant mutants grew normally and were therefore distinct from tolerance derived from growth defects described previously. Pan-tolerance raises the potential for unrestricted disinfectant use to contribute to antibiotic tolerance and resistance. It also weakens host defenses, because three agents (hypochlorite, hydrogen peroxide, and low pH) affected by pan-tolerance are used by the immune system to fight infections. Understanding and manipulating the PtsI-CyaA-Crp­mediated death process can help better control pathogens and maintain beneficial microbiota during antimicrobial treatment.


Asunto(s)
Antiinfecciosos , Colicinas , Proteína Receptora de AMP Cíclico , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte de Monosacáridos , Estrés Oxidativo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato , Antiinfecciosos/farmacología , Colicinas/metabolismo , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Tolerancia a Medicamentos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/fisiología , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Mol Pharmacol ; 106(1): 47-55, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38769020

RESUMEN

Opioid analgesics are widely used as a treatment option for pain management and relief. However, the misuse of opioid analgesics has contributed to the current opioid epidemic in the United States. Prescribed opioids such as morphine, codeine, oxycodone, and fentanyl are mu-opioid receptor (MOR) agonists primarily used in the clinic to treat pain or during medical procedures, but development of tolerance limits their utility for treatment of chronic pain. Here we explored the effects of biasing Gßγ signaling on tolerance development after chronic morphine treatment in vivo. We hypothesized that biasing Gßγ signaling with gallein could prevent activation of regulatory signaling pathways that result in tolerance to antinociceptive effects of MOR agonists. Gallein has been shown to bind to Gßγ and inhibit interactions of Gßγ with phospholipase-Cß3 (PLCß3) or G-protein-coupled receptor kinase 2 (GRK2) but not G-protein inwardly rectifying potassium (GIRK) channels. In mice, morphine-induced antinociception was evaluated in the 55°C warm water tail withdrawal assay. We used two paradigms for gallein treatment: administration during and after three times-daily morphine administration. Our results show that gallein cotreatment during repeated administration of morphine decreased opioid tolerance development and that gallein treatment in an opioid-tolerant state enhanced the potency of morphine. Mechanistically, our data suggest that PLCß3 is necessary for potentiating effects of gallein in an opioid-tolerant state but not in preventing the development of tolerance. These studies demonstrate that small molecules that target Gßγ signaling could reduce the need for large doses of opioid analgesics to treat pain by producing an opioid-sparing effect. SIGNIFICANCE STATEMENT: Biasing Gßγ signaling prevents tolerance to repeated morphine administration in vivo and potentiates the antinociceptive effects of morphine in an opioid-tolerant state. Mechanistically, phospholipase-Cß is necessary for potentiating effects of gallein in an opioid-tolerant state but not in preventing the development of tolerance. This study identifies a novel treatment strategy to decrease the development of tolerance to the analgesic effects of mu-opioid receptor agonists, which are necessary to improve pain treatment and decrease the incidence of opioid use disorder.


Asunto(s)
Analgésicos Opioides , Tolerancia a Medicamentos , Subunidades beta de la Proteína de Unión al GTP , Subunidades gamma de la Proteína de Unión al GTP , Ratones Endogámicos C57BL , Morfina , Nocicepción , Transducción de Señal , Animales , Morfina/farmacología , Tolerancia a Medicamentos/fisiología , Transducción de Señal/efectos de los fármacos , Ratones , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Masculino , Analgésicos Opioides/farmacología , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Nocicepción/efectos de los fármacos , Receptores Opioides mu/metabolismo , Receptores Opioides mu/agonistas , Fosfolipasa C beta/metabolismo , Xantenos
12.
Trends Genet ; 37(1): 4-8, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33203570

RESUMEN

For bacteria, the transition from unicellular entities to multicellular biofilm communities generates distinct metabolic microenvironments. Dynamic and programmed metabolic responses allow the biofilms to react to local changes in nutrient levels. Moreover, metabolic adaptations contribute to phenotypic antibiotic resistance of the community, suggesting novel therapeutic approaches to target biofilms.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Microambiente Celular , Farmacorresistencia Microbiana , Animales , Bacterias/metabolismo , Tolerancia a Medicamentos , Humanos , Metaboloma , Viabilidad Microbiana
13.
PLoS Pathog ; 18(11): e1010963, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36374854

RESUMEN

Genetically susceptible bacteria can escape the action of bactericidal antibiotics through antibiotic tolerance or persistence. However, one major difference between the two phenomena is their distinct penetrance within an isogenic population. While with antibiotic persistence, susceptible and persister cells co-exist, antibiotic tolerance affects the entire bacterial population. Here, we show that antibiotic tolerance can be achieved in numerous non-specific ways in vitro and during infection. More importantly, we highlight that, due to their impact on the entire bacterial population, these tolerance-inducing conditions completely mask persistence and the action of its molecular determinants. Finally, we show that even though tolerant populations display a high survival rate under bactericidal drug treatment, this feature comes at the cost of having impaired proliferation during infection. In contrast, persistence is a risk-limiting strategy that allows bacteria to survive antibiotic treatment without reducing the ability of the population to colonize their host. Altogether, our data emphasise that the distinction between these phenomena is of utmost importance to improve the design of more efficient antibiotic therapies.


Asunto(s)
Antibacterianos , Bacterias , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Tolerancia a Medicamentos
14.
PLoS Pathog ; 18(7): e1010705, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35830479

RESUMEN

Despite the existence of well-characterized, canonical mutations that confer high-level drug resistance to Mycobacterium tuberculosis (Mtb), there is evidence that drug resistance mechanisms are more complex than simple acquisition of such mutations. Recent studies have shown that Mtb can acquire non-canonical resistance-associated mutations that confer survival advantages in the presence of certain drugs, likely acting as stepping-stones for acquisition of high-level resistance. Rv2752c/rnj, encoding RNase J, is disproportionately mutated in drug-resistant clinical Mtb isolates. Here we show that deletion of rnj confers increased tolerance to lethal concentrations of several drugs. RNAseq revealed that RNase J affects expression of a subset of genes enriched for PE/PPE genes and stable RNAs and is key for proper 23S rRNA maturation. Gene expression differences implicated two sRNAs and ppe50-ppe51 as important contributors to the drug tolerance phenotype. In addition, we found that in the absence of RNase J, many short RNA fragments accumulate because they are degraded at slower rates. We show that the accumulated transcript fragments are targets of RNase J and are characterized by strong secondary structure and high G+C content, indicating that RNase J has a rate-limiting role in degradation of highly structured RNAs. Taken together, our results demonstrate that RNase J indirectly affects drug tolerance, as well as reveal the endogenous roles of RNase J in mycobacterial RNA metabolism.


Asunto(s)
Mycobacterium tuberculosis , Ribonucleasas , Tolerancia a Medicamentos , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo
15.
PLoS Pathog ; 18(2): e1010307, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35130322

RESUMEN

Antibiotic tolerance is an understudied potential contributor to antibiotic treatment failure and the emergence of multidrug-resistant bacteria. The molecular mechanisms governing tolerance remain poorly understood. A prominent type of ß-lactam tolerance relies on the formation of cell wall-deficient spheroplasts, which maintain structural integrity via their outer membrane (OM), an asymmetric lipid bilayer consisting of phospholipids on the inner leaflet and a lipid-linked polysaccharide (lipopolysaccharide, LPS) enriched in the outer monolayer on the cell surface. How a membrane structure like LPS, with its reliance on mere electrostatic interactions to maintain stability, is capable of countering internal turgor pressure is unknown. Here, we have uncovered a novel role for the PhoPQ two-component system in tolerance to the ß-lactam antibiotic meropenem in Enterobacterales. We found that PhoPQ is induced by meropenem treatment and promotes an increase in 4-amino-4-deoxy-L-aminoarabinose [L-Ara4N] modification of lipid A, the membrane anchor of LPS. L-Ara4N modifications likely enhance structural integrity, and consequently tolerance to meropenem, in several Enterobacterales species. Importantly, mutational inactivation of the negative PhoPQ regulator mgrB (commonly selected for during clinical therapy with the last-resort antibiotic colistin, an antimicrobial peptide [AMP]) results in dramatically enhanced tolerance, suggesting that AMPs can collaterally select for meropenem tolerance via stable overactivation of PhoPQ. Lastly, we identify histidine kinase inhibitors (including an FDA-approved drug) that inhibit PhoPQ-dependent LPS modifications and consequently potentiate meropenem to enhance lysis of tolerant cells. In summary, our results suggest that PhoPQ-mediated LPS modifications play a significant role in stabilizing the OM, promoting survival when the primary integrity maintenance structure, the cell wall, is removed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbapenémicos/farmacología , Tolerancia a Medicamentos , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/metabolismo , Lipopolisacáridos/metabolismo , Antibacterianos/farmacología , Péptidos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colistina/farmacología , Enterobacter cloacae/genética , Regulación de la Expresión Génica , Histidina Quinasa/antagonistas & inhibidores , Humanos , Lípido A/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana
16.
Annu Rev Microbiol ; 73: 359-385, 2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31500532

RESUMEN

Persisters are nongrowing, transiently antibiotic-tolerant bacteria within a clonal population of otherwise susceptible cells. Their formation is triggered by environmental cues and involves the main bacterial stress response pathways that allow persisters to survive many harsh conditions, including antibiotic exposure. During infection, bacterial pathogens are exposed to a vast array of stresses in the host and form nongrowing persisters that survive both antibiotics and host immune responses, thereby most likely contributing to the relapse of many infections. While antibiotic persisters have been extensively studied over the last decade, the bulk of the work has focused on how these bacteria survive exposure to drugs in vitro. The ability of persisters to survive their interaction with a host is important yet underinvestigated. In order to tackle the problem of persistence of infections that contribute to the worldwide antibiotic resistance crisis, efforts should be made by scientific communities to understand and merge these two fields of research: antibiotic persisters and host-pathogen interactions. Here we give an overview of the history of the field of antibiotic persistence, report evidence for the importance of persisters in infection, and highlight studies that bridge the two areas.


Asunto(s)
Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/microbiología , Interacciones Huésped-Patógeno , Viabilidad Microbiana , Estrés Fisiológico , Bacterias/efectos de los fármacos , Tolerancia a Medicamentos
17.
PLoS Biol ; 19(3): e3001093, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690640

RESUMEN

Bacterial opportunistic human pathogens frequently exhibit intrinsic antibiotic tolerance and resistance, resulting in infections that can be nearly impossible to eradicate. We asked whether this recalcitrance could be driven by these organisms' evolutionary history as environmental microbes that engage in chemical warfare. Using Pseudomonas aeruginosa as a model, we demonstrate that the self-produced antibiotic pyocyanin (PYO) activates defenses that confer collateral tolerance specifically to structurally similar synthetic clinical antibiotics. Non-PYO-producing opportunistic pathogens, such as members of the Burkholderia cepacia complex, likewise display elevated antibiotic tolerance when cocultured with PYO-producing strains. Furthermore, by widening the population bottleneck that occurs during antibiotic selection and promoting the establishment of a more diverse range of mutant lineages, PYO increases apparent rates of mutation to antibiotic resistance to a degree that can rival clinically relevant hypermutator strains. Together, these results reveal an overlooked mechanism by which opportunistic pathogens that produce natural toxins can dramatically modulate the efficacy of clinical antibiotics and the evolution of antibiotic resistance, both for themselves and other members of clinically relevant polymicrobial communities.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Bacterias/genética , Burkholderia cepacia/efectos de los fármacos , Burkholderia cepacia/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Tolerancia a Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Piocianina/metabolismo , Piocianina/farmacología
18.
Pharmacol Res ; 203: 107163, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569982

RESUMEN

Current cancer therapy can be effective, but the development of drug resistant disease is the usual outcome. These drugs can eliminate most of the tumor burden but often fail to eliminate the rare, "Drug Tolerant Persister" (DTP) cell subpopulations in residual tumors, which can be referred to as "Persister" cells. Therefore, novel therapeutic agents specifically targeting or preventing the development of drug-resistant tumors mediated by the remaining persister cells subpopulations are needed. Since approximately ninety percent of cancer-related deaths occur because of the eventual development of drug resistance, identifying, and dissecting the biology of the persister cells is essential for the creation of drugs to target them. While there remains uncertainty surrounding all the markers identifying DTP cells in the literature, this review summarizes the drugs and therapeutic approaches that are available to target the persister cell subpopulations expressing the cellular markers ATP-binding cassette sub-family B member 5 (ABCB5), CD133, CD271, Lysine-specific histone demethylase 5 (KDM5), and aldehyde dehydrogenase (ALDH). Persister cells expressing these markers were selected as the focus of this review because they have been found on cells surviving following drug treatments that promote recurrent drug resistant cancer and are associated with stem cell-like properties, including self-renewal, differentiation, and resistance to therapy. The limitations and obstacles facing the development of agents targeting these DTP cell subpopulations are detailed, with discussion of potential solutions and current research areas needing further exploration.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Tolerancia a Medicamentos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética
19.
PLoS Genet ; 17(10): e1009826, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34624020

RESUMEN

Development of cell factories for conversion of lignocellulosic biomass hydrolysates into biofuels or bio-based chemicals faces major challenges, including the presence of inhibitory chemicals derived from biomass hydrolysis or pretreatment. Extensive screening of 2526 Saccharomyces cerevisiae strains and 17 non-conventional yeast species identified a Candida glabrata strain as the most 5-hydroxymethylfurfural (HMF) tolerant. Whole-genome (WG) transformation of the second-generation industrial S. cerevisiae strain MD4 with genomic DNA from C. glabrata, but not from non-tolerant strains, allowed selection of stable transformants in the presence of HMF. Transformant GVM0 showed the highest HMF tolerance for growth on plates and in small-scale fermentations. Comparison of the WG sequence of MD4 and GVM1, a diploid segregant of GVM0 with similarly high HMF tolerance, surprisingly revealed only nine non-synonymous SNPs, of which none were present in the C. glabrata genome. Reciprocal hemizygosity analysis in diploid strain GVM1 revealed AST2N406I as the only causative mutation. This novel SNP improved tolerance to HMF, furfural and other inhibitors, when introduced in different yeast genetic backgrounds and both in synthetic media and lignocellulose hydrolysates. It stimulated disappearance of HMF and furfural from the medium and enhanced in vitro furfural NADH-dependent reducing activity. The corresponding mutation present in AST1 (i.e. AST1D405I) the paralog gene of AST2, also improved inhibitor tolerance but only in combination with AST2N406I and in presence of high inhibitor concentrations. Our work provides a powerful genetic tool to improve yeast inhibitor tolerance in lignocellulosic biomass hydrolysates and other inhibitor-rich industrial media, and it has revealed for the first time a clear function for Ast2 and Ast1 in inhibitor tolerance.


Asunto(s)
Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Tolerancia a Medicamentos/genética , Furaldehído/análogos & derivados , Mutación/genética , Saccharomyces cerevisiae/genética , Transformación Genética/genética , Biomasa , Fermentación/genética , Furaldehído/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética
20.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34426499

RESUMEN

Mycobacterium tuberculosis (Mtb) infection is difficult to treat because Mtb spends the majority of its life cycle in a nonreplicating (NR) state. Since NR Mtb is highly tolerant to antibiotic effects and can mutate to become drug resistant (DR), our conventional tuberculosis (TB) treatment is not effective. Thus, a novel strategy to kill NR Mtb is required. Accumulating evidence has shown that repetitive exposure to sublethal doses of antibiotics enhances the level of drug tolerance, implying that NR Mtb is formed by adaptive metabolic remodeling. As such, metabolic modulation strategies to block the metabolic remodeling needed to form NR Mtb have emerged as new therapeutic options. Here, we modeled in vitro NR Mtb using hypoxia, applied isotope metabolomics, and revealed that phosphoenolpyruvate (PEP) is nearly completely depleted in NR Mtb. This near loss of PEP reduces PEP-carbon flux toward multiple pathways essential for replication and drug sensitivity. Inversely, supplementing with PEP restored the carbon flux and the activities of the foregoing pathways, resulting in growth and heightened drug susceptibility of NR Mtb, which ultimately prevented the development of DR. Taken together, PEP depletion in NR Mtb is associated with the acquisition of drug tolerance and subsequent emergence of DR, demonstrating that PEP treatment is a possible metabolic modulation strategy to resensitize NR Mtb to conventional TB treatment and prevent the emergence of DR.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Tolerancia a Medicamentos , Hipoxia/fisiopatología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Fosfoenolpiruvato/metabolismo , Humanos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA