Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 146(1)2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30538100

RESUMEN

The gynoecium, the female reproductive part of the flower, is key for plant sexual reproduction. During its development, inner tissues such as the septum and the transmitting tract tissue, important for pollen germination and guidance, are formed. In Arabidopsis, several transcription factors are known to be involved in the development of these tissues. One of them is NO TRANSMITTING TRACT (NTT), essential for transmitting tract formation. We found that the NTT protein can interact with several gynoecium-related transcription factors, including several MADS-box proteins, such as SEEDSTICK (STK), known to specify ovule identity. Evidence suggests that NTT and STK control enzyme and transporter-encoding genes involved in cell wall polysaccharide and lipid distribution in gynoecial medial domain cells. The results indicate that the simultaneous loss of NTT and STK activity affects polysaccharide and lipid deposition and septum fusion, and delays entry of septum cells to their normal degradation program. Furthermore, we identified KAWAK, a direct target of NTT and STK, which is required for the correct formation of fruits in Arabidopsis These findings position NTT and STK as important factors in determining reproductive competence.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Frutas/embriología , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Pared Celular/genética , Pared Celular/metabolismo , Frutas/genética , Frutas/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Metabolismo de los Lípidos/genética , Proteínas de Dominio MADS/genética , Mananos/metabolismo , Meristema/metabolismo , Mutación/genética , Tubo Polínico/embriología , Tubo Polínico/metabolismo , Tubo Polínico/ultraestructura , Unión Proteica , Reproducción , Transcripción Genética
2.
New Phytol ; 221(2): 1074-1089, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30169910

RESUMEN

In angiosperms, pollen tube entry into the ovule generally takes place through the micropyle, but the exact role of the micropyle in pollen tube guidance remains unclear. A limited number of studies have examined eudicots with bitegmic micropyles, but information is lacking in ovules of basal/early-divergent angiosperms with unitegmic micropyles. We have evaluated the role of the micropyle in pollen tube guidance in an early-divergent angiosperm (Annona cherimola) and the evolutionarily derived Arabidopsis thaliana by studying γ-aminobutyric acid (GABA) and arabinogalactan proteins (AGPs) in wild-type plants and integument-defective mutants. A conserved inhibitory role of GABA in pollen tube growth was shown in A. cherimola, in which AGPs surround the egg apparatus. In Arabidopsis, the micropyle formed only by the outer integument in wuschel-7 mutants caused a partial defect in pollen tube guidance. Moreover, pollen tubes were not observed in the micropyle of an inner no outer (ino) mutant in Arabidopsis, but were observed in homologous ino mutants in Annona. The similar distribution of GABA and AGPs observed in the micropyle of Arabidopsis and Annona, together with the anomalies from specific integument mutants, support the role of the inner integument in preventing multiple tube entrance (polytubey) in these two phylogenetically distant genera.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodominio/metabolismo , Magnoliopsida/fisiología , Mucoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Annona/genética , Annona/fisiología , Annona/ultraestructura , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Evolución Biológica , Proteínas de Homeodominio/genética , Magnoliopsida/genética , Magnoliopsida/ultraestructura , Mucoproteínas/genética , Mutación , Óvulo Vegetal/genética , Óvulo Vegetal/fisiología , Óvulo Vegetal/ultraestructura , Filogenia , Proteínas de Plantas/genética , Tubo Polínico/genética , Tubo Polínico/fisiología , Tubo Polínico/ultraestructura , Polinización , Ácido gamma-Aminobutírico/metabolismo
3.
Plant Physiol ; 176(3): 1981-1992, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29247121

RESUMEN

Leu-rich repeat extensins (LRXs) are chimeric proteins containing an N-terminal Leu-rich repeat (LRR) and a C-terminal extensin domain. LRXs are involved in cell wall formation in vegetative tissues and required for plant growth. However, the nature of their role in these cellular processes remains to be elucidated. Here, we used a combination of molecular techniques, light microscopy, and transmission electron microscopy to characterize mutants of pollen-expressed LRXs in Arabidopsis (Arabidopsisthaliana). Mutations in multiple pollen-expressed lrx genes cause severe defects in pollen germination and pollen tube growth, resulting in a reduced seed set. Physiological experiments demonstrate that manipulating Ca2+ availability partially suppresses the pollen tube growth defects, suggesting that LRX proteins influence Ca2+-related processes. Furthermore, we show that LRX protein localizes to the cell wall, and its LRR-domain (which likely mediates protein-protein interactions) is associated with the plasma membrane. Mechanical analyses by cellular force microscopy and finite element method-based modeling revealed significant changes in the material properties of the cell wall and the fine-tuning of cellular biophysical parameters in the mutants compared to the wild type. The results indicate that LRX proteins might play a role in cell wall-plasma membrane communication, influencing cell wall formation and cellular mechanics.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Tubo Polínico/crecimiento & desarrollo , Polen/crecimiento & desarrollo , Proteínas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Fenómenos Biofísicos , Calcio/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Pared Celular/ultraestructura , Análisis de Elementos Finitos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Proteínas Repetidas Ricas en Leucina , Mutación/genética , Fenotipo , Polen/citología , Polen/genética , Polen/ultraestructura , Tubo Polínico/citología , Tubo Polínico/genética , Tubo Polínico/ultraestructura , Proteínas/genética , Semillas/efectos de los fármacos , Semillas/metabolismo , Semillas/ultraestructura
4.
Plant Cell Environ ; 42(12): 3340-3354, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31380565

RESUMEN

Pollen adhesion and hydration are the earliest events of the pollen-stigma interactions, which allow compatible pollen to fertilize egg cells, but the underlying mechanisms are still poorly understood. Rice pollen are wind dispersed, and its pollen coat contains less abundant lipids than that of insect-pollinated plants. Here, we characterized the role of OsGL1-4, a rice member of the Glossy family, in pollen adhesion and hydration. OsGL1-4 is preferentially expressed in pollen and tapetal cells and is required for the synthesis of very long chain alkanes. osgl1-4 mutant generated apparently normal pollen but displayed excessively fast dehydration at anthesis and defective adhesion and hydration under normal condition, but the defective adhesion and hydration were rescued by high humidity. Gas chromatography-mass spectrometry analysis suggested that the humidity-sensitive male sterility of osgl1-4 was probably due to a significant reduction in C25 and C27 alkanes. These results indicate that very long chain alkanes are components of rice pollen coat and control male fertility via affecting pollen adhesion and hydration in response to environmental humidity. Moreover, we proposed that a critical point of water content in mature pollen is required for the initiation of pollen adhesion.


Asunto(s)
Alcanos/metabolismo , Vías Biosintéticas , Humedad , Oryza/fisiología , Infertilidad Vegetal/fisiología , Polen/fisiología , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/ultraestructura , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/ultraestructura , Tubo Polínico/fisiología , Tubo Polínico/ultraestructura , Ceras/metabolismo
5.
Plant Physiol ; 175(3): 1186-1202, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28916592

RESUMEN

The CLAVATA3/ESR-RELATED (CLE) peptide signals are required for cell-cell communication in several plant growth and developmental processes. However, little is known regarding the possible functions of the CLEs in the anther. Here, we show that a T-DNA insertional mutant, and dominant-negative (DN) and overexpression (OX) transgenic plants of the CLE19 gene, exhibited significantly reduced anther size and pollen grain number and abnormal pollen wall formation in Arabidopsis (Arabidopsis thaliana). Interestingly, the DN-CLE19 pollen grains showed a more extensively covered surface, but CLE19-OX pollen exine exhibited clearly missing connections in the network and lacked separation between areas that normally form the lacunae. With a combination of cell biological, genetic, and transcriptomic analyses on cle19, DN-CLE19, and CLE19-OX plants, we demonstrated that CLE19-OX plants produced highly vacuolated and swollen aborted microspores (ams)-like tapetal cells, lacked lipidic tapetosomes and elaioplasts, and had abnormal pollen primexine without obvious accumulation of sporopollenin precursors. Moreover, CLE19 is important for the normal expression of more than 1,000 genes, including the transcription factor gene AMS, 280 AMS-downstream genes, and other genes involved in pollen coat and pollen exine formation, lipid metabolism, pollen germination, and hormone metabolism. In addition, the DN-CLE19(+/+) ams(-/-) plants exhibited the ams anther phenotype and ams(+/-) partially suppressed the DN-CLE19 transgene-induced pollen exine defects. These findings demonstrate that the proper amount of CLE19 signal is essential for the normal expression of AMS and its downstream gene networks in the regulation of anther development and pollen exine formation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Perfilación de la Expresión Génica , Polen/citología , Polen/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación/genética , Lípidos/química , Modelos Biológicos , Mutagénesis Insercional , Mutación/genética , Fenoles/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Polen/ultraestructura , Tubo Polínico/citología , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/ultraestructura , Reproducción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Plant Cell Rep ; 37(7): 1003-1009, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29644403

RESUMEN

KEY MESSAGE: BcMF23a contributes to pollen wall development via influencing intine construction, which, in turn, influences pollen tube growth. Pollen wall, the morphological out face of pollen, surrounds male gametophyte and plays an important role in plant reproduction. Pectin methylesterases (PMEs) are involved in pollen wall construction by de-esterifying pectin of the intine. In this study, the function of a putative pectin methylesterase gene, Brassica campestris Male Fertility 23a (BcMF23a), was investigated. Knockdown of BcMF23a by artificial microRNA (amiRNA) technology resulted in abnormal pollen intine formation outside of the germinal furrows at the binucleate stage. At the trinucleate stage, 20.69% of pollen possessed the degradation of nuclei, cytoplasm and the intine, resulting in shrunken pollen, whereas the remaining 75.86% were wall-disrupted with degrading cytoplasm and broken exine inside the germinal furrows. In addition, pollen abortion in transgenic plants caused germination percentage reduction by 19% in vitro and pollen tube growth disruption in natural stigma in vivo. Taken together, BcMF23a is involved in pollen development and pollen tube growth, possibly via participating in intine construction. This study may contribute towards understanding the function of pollen-specific PMEs and the molecular regulatory network of pollen wall development.


Asunto(s)
Brassica/genética , Hidrolasas de Éster Carboxílico/genética , Proteínas de Plantas/genética , Tubo Polínico/crecimiento & desarrollo , Brassica/crecimiento & desarrollo , Hidrolasas de Éster Carboxílico/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Germinación , MicroARNs , Microscopía Electrónica de Rastreo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Tubo Polínico/genética , Tubo Polínico/ultraestructura
7.
BMC Plant Biol ; 17(1): 176, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29078752

RESUMEN

BACKGROUND: The pollen tube (PT) serves as a model system for investigating plant cell growth and morphogenesis. Ultrastructural studies are indispensable to complement data from physiological and genetic analyses, yet an effective method is lacking for PTs of the model plant Arabidopsis thaliana. METHODS: Here, we present reliable approaches for ultrastructural studies of Arabidopsis PTs, as well as an efficient technique for immunogold detection of cell wall epitopes. Using different fixation and embedding strategies, we show the amount of PT ultrastructural details that can be obtained by the different methods. RESULTS: Dozens of cross-sections can be obtained simultaneously by the approach, which facilitates and shortens the time for evaluation. In addition to in vitro-grown PTs, our study follows the route of PTs from germination, growth along the pistil, to the penetration of the dense stylar tissue, which requires considerable mechanical forces. To this end, PTs have different strategies from growing between cells but also between the protoplast and the cell wall and even within each other, where they share a partly common cell wall. The separation of PT cell walls in an outer and an inner layer reported for many plant species is less clear in Arabidopsis PTs, where these cell wall substructures are connected by a distinct transition zone. CONCLUSIONS: The major advancement of this method is the effective production of a large number of longitudinal and cross-sections that permits obtaining a detailed and representative picture of pollen tube structures in an unprecedented way. This is particularly important when comparing PTs of wild type and mutants to identify even subtle alterations in cytoarchitecture. Arabidopsis is an excellent plant for genetic manipulation, yet the PTs, several-times smaller compared to tobacco or lily, represent a technical challenge. This study reveals a method to overcome this problem and make Arabidopsis PTs more amenable to a combination of genetic and ultrastructural analyses.


Asunto(s)
Arabidopsis/ultraestructura , Tubo Polínico/ultraestructura , Criopreservación/métodos , Crioultramicrotomía/métodos , Inmunohistoquímica/métodos , Microscopía Electrónica de Transmisión/métodos , Adhesión del Tejido/métodos
8.
Planta ; 245(5): 909-926, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28078426

RESUMEN

MAIN CONCLUSION: Calreticulin is involved in stabilization of the tip-focused Ca 2+ gradient and the actin cytoskeleton arrangement and function that is required for several key processes driving Petunia pollen tube tip growth. Although the precise mechanism is unclear, stabilization of a tip-focused calcium (Ca2+) gradient seems to be critical for pollen germination and pollen tube growth. We hypothesize that calreticulin (CRT), a Ca2+-binding/buffering chaperone typically residing in the lumen of the endoplasmic reticulum (ER) of eukaryotic cells, is an excellent candidate to fulfill this role. We previously showed that in Petunia pollen tubes growing in vitro, CRT is translated on ER membrane-bound ribosomes that are abundant in the subapical zone of the tube, where CRT's Ca2+-buffering and chaperone activities might be particularly required. Here, we sought to determine the function of CRT using small interfering RNA (siRNA) to, for the first time in pollen tubes growing in vitro, knockdown expression of a gene. We demonstrate that siRNA-mediated post-transcriptional silencing of Petunia hybrida CRT gene (PhCRT) expression strongly impairs pollen tube growth, cytoplasmic zonation, actin cytoskeleton organization, and the tip-focused Ca2+ gradient. Moreover, reduction of CRT alters the localization and disturbs the structure of the ER in abnormally elongating pollen tubes. Finally, cytoplasmic streaming is inhibited, and most of the pollen tubes rupture. Our data clearly show an interplay between CRT, Ca2+ gradient, actin-dependent cytoplasmic streaming, organelle positioning, and vesicle trafficking during pollen tube elongation. Thus, we suggest that CRT functions in Petunia pollen tube growth by stabilizing Ca2+ homeostasis and acting as a chaperone to assure quality control of glycoproteins passing through the ER.


Asunto(s)
Calcio/metabolismo , Calreticulina/metabolismo , Regulación de la Expresión Génica de las Plantas , Petunia/fisiología , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/metabolismo , Actinas/ultraestructura , Calreticulina/genética , Citoplasma/metabolismo , Citoplasma/ultraestructura , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Homeostasis , Petunia/genética , Petunia/crecimiento & desarrollo , Petunia/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Polen/ultraestructura , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/fisiología , Tubo Polínico/ultraestructura , Polinización , Transporte de Proteínas , ARN Interferente Pequeño
9.
New Phytol ; 213(2): 764-777, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27596924

RESUMEN

The establishment of pollen-pistil compatibility is strictly regulated by factors derived from both male and female reproductive structures. Highly diverse small cysteine-rich proteins (CRPs) have been found to play multiple roles in plant reproduction, including the earliest stages of the pollen-stigma interaction. Secreted CRPs found in the pollen coat of members of the Brassicaceae, the pollen coat proteins (PCPs), are emerging as important signalling molecules that regulate the pollen-stigma interaction. Using a combination of protein characterization, expression and phylogenetic analyses we identified a novel class of Arabidopsis thaliana pollen-borne CRPs, the PCP-Bs (for pollen coat protein B-class) that are related to embryo surrounding factor (ESF1) developmental regulators. Single and multiple PCP-B mutant lines were utilized in bioassays to assess effects on pollen hydration, adhesion and pollen tube growth. Our results revealed that pollen hydration is severely impaired when multiple PCP-Bs are lost from the pollen coat. The hydration defect also resulted in reduced pollen adhesion and delayed pollen tube growth in all mutants studied. These results demonstrate that AtPCP-Bs are key regulators of the hydration 'checkpoint' in establishment of pollen-stigma compatibility. In addition, we propose that interspecies diversity of PCP-Bs may contribute to reproductive barriers in the Brassicaceae.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/fisiología , Polen/fisiología , Agua/metabolismo , Adhesividad , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Cisteína/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutación/genética , Filogenia , Polen/crecimiento & desarrollo , Polen/ultraestructura , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/ultraestructura , Polimorfismo Genético , Homología de Secuencia de Aminoácido
10.
Plant Physiol ; 172(3): 1625-1642, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27634427

RESUMEN

The pollen wall protects pollen grains from abiotic and biotic stresses. During pollen wall development, tapetal cells play a vital role by secreting proteins, signals, and pollen wall material to ensure microspore development. But the regulatory mechanism underlying the secretory pathway of the tapetum is largely unknown. Here, we characterize the essential role of the Arabidopsis (Arabidopsis thaliana) COPII protein SECRETORY31B (SEC31B) in pollen wall development and the secretory activity of tapetal cells. The sporophyte-controlled atsec31b mutant exhibits severe pollen and seed abortion. Transmission electron microscopy observation indicates that pollen exine formation in the atsec31b mutant is disrupted significantly. AtSEC31B is a functional COPII protein revealed by endoplasmic reticulum (ER) exit site localization, interaction with AtSEC13A, and retarded ER-Golgi protein trafficking in the atsec31b mutant. A genetic tapetum-specific rescue assay indicates that AtSEC31B functions primarily in the tapetum. Moreover, deletion of AtSEC31B interrupted the formation of the ER-derived tapetosome and altered the location of the ATP-BINDING CASSETTE TRANSPORTER9 protein in the tapetum. Therefore, this work demonstrates that AtSEC31B plays a vital role in pollen wall development by regulating the secretory pathway of the tapetal cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Pared Celular/metabolismo , Polen/citología , Polen/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Pared Celular/ultraestructura , Retículo Endoplásmico/metabolismo , Fertilidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Proteínas Fluorescentes Verdes/metabolismo , Homocigoto , Mutación/genética , Fenotipo , Infertilidad Vegetal/genética , Plantas Modificadas Genéticamente , Polen/ultraestructura , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/ultraestructura , Proteínas de Transporte Vesicular/genética
11.
Plant Cell ; 26(9): 3538-55, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25194029

RESUMEN

The tubular growth of a pollen tube cell is crucial for the sexual reproduction of flowering plants. LePRK1 is a pollen-specific and plasma membrane-localized receptor-like kinase from tomato (Solanum lycopersicum). LePRK1 interacts with another receptor, LePRK2, and with KINASE PARTNER PROTEIN (KPP), a Rop guanine nucleotide exchange factor. Here, we show that pollen tubes overexpressing LePRK1 or a truncated LePRK1 lacking its extracellular domain (LePRK1ΔECD) have enlarged tips but also extend their leading edges by producing "blebs." Coexpression of LePRK1 and tomato PLIM2a, an actin bundling protein that interacts with KPP in a Ca(2+)-responsive manner, suppressed these LePRK1 overexpression phenotypes, whereas pollen tubes coexpressing KPP, LePRK1, and PLIM2a resumed the blebbing growth mode. We conclude that overexpression of LePRK1 or LePRK1ΔECD rewires pollen tube growth to a blebbing mode, through KPP- and PLIM2a-mediated bundling of actin filaments from tip plasma membranes. Arabidopsis thaliana pollen tubes expressing LePRK1ΔECD also grew by blebbing. Our results exposed a hidden capability of the pollen tube cell: upon overexpression of a single membrane-localized molecule, LePRK1 or LePRK1ΔECD, it can switch to an alternative mechanism for extension of the leading edge that is analogous to the blebbing growth mode reported for Dictyostelium and for Drosophila melanogaster stem cells.


Asunto(s)
Extensiones de la Superficie Celular/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/enzimología , Tubo Polínico/crecimiento & desarrollo , Solanum lycopersicum/enzimología , Solanum lycopersicum/crecimiento & desarrollo , Actinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Solanum lycopersicum/genética , Fenotipo , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Tubo Polínico/ultraestructura , Unión Proteica , Transporte de Proteínas
12.
Plant Cell ; 26(2): 602-18, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24532595

RESUMEN

Transcriptome profiling has been used to identify genes expressed in pollen tubes elongating in vitro; however, little is known of the transcriptome of in vivo-grown pollen tubes due to the difficulty of collecting pollen that is elongating within the solid maternal gynoecium. Using a pollen-specific promoter (ProLAT52) to generate epitope-tagged polysomal-RNA complexes that could be affinity purified, we obtained mRNAs undergoing translation (the translatome) of in vivo-grown pollen tubes from self-pollinated gynoecia of Arabidopsis thaliana. Translatomes of pollen grains as well as in vivo- and in vitro-cultured pollen tubes were assayed by microarray analyses, revealing over 500 transcripts specifically enriched in in vivo-elongating pollen tubes. Functional analyses of several in vivo mutants (iv) of these pollination-enhanced transcripts revealed partial pollination/fertilization and seed formation defects in siliques (iv2, iv4, and iv6). Cytological observation confirmed the involvement of these genes in specialized processes including micropylar guidance (IV6 and IV4), pollen tube burst (IV2), and repulsion of multiple pollen tubes in embryo sac (IV2). In summary, the selective immunopurification of transcripts engaged with polysomes in pollen tubes within self-fertilized florets has identified a cohort of pollination-enriched transcripts that facilitated the identification of genes important in in vivo pollen tube biology.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Perfilación de la Expresión Génica , Genes de Plantas , Tubo Polínico/fisiología , Polinización/genética , Biosíntesis de Proteínas/genética , Arabidopsis/ultraestructura , Cruzamientos Genéticos , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Familia de Multigenes , Mutagénesis Insercional/genética , Mutación/genética , Plantas Modificadas Genéticamente , Tubo Polínico/genética , Tubo Polínico/ultraestructura , Polirribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Autofecundación/genética
13.
Plant Cell ; 26(1): 325-39, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24424096

RESUMEN

The formation of distinct actin filament arrays in the subapical region of pollen tubes is crucial for pollen tube growth. However, the molecular mechanisms underlying the organization and dynamics of the actin filaments in this region remain to be determined. This study shows that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) has the actin filament-severing activity of an actin binding protein. This protein negatively regulated pollen tube growth by modulating the organization and dynamics of actin filaments in the subapical region of pollen tubes. MDP25 loss of function resulted in enhanced pollen tube elongation and inefficient fertilization. MDP25 bound directly to actin filaments and severed individual actin filaments, in a manner that was dramatically enhanced by Ca(2+), in vitro. Analysis of a mutant that bears a point mutation at the Ca(2+) binding sites demonstrated that the subcellular localization of MDP25 was determined by cytosolic Ca(2+) level in the subapical region of pollen tubes, where MDP25 was disassociated from the plasma membrane and moved into the cytosol. Time-lapse analysis showed that the F-actin-severing frequency significantly decreased and a high density of actin filaments was observed in the subapical region of mdp25-1 pollen tubes. This study reveals a mechanism whereby calcium enhances the actin filament-severing activity of MDP25 in the subapical region of pollen tubes to modulate pollen tube growth.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/fisiología , Tubo Polínico/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Calcio/metabolismo , Proteínas de Unión al Calcio/análisis , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Mutación Puntual , Tubo Polínico/metabolismo , Tubo Polínico/ultraestructura , Imagen de Lapso de Tiempo
14.
Planta ; 243(1): 43-63, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26335855

RESUMEN

MAIN CONCLUSION: Heat stress changes isoform content and distribution of cytoskeletal subunits in pollen tubes affecting accumulation of secretory vesicles and distribution of sucrose synthase, an enzyme involved in cell wall synthesis. Plants are sessile organisms and are therefore exposed to damages caused by the predictable increase in temperature. We have analyzed the effects of temperatures on the development of pollen tubes by focusing on the cytoskeleton and related processes, such as vesicular transport and cell wall synthesis. First, we show that heat stress affects pollen germination and, to a lesser extent, pollen tube growth. Both, microtubules and actin filaments, are damaged by heat treatment and changes of actin and tubulin isoforms were observed in both cases. Damages to actin filaments mainly concern the actin array present in the subapex, a region critical for determining organelle and vesicle content in the pollen tube apex. In support of this, green fluorescent protein-labeled vesicles are arranged differently between heat-stressed and control samples. In addition, newly secreted cell wall material (labeled by propidium iodide) shows an altered distribution. Damage induced by heat stress also extends to proteins that bind actin and participate in cell wall synthesis, such as sucrose synthase. Ultimately, heat stress affects the cytoskeleton thereby causing alterations in the process of vesicular transport and cell wall deposition.


Asunto(s)
Citoesqueleto/metabolismo , Glucosiltransferasas/metabolismo , Nicotiana/fisiología , Tubo Polínico/fisiología , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Pared Celular/metabolismo , Electroforesis en Gel Bidimensional , Proteínas Fluorescentes Verdes , Calor , Quimografía , Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/enzimología , Tubo Polínico/ultraestructura , Transporte de Proteínas , Estrés Fisiológico , Nicotiana/enzimología , Nicotiana/ultraestructura
15.
Plant Physiol ; 169(3): 1946-60, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26358416

RESUMEN

Pollen tube growth is an essential aspect of plant reproduction because it is the mechanism through which nonmotile sperm cells are delivered to ovules, thus allowing fertilization to occur. A pollen tube is a single cell that only grows at the tip, and this tip growth has been shown to depend on actin filaments. It is generally assumed that myosin-driven movements along these actin filaments are required to sustain the high growth rates of pollen tubes. We tested this conjecture by examining seed set, pollen fitness, and pollen tube growth for knockout mutants of five of the six myosin XI genes expressed in pollen of Arabidopsis (Arabidopsis thaliana). Single mutants had little or no reduction in overall fertility, whereas double mutants of highly similar pollen myosins had greater defects in pollen tube growth. In particular, myo11c1 myo11c2 pollen tubes grew more slowly than wild-type pollen tubes, which resulted in reduced fitness compared with the wild type and a drastic reduction in seed set. Golgi stack and peroxisome movements were also significantly reduced, and actin filaments were less organized in myo11c1 myo11c2 pollen tubes. Interestingly, the movement of yellow fluorescent protein-RabA4d-labeled vesicles and their accumulation at pollen tube tips were not affected in the myo11c1 myo11c2 double mutant, demonstrating functional specialization among myosin isoforms. We conclude that class XI myosins are required for organelle motility, actin organization, and optimal growth of pollen tubes.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Arabidopsis/fisiología , Miosinas/metabolismo , Orgánulos/metabolismo , Citoesqueleto de Actina/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genes Reporteros , Mutación , Miosinas/genética , Orgánulos/ultraestructura , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Polen/ultraestructura , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/fisiología , Tubo Polínico/ultraestructura , Polinización , Isoformas de Proteínas , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Semillas/ultraestructura
16.
Plant Physiol ; 168(2): 635-47, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25888616

RESUMEN

Efficient sugar transport is needed to support the high metabolic activity of pollen tubes as they grow through the pistil. Failure of transport results in male sterility. Although sucrose transporters have been shown to play a role in pollen tube development, the role of hexoses and hexose transporters is not as well established. The pollen of some species can grow in vitro on hexose as well as on sucrose, but knockouts of individual hexose transporters have not been shown to impair fertilization, possibly due to transporter redundancy. Here, the functions of CsHT1, a hexose transporter from cucumber (Cucumis sativus), are studied using a combination of heterologous expression in yeast (Saccharomyces cerevisiae), histochemical and immunohistochemical localization, and reverse genetics. The results indicate that CsHT1 is a plasma membrane-localized hexose transporter with high affinity for glucose, exclusively transcribed in pollen development and expressed both at the levels of transcription and translation during pollen grain germination and pollen tube growth. Overexpression of CsHT1 in cucumber pollen results in a higher pollen germination ratio and longer pollen tube growth than wild-type pollen in glucose- or galactose-containing medium. By contrast, antisense suppression of CsHT1 leads to inhibition of pollen germination and pollen tube elongation in the same medium and results in a decrease of seed number per fruit and seed size when antisense transgenic pollen is used to fertilize wild-type or transgenic cucumber plants. The important role of CsHT1 in pollen germination, pollen tube growth, and seed development is discussed.


Asunto(s)
Cucumis sativus/metabolismo , Regulación hacia Abajo , Germinación , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Carbohidratos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/ultraestructura , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Regulación hacia Abajo/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Galactosa/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Germinación/efectos de los fármacos , Glucosa/farmacología , Cinética , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/genética , Especificidad de Órganos/efectos de los fármacos , Fenotipo , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Tubo Polínico/efectos de los fármacos , Tubo Polínico/ultraestructura , ARN sin Sentido/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Semillas/efectos de los fármacos , Homología de Secuencia de Ácido Nucleico
17.
Plant Cell ; 25(4): 1288-303, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23613199

RESUMEN

There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKC(C) type and MIKC* type. In seed plants, the MIKC(C) type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Dominio MADS/genética , Oryza/genética , Proteínas de Plantas/genética , Polen/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/genética , Glucuronidasa/metabolismo , Hibridación in Situ , Proteínas de Dominio MADS/clasificación , Proteínas de Dominio MADS/metabolismo , Microscopía Electrónica de Transmisión , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polen/crecimiento & desarrollo , Polen/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo , Tubo Polínico/ultraestructura , Unión Proteica , Protoplastos/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Plant J ; 80(1): 185-95, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25041411

RESUMEN

The pollen tube is the most rapidly growing cell in the plant kingdom and has the function to deliver the sperm cells for fertilization. The growing tip region of the cell behaves in a chemotropic manner to respond to the guidance cues emitted by the pistil and the female gametophyte, but how it perceives and responds to these directional triggers is virtually unknown. Quantitative assessment of chemotropic behavior can greatly be enhanced by the administration of pharmacological or other biologically active agents at subcellular precision, which is a technical challenge when the target area moves as it grows. We developed a laminar flow based microfluidic device that allows for continuous administration of two different solutions with a movable interface that permits the dynamic targeting of the growing pollen tube apex over prolonged periods of time. Asymmetric administration of calcium revealed that rather than following the highest calcium concentration as would be expected with simple chemotropic behavior, the pollen tube of Camellia targets an optimal concentration suggesting the presence of two superimposed mechanisms. Subcellular application of pectin methyl esterase (PME), an enzyme that modifies the growth behavior by rigidifying the pollen tube cell wall, caused the tube to turn away from the agent - providing important evidence for a previously proposed conceptual model of the growth mechanism.


Asunto(s)
Calcio/metabolismo , Camellia/crecimiento & desarrollo , Tubo Polínico/crecimiento & desarrollo , Camellia/ultraestructura , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Pared Celular/metabolismo , Fertilización , Flores/crecimiento & desarrollo , Flores/ultraestructura , Modelos Biológicos , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubo Polínico/ultraestructura , Polinización
19.
Plant Cell ; 24(11): 4539-54, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23150633

RESUMEN

An actin fringe structure in the subapex plays an important role in pollen tube tip growth. However, the precise mechanism by which the actin fringe is generated and maintained remains largely unknown. Here, we cloned a 2606-bp full-length cDNA encoding a deduced 77-kD fimbrin-like protein from lily (Lilium longiflorum), named FIMBRIN1 (FIM1). Ll-FIM1 was preferentially expressed in pollen and concentrated at actin fringe in the subapical region, as well as in longitudinal actin-filament bundles in the shank of pollen tubes. Microinjection of Ll-FIM1 antibody into lily pollen tubes inhibited tip growth and disrupted the actin fringe. Furthermore, we verified the function of Ll-FIM1 in the fim5 mutant of its closest relative, Arabidopsis thaliana. Pollen tubes of fim5 mutants grew with a larger diameter in early stages but could recover into normal forms in later stages, despite significantly slower growth rates. The actin fringe of the fim5 mutants, however, was impaired during both early and late stages. Impressively, stable expression of fim5pro:GFP:Ll-FIM1 rescued the actin fringe and the growth rate of Arabidopsis fim5 pollen tubes. In vitro biochemical analysis showed that Ll-FIM1 could bundle actin filaments. Thus, our study has identified a fimbrin that may stabilize the actin fringe by cross-linking actin filaments into bundles, which is important for proper tip growth of lily pollen tubes.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Regulación de la Expresión Génica de las Plantas , Lilium/genética , Glicoproteínas de Membrana/genética , Proteínas de Microfilamentos/genética , Tubo Polínico/genética , Actinas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , ADN Complementario/genética , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Lilium/crecimiento & desarrollo , Lilium/metabolismo , Lilium/ultraestructura , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Datos de Secuencia Molecular , Mutación , Especificidad de Órganos , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Tubo Polínico/ultraestructura , Proteínas Recombinantes de Fusión , Análisis de Secuencia de ADN
20.
Am J Bot ; 102(7): 1026-39, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26199361

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: In angiosperms, several carpel tissues are specialized to facilitate pollen-tube elongation to achieve fertilization. We evaluated the possible evolutionary pathways of the diverse female reproductive tracts in Nyctaginaceae.• METHODS: We studied the anatomy of a range of species representing different tribes, using light, fluorescence, scanning electron, and transmission electron microscopy.• KEY RESULTS: Stigmas have multicellular, multiseriate papillae, except for Boerhavia diffusa with unicellular papillae. The styles are solid, with a strand of transmitting tissue linking the stigma with the ventral ovary wall. In Allionia, Boerhavia, and Mirabilis, the transmitting tissue branches into two independent tracts at the base of the ovary and continues across the lateral margins of the funicle to the micropyle; it is composed of cells with thick walls surrounded by abundant extracellular matrix. Bougainvillea, Pisonia, and Pisoniella have a diffuse transmitting tissue and an obturator, a proliferation of cells covered by a layer of secretory papillae that encloses the funicle, placenta, and ventral wall of the gynoecium and contacts with the micropyle.• CONCLUSIONS: We propose two models of female reproductive tract, (A) one in which an obturator is absent and the transmitting tissue is compact and branched and (B) one in which an obturator is present and the transmitting tissue is diffuse. On the basis of character optimization, we hypothesize that model B represents the ancestral (plesiomorphic) condition in the family and model A originated once during evolution, within the tribe Nyctagineae.


Asunto(s)
Flores/ultraestructura , Modelos Estructurales , Nyctaginaceae/ultraestructura , Evolución Biológica , Análisis por Conglomerados , Fertilización , Flores/genética , Nyctaginaceae/genética , Tubo Polínico/genética , Tubo Polínico/ultraestructura , Polinización , Reproducción , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA