Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 445
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 208(7): 758-769, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37523710

RESUMEN

Rationale: Club cell secretory protein (CC16) is an antiinflammatory protein highly expressed in the airways. CC16 deficiency has been associated with lung function deficits, but its role in asthma has not been established conclusively. Objectives: To determine 1) the longitudinal association of circulating CC16 with the presence of active asthma from early childhood through adult life and 2) whether CC16 in early childhood predicts the clinical course of childhood asthma into adult life. Methods: We assessed the association of circulating CC16 and asthma in three population-based birth cohorts: the Tucson Children's Respiratory Study (years 6-36; total participants, 814; total observations, 3,042), the Swedish Barn/Children, Allergy, Milieu, Stockholm, Epidemiological survey (years 8-24; total participants, 2,547; total observations, 3,438), and the UK Manchester Asthma and Allergy Study (years 5-18; total participants, 745; total observations, 1,626). Among 233 children who had asthma at the first survey in any of the cohorts, baseline CC16 was also tested for association with persistence of symptoms. Measurements and Main Results: After adjusting for covariates, CC16 deficits were associated with increased risk for the presence of asthma in all cohorts (meta-analyzed adjusted odds ratio per 1-SD CC16 decrease, 1.20; 95% confidence interval [CI], 1.12-1.28; P < 0.0001). The association was particularly strong for asthma with frequent symptoms (meta-analyzed adjusted relative risk ratio, 1.40; 95% CI, 1.24-1.57; P < 0.0001), was confirmed for both atopic and nonatopic asthma, and was independent of lung function impairment. After adjustment for known predictors of persistent asthma, children with asthma in the lowest CC16 tertile had a nearly fourfold increased risk for having frequent symptoms persisting into adult life compared with children with asthma in the other two CC16 tertiles (meta-analyzed adjusted odds ratio, 3.72; 95% CI, 1.78-7.76; P < 0.0001). Conclusions: Circulating CC16 deficits are associated with the presence of asthma with frequent symptoms from childhood through midadult life and predict the persistence of asthma symptoms into adulthood. These findings support a possible protective role of CC16 in asthma and its potential use for risk stratification.


Asunto(s)
Asma , Uteroglobina , Adulto , Niño , Preescolar , Humanos , Asma/sangre , Asma/epidemiología , Asma/genética , Asma/metabolismo , Uteroglobina/sangre , Uteroglobina/deficiencia , Uteroglobina/genética , Uteroglobina/metabolismo , Adolescente , Adulto Joven , Suecia/epidemiología
2.
Am J Respir Crit Care Med ; 207(4): 438-451, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36066606

RESUMEN

Rationale: CC16 is a protein mainly produced by nonciliated bronchial epithelial cells (BECs) that participates in host defense. Reduced CC16 protein concentrations in BAL and serum are associated with asthma susceptibility. Objectives: Few studies have investigated the relationship between CC16 and asthma progression, and none has focused on BECs. In this study, we sought to determine if CC16 mRNA expression levels in BECs are associated with asthma severity. Methods: Association analyses between CC16 mRNA expression levels in BECs (242 asthmatics and 69 control subjects) and asthma-related phenotypes in Severe Asthma Research Program were performed using a generalized linear model. Measurements and Main Results: Low CC16 mRNA expression levels in BECs were significantly associated with asthma susceptibility and asthma severity, high systemic corticosteroids use, high retrospective and prospective asthma exacerbations, and low pulmonary function. Low CC16 mRNA expression levels were significantly associated with high T2 inflammation biomarkers (fractional exhaled nitric oxide and sputum eosinophils). CC16 mRNA expression levels were negatively correlated with expression levels of Th2 genes (IL1RL1, POSTN, SERPINB2, CLCA1, NOS2, and MUC5AC) and positively correlated with expression levels of Th1 and inflammation genes (IL12A and MUC5B). A combination of two nontraditional T2 biomarkers (CC16 and IL-6) revealed four asthma endotypes with different characteristics of T2 inflammation, obesity, and asthma severity. Conclusions: Our findings indicate that low CC16 mRNA expression levels in BECs are associated with asthma susceptibility, severity, and exacerbations, partially through immunomodulation of T2 inflammation. CC16 is a potential nontraditional T2 biomarker for asthma development and progression.


Asunto(s)
Asma , Uteroglobina , Humanos , Asma/genética , Asma/metabolismo , Biomarcadores , Células Epiteliales/metabolismo , Inflamación/metabolismo , Estudios Prospectivos , Estudios Retrospectivos , ARN Mensajero/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
3.
Clin Exp Allergy ; 53(6): 648-658, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37009718

RESUMEN

BACKGROUND: Club cell 16-kDa secretory protein (CC16) is a pneumoprotein and functions as an anti-inflammatory or antioxidant protein. However, altered levels of serum CC16 as well as their effect on airways inflammation have not been fully evaluated. METHODS: We recruited 63 adult asthmatics on maintenance medications and 61 healthy controls (HCs). The asthmatic subjects were divided into two groups according to the result of bronchodilator responsiveness (BDR) test: the present BDR (n = 17) and absent BDR (n = 46) groups. Serum CC16 levels were measured by ELISA. As an in vitro study, the effect of Dermatophagoides pteronyssinus antigen 1 (Der p1) on the production of CC16 in airways epithelial cells (AECs) according to a time-dependent manner was assessed; the effects of CC16 protein on oxidative stress system, airways inflammation and remodelling were tested. RESULTS: Serum CC16 levels showed significantly higher in the asthmatics than in the HCs (p < .001) with a positive correlation with FEV1 % (r = .352, p = .005). The present BDR group had significantly lower levels of serum CC16, FEV1 % and MMEF%, but showed higher level of FeNO than the absent BDR group. Serum CC16 levels (below 496.0 ng/mL) could discriminate the present BDR group from the absent BDR group (area under the curve = 0.74, p = .004). In vitro testing demonstrated that Der p1 exposure significantly induced CC16 release from AECs for 1 h, which was progressively decreased after 6 h and followed by MMP-9 and TIMP-1 production. These findings were associated with oxidant/antioxidant disequilibrium and restored by CC16 treatment (but not dexamethasone). CONCLUSION: Decreased CC16 production contributes to persistent airways inflammation and lung function decline. CC16 may be a potential biomarker for asthmatics with BDR.


Asunto(s)
Antioxidantes , Asma , Adulto , Humanos , Asma/diagnóstico , Asma/metabolismo , Inflamación , Pruebas de Función Respiratoria , Broncodilatadores , Proteínas , Uteroglobina/metabolismo
4.
Respir Res ; 23(1): 174, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768822

RESUMEN

INTRODUCTION: Club cell secretory protein-16 (CC16) is a major anti-inflammatory protein expressed in the airway; however, the potential role of CC16 on overweight/obese asthma has not been assessed. In this study, we examined whether obesity reduces airway/circulatory CC16 levels using experimental and epidemiological studies. Then, we explored the mediatory role of CC16 in the relationship of overweight/obesity with clinical asthma measures. METHODS: Circulating CC16 levels were assessed by ELISA in three independent human populations, including two groups of healthy and general populations and asthma patients. The percentage of cells expressing club markers in obese vs. non-obese mice and human airways was determined by immunohistochemistry. A causal mediation analysis was conducted to determine whether circulatory CC16 acted as a mediator between overweight/obesity and clinical asthma measures. RESULTS: BMI was significantly and monotonously associated with reduced circulating CC16 levels in all populations. The percentage of CC16-expressing cells was reduced in the small airways of both mice and humans with obesity. Finally, mediation analysis revealed significant contributions of circulatory CC16 in the association between BMI and clinical asthma measures; 21.8% of its total effect in BMI's association with airway hyperresponsiveness of healthy subjects (p = 0.09), 26.4% with asthma severity (p = 0.030), and 23% with the required dose of inhaled corticosteroid (p = 0.042). In logistic regression analysis, 1-SD decrease in serum CC16 levels of asthma patients was associated with 87% increased odds for high dose ICS requirement (p < 0.001). CONCLUSIONS: We demonstrate that airway/circulating CC16, which is inversely associated with BMI, may mediate development and severity in overweight/obese asthma.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Animales , Asma/diagnóstico , Asma/epidemiología , Asma/metabolismo , Humanos , Ratones , Obesidad/diagnóstico , Obesidad/epidemiología , Sobrepeso/diagnóstico , Sobrepeso/epidemiología , Uteroglobina/metabolismo
5.
Respir Res ; 23(1): 247, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114505

RESUMEN

BACKGROUND: The club cell secretory protein (CC16) has anti-inflammatory and antioxidant effects, and low CC16 serum levels have been associated with both risk and progression of COPD, yet the interaction between smoking and CC16 on lung function outcomes remains unknown. METHODS: Utilizing cross-sectional data on United States veterans, CC16 serum concentrations were measured by ELISA and log transformed for analyses. Spirometry was conducted and COPD status was defined by post-bronchodilator FEV1/FVC ratio < 0.7. Smoking measures were self-reported on questionnaire. Multivariable logistic and linear regression were employed to examine associations between CC16 levels and COPD, and lung function with adjustment for covariates. Unadjusted Pearson correlations described relationships between CC16 level and lung function measures, pack-years smoked, and years since smoking cessation. RESULTS: The study population (N = 351) was mostly male, white, with an average age over 60 years. An interaction between CC16 and smoking status on FEV1/FVC ratio was demonstrated among subjects with COPD (N = 245, p = 0.01). There was a positive correlation among former smokers and negative correlation among current or never smokers with COPD. Among former smokers with COPD, CC16 levels were also positively correlated with years since smoking cessation, and inversely related with pack-years smoked. Increasing CC16 levels were associated with lower odds of COPD (ORadj = 0.36, 95% CI 0.22-0.57, Padj < 0.0001). CONCLUSIONS: Smoking status is an important effect modifier of CC16 relationships with lung function. Increasing serum CC16 corresponded to increases in FEV1/FVC ratio in former smokers with COPD versus opposite relationships in current or never smokers. Additional longitudinal studies may be warranted to assess relationship of CC16 with smoking cessation on lung function among subjects with COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Uteroglobina , Antiinflamatorios/metabolismo , Antioxidantes/metabolismo , Broncodilatadores/metabolismo , Estudios Transversales , Femenino , Humanos , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humo , Fumar/efectos adversos , Fumar/epidemiología , Nicotiana , Uteroglobina/metabolismo
6.
Am J Respir Crit Care Med ; 203(11): 1410-1418, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33326355

RESUMEN

Rationale CC16 (club cell secretory protein) is a pneumoprotein produced predominantly by pulmonary club cells. Circulating CC16 is associated with protection from the inception and progression of the two most common obstructive lung diseases (asthma and chronic obstructive pulmonary disease). Objectives Although exact mechanisms remain elusive, studies consistently suggest a causal role of CC16 in mediating antiinflammatory and antioxidant functions in the lung. We sought to determine any novel receptor systems that could participate in CC16's role in obstructive lung diseases. Methods Protein alignment of CC16 across species led to the discovery of a highly conserved sequence of amino acids, leucine-valine-aspartic acid (LVD), a known integrin-binding motif. Recombinant CC16 was generated with and without the putative integrin-binding site. A Mycoplasma pneumoniae mouse model and a fluorescent cellular adhesion assay were used to determine the impact of the LVD site regarding CC16 function during live infection and on cellular adhesion during inflammatory conditions. Measurements and Main Results CC16 bound to integrin α4ß1), also known as the adhesion molecule VLA-4 (very late antigen 4), dependent on the presence of the LVD integrin-binding motif. During infection, recombinant CC16 rescued lung function parameters both when administered to the lung and intravenously but only when the LVD integrin-binding site was intact; likewise, neutrophil recruitment during infection and leukocyte adhesion were both impacted by the loss of the LVD site. Conclusions We discovered a novel receptor for CC16, VLA-4, which has important mechanistic implications for the role of CC16 in circulation as well as in the lung compartment.


Asunto(s)
Integrina alfa4beta1/metabolismo , Mycoplasma pneumoniae , Neumonía por Mycoplasma/prevención & control , Uteroglobina/metabolismo , Animales , Adhesión Celular , Modelos Animales de Enfermedad , Ratones , Infiltración Neutrófila/fisiología , Neumonía por Mycoplasma/metabolismo , Unión Proteica
7.
Proc Natl Acad Sci U S A ; 116(5): 1603-1612, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30655340

RESUMEN

Current therapeutic interventions for the treatment of respiratory infections are hampered by the evolution of multidrug resistance in pathogens as well as the lack of effective cellular targets. Despite the identification of multiple region-specific lung progenitor cells, the identity of molecules that might be therapeutically targeted in response to infections to promote activation of progenitor cell types remains elusive. Here, we report that loss of Abl1 specifically in SCGB1A1-expressing cells leads to a significant increase in the proliferation and differentiation of bronchiolar epithelial cells, resulting in dramatic expansion of an SCGB1A1+ airway cell population that coexpresses SPC, a marker for type II alveolar cells that promotes alveolar regeneration following bacterial pneumonia. Furthermore, treatment with an Abl-specific allosteric inhibitor enhanced regeneration of the alveolar epithelium and promoted accelerated recovery of mice following pneumonia. These data reveal a potential actionable target that may be exploited for efficient recovery after pathogen-induced infections.


Asunto(s)
Pulmón/metabolismo , Pulmón/fisiopatología , Neumonía Bacteriana/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Regeneración/fisiología , Células Madre/metabolismo , Uteroglobina/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/fisiología , Animales , Bronquiolos/metabolismo , Bronquiolos/fisiopatología , Diferenciación Celular/fisiología , Línea Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neumonía Bacteriana/fisiopatología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/fisiopatología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/fisiopatología , Células Madre/fisiología
8.
Toxicol Appl Pharmacol ; 432: 115754, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634286

RESUMEN

Exposure to dust from active and abandoned mining operations may be a very significant health hazard, especially to sensitive populations. We have previously reported that inhalation of real-world mine tailing dusts during lung development can alter lung function and structure in adult male mice. These real-world dusts contain a mixture of metal(loid)s, including arsenic. To determine whether arsenic in inhaled dust plays a role in altering lung development, we exposed C57Bl/6 mice to a background dust (0 arsenic) or to the background dust containing either 3% or 10% by mass, calcium arsenate. Total level of exposure was kept at 100 µg/m3. Calcium arsenate was selected since arsenate is the predominant species found in mine tailings. We found that inhalation exposure during in utero and postnatal lung development led to significant increases in pulmonary baseline resistance, airway hyper-reactivity, and airway collagen and smooth muscle expression in male C57Bl/6 mice. Responses were dependent on the level of calcium arsenate in the simulated dust. These changes were not associated with increased expression of TGF-ß1, a marker of epithelial to mesenchymal transition. However, responses were correlated with decreases in the expression of club cell protein 16 (CC16). Dose-dependent decreases in CC16 expression and increases in collagen around airways was seen for animals exposed in utero only (GD), animals exposed postnatally only (PN) and animals continuously exposed throughout development (GDPN). These data suggest that arsenic inhalation during lung development can decrease CC16 expression leading to functional and structural alterations in the adult lung.


Asunto(s)
Arseniatos/toxicidad , Compuestos de Calcio/toxicidad , Pulmón/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Factores de Edad , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Resistencia de las Vías Respiratorias/efectos de los fármacos , Animales , Broncoconstricción/efectos de los fármacos , Colágeno/metabolismo , Regulación hacia Abajo , Polvo , Femenino , Edad Gestacional , Exposición por Inhalación , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Embarazo , Uteroglobina/metabolismo
9.
Allergy ; 76(8): 2461-2474, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33528894

RESUMEN

BACKGROUND: While several systemic immunomodulatory effects of allergen-specific immunotherapy (AIT) have been discovered, local anti-inflammatory mechanisms in the respiratory tract are largely unknown. We sought to elucidate local and epithelial mechanisms underlying allergen-specific immunotherapy in a genome-wide approach. METHODS: We induced sputum in hay fever patients and healthy controls during the pollen peak season and stratified patients by effective allergen immunotherapy or as untreated. Sputum was directly processed after induction and subjected to whole transcriptome RNA microarray analysis. Nasal secretions were analyzed for Secretoglobin1A1 (SCGB1A1) and IL-24 protein levels in an additional validation cohort at three defined time points during the 3-year course of AIT. Subsequently, RNA was extracted and subjected to an array-based whole transcriptome analysis. RESULTS: Allergen-specific immunotherapy inhibited pro-inflammatory CXCL8, IL24, and CCL26mRNA expression, while SCGB1A1, IL7, CCL5, CCL23, and WNT5BmRNAs were induced independently of the asthma status and allergen season. In our validation cohort, local increase of SCGB1A1 occurred concomitantly with the reduction of local IL-24 in upper airways during the course of AIT. Additionally, SCGB1A1 was identified as a suppressor of epithelial gene expression. CONCLUSIONS: Allergen-specific immunotherapy induces a yet unknown local gene expression footprint in the lower airways that on one hand appears to be a result of multiple regulatory pathways and on the other hand reveals SCGB1A1 as novel anti-inflammatory mediator of long-term allergen-specific therapeutic intervention in the local environment.


Asunto(s)
Desensibilización Inmunológica , Rinitis Alérgica Estacional , Uteroglobina/metabolismo , Alérgenos , Humanos , Sistema Respiratorio
10.
Int J Mol Sci ; 22(21)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34768890

RESUMEN

Gram-negative (G-) bacteria are the leading cause of hospital-acquired pneumonia in the United States. The devastating damage caused by G- bacteria results from the imbalance of bactericidal effects and overwhelming inflammation. Despite decades of research, the underlying mechanisms by which runaway inflammation is developed remain incompletely understood. Clara Cell Protein 16 (CC16), also known as uteroglobin, is the major protein secreted by Clara cells and the most abundant protein in bronchoalveolar lavage fluid (BALF). However, the regulation and functions of CC16 during G- bacterial infection are unknown. In this study, we aimed to assess the regulation of CC16 in response to Klebsiella pneumoniae (K. pneu) and to investigate the role of CC16 in bronchial epithelial cells. After K. pneu infection, we found that CC16 mRNA expression was significantly decreased in bronchial epithelial cells. Our data also showed that K. pneu infection upregulated cytokine and chemokine genes, including IL-1ß, IL-6, and IL-8 in BEAS-2B cells. Endogenously overexpressed CC16 in BEAS-2B cells provided an anti-inflammatory effect by reducing these markers. We also observed that endogenous CC16 can repress NF-κB reporter activity. In contrast, the recombinant CC16 (rCC16) did not show an anti-inflammatory effect in K. pneu-infected cells or suppression of NF-κB promoter activity. Moreover, the overexpression of CC16 reduced reactive oxygen species (ROS) levels and protected BEAS-2B cells from K. pneu-induced apoptosis.


Asunto(s)
Inflamación/metabolismo , Neumonía Bacteriana/metabolismo , Uteroglobina , Apoptosis , Bronquios/citología , Bronquios/microbiología , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Inmunidad Innata , Klebsiella pneumoniae , Pulmón/microbiología , Pulmón/patología , FN-kappa B/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo
11.
Am J Respir Cell Mol Biol ; 63(4): 490-501, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32551854

RESUMEN

Telomere dysfunction is associated with multiple fibrotic lung processes, including chronic lung allograft dysfunction (CLAD)-the major limitation to long-term survival following lung transplantation. Although shorter donor telomere lengths are associated with an increased risk of CLAD, it is unknown whether short telomeres are a cause or consequence of CLAD pathology. Our objective was to test whether telomere dysfunction contributes to the pathologic changes observed in CLAD. Histopathologic and molecular analysis of human CLAD lungs demonstrated shortened telomeres in lung epithelial cells quantified by teloFISH, increased numbers of surfactant protein C immunoreactive type II alveolar epithelial cells, and increased expression of senescence markers (ß-galactosidase, p16, p53, and p21) in lung epithelial cells. TRF1F/F (telomere repeat binding factor 1 flox/flox) mice were crossed with tamoxifen-inducible SCGB1a1-cre mice to generate SCGB1a1-creTRF1F/F mice. Following 9 months of tamoxifen-induced deletion of TRF1 in club cells, mice developed mixed obstructive and restrictive lung physiology, small airway obliteration on microcomputed tomography, a fourfold decrease in telomere length in airway epithelial cells, collagen deposition around bronchioles and adjacent lung parenchyma, increased type II aveolar epithelial cell numbers, expression of senescence-associated ß-galactosidase in epithelial cells, and decreased SCGB1a1 expression in airway epithelial cells. These findings demonstrate that telomere dysfunction isolated to airway epithelial cells leads to airway-centric lung remodeling and fibrosis similar to that observed in patients with CLAD and suggest that lung epithelial cell telomere dysfunction may be a molecular driver of CLAD.


Asunto(s)
Aloinjertos/patología , Células Epiteliales Alveolares/patología , Pulmón/fisiología , Telómero/genética , Aloinjertos/metabolismo , Células Epiteliales Alveolares/metabolismo , Animales , Biomarcadores/metabolismo , Senescencia Celular/genética , Humanos , Pulmón/metabolismo , Trasplante de Pulmón/métodos , Ratones , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Uteroglobina/genética , Uteroglobina/metabolismo
12.
Am J Respir Cell Mol Biol ; 60(6): 695-704, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30576223

RESUMEN

Human SCGB1A1 protein has been shown to be significantly reduced in BAL, sputum, and serum from humans with asthma as compared with healthy individuals. However, the mechanism of this reduction and its functional impact have not been entirely elucidated. By mining online datasets, we found that the mRNA of SCGB1A1 was significantly repressed in brushed human airway epithelial cells from individuals with asthma, and this repression appeared to be associated with reduced expression of FOXA2. Consistently, both Scgb1A1 and FoxA2 were downregulated in an ovalbumin-induced mouse model of asthma. Furthermore, compared with wild-type mice, Scgb1a1 knockout mice had increased airway hyperreactivity and inflammation when they were exposed to ovalbumin, confirming the antiinflammatory role of Scgb1a1 in protection against asthma phenotypes. To search for potential asthma-related stimuli of SCGB1A1 repression, we tested T-helper cell type 2 cytokines. Both IL-4 and IL-13 repressed epithelial expression of SCGB1A1 and FOXA2. Importantly, infection of epithelial cells with human rhinovirus similarly reduced expression of these two genes, which suggests that FOXA2 may be the common regulator of SCGB1A1. To establish the causal role of reduced FOXA2 in SCGB1A1 repression, we demonstrated that FOXA2 was required for SCGB1A1 expression at baseline. FOXA2 overexpression was sufficient to drive promoter activity and expression of SCGB1A1 and was also able to restore the repressed SCGB1A1 expression in IL-13-treated or rhinovirus-infected cells. Taken together, these findings suggest that low levels of epithelial SCGB1A1 in asthma are caused by reduced FOXA2 expression.


Asunto(s)
Asma/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Uteroglobina/metabolismo , Animales , Asma/genética , Asma/patología , Biomarcadores/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación hacia Abajo/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/virología , Factor Nuclear 3-beta del Hepatocito/genética , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Rhinovirus/fisiología , Células Th2/metabolismo , Uteroglobina/genética
13.
Am J Physiol Lung Cell Mol Physiol ; 317(4): L456-L463, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31322430

RESUMEN

SCGB1A1 (secretoglobin family 1A member 1) is an important protein for multiple pulmonary diseases, especially asthma, chronic obstructive pulmonary disease, and lung cancer. One single-nucleotide polymorphism (SNP) at 5'-untranslated region of SCGB1A1, rs3741240, has been suggested to be associated with reduced protein expression and further asthma susceptibility. However, it was still unclear whether there were other cis-regulatory elements for SCGB1A1 that might further contribute to pulmonary diseases. Allele-specific expression (ASE) is a novel approach to identify the functional region in human genome. In the present study, we measured ASE on rs3741240 in lung tissues and observed a consistent excess of G allele over A (P < 10-6), which indicated that this SNP or the one(s) in linkage disequilibrium (LD) could regulate SCGB1A1 expression. By analyzing 1000 Genomes Project data for Chinese, one SNP locating ~10.2 kb away and downstream of SCGB1A1, rs2509956, was identified to be in strong LD with rs3741240. Reporter gene assay confirmed that both SNPs could regulate gene expression in the lung cell. By chromosome conformation capture, it was verified that the region surrounding rs2509956 could interact with SCGB1A1 promoter region and act as an enhancer. Through chromatin immunoprecipitation and overexpression assay, the related transcription factor RELA (RELA proto-oncogene, NF-kB subunit) was recognized to bind the region spanning rs2509956. Our work identified a novel long-distance cis-regulatory SNP for SCGB1A1, which might contribute to multiple pulmonary diseases.


Asunto(s)
Asma/genética , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Enfermedad Pulmonar Obstructiva Crónica/genética , Factor de Transcripción ReIA/genética , Uteroglobina/genética , Alelos , Asma/metabolismo , Asma/patología , Biología Computacional/métodos , Expresión Génica , Genes Reporteros , Predisposición Genética a la Enfermedad , Genoma Humano , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Pulmón/metabolismo , Pulmón/patología , Polimorfismo de Nucleótido Simple , Unión Proteica , Proto-Oncogenes Mas , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Factor de Transcripción ReIA/metabolismo , Uteroglobina/metabolismo
14.
Biochem Biophys Res Commun ; 514(3): 586-592, 2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-31064653

RESUMEN

Exogenous mesenchymal stem cells (MSCs) affect lung cells via cytokines as well as vesicles and activate the Notch signaling pathway thus affecting the proliferation of endogenous stem cells to repair damaged tissue. Club cells are endogenous lung stem cells whose proliferation is also closely related to the Notch signaling pathway. The club cell secretory protein (CCSP) has anti-inflammatory and anti-oxidative properties. This study aimed to investigate whether exogenous MSCs affect the function of club cells in an injured lung and whether these effects are related to the Notch signaling pathway. CCSP levels in bronchoalveolar lavage fluid (BALF) and serum were evaluated using enzyme-linked immunosorbent assay (ELISA) and the average fluorescence intensity (AFI) of CCSP in club cells was determined using flow cytometry. Immunohistochemistry and immunofluorescence were used to visualize club cells and proliferative club cells. The expression of important Notch signaling pathway components including Notch1∼4, c-myc, Hey1 and Hes1 were also assessed. LY3039478 (LY), a specific inhibitor of the Notch signaling pathway, was applied. After MSCs intervention, CCSP levels decreased, and club cell AFI increased, indicating that the secretion of club cells had weakened. The expression of Notch1, Notch2, c-myc, Hey1, Hes1 increased, accompanied by an increase in the number of proliferative club cells. Furthermore, MSCs enhanced the proliferation of club cells, while LY suppressed this phenomenon. In summary, MSCs reduced the secretion of club cells. And MSCs enhanced the proliferation of club cells partly via activating the Notch signaling pathway, which promoted lung injury repair.


Asunto(s)
Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Pulmón/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Animales , Proliferación Celular , Fluorescencia , Antígeno Ki-67/metabolismo , Lesión Pulmonar/sangre , Masculino , Fosgeno , Ratas Sprague-Dawley , Receptores Notch/metabolismo , Transducción de Señal , Uteroglobina/sangre , Uteroglobina/metabolismo
15.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29593031

RESUMEN

Lower respiratory tract infection with respiratory syncytial virus (RSV) produces profound inflammation. Despite an understanding of the role of adaptive immunity in RSV infection, the identity of the major sentinel cells initially triggering inflammation is controversial. Here we evaluate the role of nonciliated secretoglobin (Scgb1a1)-expressing bronchiolar epithelial cells in RSV infection. Mice expressing a tamoxifen (TMX)-inducible Cre recombinase-estrogen receptor fusion protein (CreERTM) knocked into the Scgb1a1 locus were crossed with mice that harbor a RelA conditional allele (RelAfl ), with loxP sites flanking exons 5 to 8 of the Rel homology domain. The Scgb1a1CreERTM/+ × RelAfl/fl mouse is a RelA conditional knockout (RelACKO) of a nonciliated epithelial cell population enriched in the small bronchioles. TMX-treated RelACKO mice have reduced pulmonary neutrophilic infiltration and impaired expression and secretion of NF-κB-dependent cytokines in response to RSV. In addition, RelACKO mice had reduced expression levels of interferon (IFN) regulatory factor 1/7 (IRF1/7) and retinoic acid-inducible gene I (RIG-I), components of the mucosal IFN positive-feedback loop. We demonstrate that RSV replication induces RelA to complex with bromodomain-containing protein 4 (BRD4), a cofactor required for RNA polymerase II (Pol II) phosphorylation, activating the atypical histone acetyltransferase (HAT) activity of BRD4 required for phospho-Ser2 Pol II formation, histone H3K122 acetylation, and cytokine secretion in vitro and in vivo TMX-treated RelACKO mice have less weight loss and reduced airway obstruction/hyperreactivity yet similar levels of IFN-γ production despite higher levels of virus production. These data indicate that the nonciliated Scgb1a1-expressing epithelium is a major innate sensor for restricting RSV infection by mediating neutrophilic inflammation and chemokine and mucosal IFN production via the RelA-BRD4 pathway.IMPORTANCE RSV infection is the most common cause of infant hospitalizations in the United States, resulting in 2.1 million children annually requiring medical attention. RSV primarily infects nasal epithelial cells, spreading distally to produce severe lower respiratory tract infections. Our study examines the role of a nonciliated respiratory epithelial cell population in RSV infection. We genetically engineered a mouse that can be selectively depleted of the NF-κB/RelA transcription factor in this subset of epithelial cells. These mice show an impaired activation of the bromodomain-containing protein 4 (BRD4) coactivator, resulting in reduced cytokine expression and neutrophilic inflammation. During the course of RSV infection, epithelial RelA-depleted mice have reduced disease scores and airway hyperreactivity yet increased levels of virus replication. We conclude that RelA-BRD4 signaling in nonciliated bronchiolar epithelial cells mediates neutrophilic airway inflammation and disease severity. This complex is an attractive target to reduce the severity of infection.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Interferón gamma/inmunología , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Proteínas Nucleares/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/metabolismo , Uteroglobina/metabolismo , Células Epiteliales Alveolares/virología , Animales , Bronquiolos/patología , Bronquiolos/virología , Línea Celular , Proteína 58 DEAD Box/biosíntesis , Femenino , Humanos , Inflamación/patología , Inflamación/virología , Factor 1 Regulador del Interferón/biosíntesis , Factor 7 Regulador del Interferón/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/genética , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Infecciones por Virus Sincitial Respiratorio/patología , Infecciones por Virus Sincitial Respiratorio/virología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/virología , Tamoxifeno/farmacología , Factor de Transcripción ReIA/genética
16.
Ecotoxicol Environ Saf ; 183: 109500, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31450033

RESUMEN

Exposure to diesel engine exhaust (DEE) impairs lung function. But the underlying mechanisms are still not fully understood. The aim of this study was to investigate the effects of long-term DEE exposure on lung inflammation and the underlying mechanisms. Sprague-Dawley male rats were exposed to DEE with 3 mg/m3 of diesel exhaust particles (DEP) for 12 weeks. Then urine, blood, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for the determination of biochemistry indexes, DNA methylation status, and histological changes in the lung. The results showed that the metabolites of polycyclic aromatic hydrocarbons (PAHs) 2-hydroxyphenanthrene (2-OHPh) and 9-OHPh, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), and malondialdehyde (MDA) level were higher in urine of DEE-exposed rats than control group. The level of proinflammatory cytokines IL-8, IL-6, and TNF-α was significantly higher in serum (1.8, 3.5, and nearly 1.0-fold increase, respectively), BALF (2.2, 3.8, and 2.0-fold increase, respectively) and lung tissues (3.5, 4.3, and 2.4-fold increase, respectively) of DEE-exposed rats than control group. While the level of clara cell secretory protein (CC16) and pulmonary surfactant protein D (SP-D) with anti-inflammatory property was obviously lower in serum (reduction of 29% and 38%, respectively), BALF (reduction of 50% and 46%, respectively) and lung tissues (reduction of 50% and 55%, respectively) of DEE-exposed rats than control group. Exposure to DEE also resulted in significant increases in total white blood cell (WBC), neutrophil, eosinophil, and lymphocyte number in BALF. Airway inflammation and remolding were apparent in DEE group. The methylation level of CCAAT/enhancer-binding protein alpha (C/EBPα) promoter was markedly increased (about 3.2-fold increase), and its mRNA and protein expression were significantly decreased (about 62% and 68% decrease, respectively) in the lungs of DEE-exposed rats compared with the group. Further, cell experiments were performed to investigate the relationship between C/EBPα and CC16, and CC16 function under DEP conditions. The results showed that DEP inhibited CC16 expression via methylation of C/EBPα promoter, and the increase of CC16 level significantly relieved the proinflammatory effects caused by DEP exposure. In conclusion, our data indicated that long-term exposure to DEE can cause lung inflammation, at least in part via methylation of C/EBPα promoter, and inhibition of CC16 expression.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/genética , Exposición por Inhalación/efectos adversos , Neumonía/inducido químicamente , Emisiones de Vehículos/toxicidad , Animales , Citocinas/metabolismo , Metilación de ADN/efectos de los fármacos , Masculino , Neumonía/metabolismo , Neumonía/patología , Hidrocarburos Policíclicos Aromáticos/orina , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Uteroglobina/genética , Uteroglobina/metabolismo
17.
J Neuroinflammation ; 15(1): 246, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30170608

RESUMEN

BACKGROUND: Chronic persistent airway inflammation has been associated with the comorbidity of asthma and bipolar disorder (BD). However, the direct relevance between airway inflammation and BD-like psychiatric comorbidity is almost unknown. Integrin ß4 (ITGB4) is downregulated on the airway epithelial of asthma patients, which might play a critical role in the parthenogenesis of airway inflammation. So this study aimed to examine the role of ITGB4 deficiency in mediating airway inflammation and further leading to the BD-like behaviors. METHODS: ITGB4-/- mice were generated by mating ITGB4fl/fl mice with CCSP-rtTAtg/-/TetO-Cretg/tg mice. Mania-like behavior tests were performed, including hyperlocomotion, D-amphetamine-induced hyperactivity, open-field test, and elevated plus-maze test. Depressive-like behavior tests were carried out, including sucrose preference, forced swimming, and learned helplessness. Inflammatory cells (Th17, Th1, Th2) in the lung were examined by flow cytometry. Futhermore, inflammatory cytokines (IL-4, IL-13) in bronchoalveolar lavage fluid and sera were detected by ELISA. Protein expression of the IL-4Rα on choroid plexus, microglial marker (IBA1), and synapse-associated proteins (synaptophysin, SYP) in the hippocampus and prefrontal cortex were examined by western blotting. Additionally, proinflammatory cytokines (IL-1ß, IL-6, and TNF-α) in the hippocampus and prefrontal cortex were detected by immunohistochemistry. Inflammatory disorder in the lung, hippocampus, and prefrontal cortex was tested by hematoxylin and eosin (H&E) staining. And cell apoptosis in the hippocampus and prefrontal cortex was measured by TUNEL test. RESULTS: ITGB4-/- mice exhibited mania-like behavior, including hyperlocomotion, D-amphetamine-induced hyperactivity, and reduced anxiety-like behavior. While under stressful conditions, ITGB4-/- mice manifested depressive-like behavior, including anhedonia, behavioral despair, and enhanced learned helplessness. At the same time, ITGB4-/- mice mainly exerted Th2-type inflammation in periphery, like the number and major cytokines IL-4 and IL-13 of Th2-type inflammation. ITGB4-/- mice also showed a significant increase of microglia and pro-inflammatory cytokines such as IL-1ß, IL-6, and TNF-α in the hippocampus and prefrontal cortex. Additionally, neuron damage, increased neuron apoptosis, and the decrease of SYP were found in ITGB4-/- mice. CONCLUSIONS: These findings confirmed that airway inflammatory induced by ITGB4 deficiency is the important incentive for the BD-like behavior during asthma pathogenesis. The ITGB4-deficient mice provide a validated animal model for us to study the possible mechanism of BD-like psychiatric comorbidity of asthma patients.


Asunto(s)
Trastorno Bipolar/genética , Bronquitis/genética , Bronquitis/patología , Células Epiteliales/patología , Integrina beta4/metabolismo , Anfetamina/toxicidad , Animales , Antibacterianos/farmacología , Modelos Animales de Enfermedad , Doxiciclina/farmacología , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica/genética , Hipercinesia/inducido químicamente , Hipercinesia/genética , Integrina beta4/genética , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología , Subgrupos de Linfocitos T/patología , Uteroglobina/genética , Uteroglobina/metabolismo
18.
BMC Ophthalmol ; 18(1): 57, 2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29482497

RESUMEN

BACKGROUND: The pathophysiological changes occurring in the trabecular meshwork in primary open angle glaucoma are poorly understood, but are thought to include increased extracellular matrix deposition, trabecular meshwork cell apoptosis, inflammation, trabecular meshwork calcification and altered protein composition of the aqueous humor. Although many proteins are present in aqueous humor, relatively few have been studied extensively, and their potential roles in primary open angle glaucoma are unknown. METHODS: Analyte concentrations in aqueous humor from 19 primary open angle glaucoma and 18 cataract patients were measured using a multiplex immunoassay. Fisher's exact test was used to assess statistical significance between groups, and correlations of analyte concentrations with age, intraocular pressure, pattern standard deviation, mean deviation, cup-to-disc ratio and disease duration since commencing treatment were tested by Spearman's method. RESULTS: CHI3L1, FLRG, HGF, MIF, P-selectin and Uteroglobin were detected in more than 50% of samples of one or both patient groups, some of which have not previously been quantified in aqueous humor. In the glaucoma but not the cataract group, significant correlations were determined with age for Uteroglobin/SCGB1A1 (rs = 0.805, p < 0.0001) and FLRG (rs = 0.706, p = 0.0007). Furthermore, HGF correlated significantly with disease duration (rs = - 0.723, p = 0.0007). There were no differences in analyte concentrations between groups, and no other significant associations with clinical descriptors that passed correction for multiple testing. CONCLUSIONS: The correlations of uteroglobin and FLRG with age in primary open angle glaucoma but not cataract may suggest a heightened requirement for anti-inflammatory (uteroglobin) or anti-calcification (FLRG) activity in the ageing glaucomatous trabecular meshwork.


Asunto(s)
Humor Acuoso/metabolismo , Proteínas Relacionadas con la Folistatina/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Uteroglobina/metabolismo , Factores de Edad , Anciano , Catarata/metabolismo , Femenino , Humanos , Persona de Mediana Edad
19.
BMC Pulm Med ; 18(1): 47, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29548305

RESUMEN

BACKGROUND: Club cell protein-16 (CC16) expression has been associated with smoking-related lung function decline. The study hypothesis was that CC16 expression in both serum and bronchial epithelium is associated with lung function decline in smokers, and exposure to cigarette smoke will lead to reduction in CC16 expression in bronchial epithelial cells. METHODS: In a cohort of community-based male Chinese subjects recruited for lung function test in 2000, we reassessed their lung function ten years later and measured serum levels of CC16. CC16 expression was further assayed in bronchial epithelium from endobronchial biopsies taken from an independent cohort of subjects undergoing autofluorescence bronchoscopy, and tested for correlation between CC16 immunostaining intensity and lung function. In an in-vitro model, bronchial epithelial cells were exposed to cigarette smoke extract (CSE), and the expression levels of CC16 were measured in bronchial epithelial cells before and after exposure to CSE. RESULTS: There was a significant association between FEV1 decline and serum CC16 levels in smokers. Expression of CC16 in bronchial epithelium showed significant correlation with FEV1/FVC. Bronchial epithelial cells showed significant decrease in CC16 expression after exposure to CSE, followed by a subsequent rise in CC16 expression upon removal of CSE. CONCLUSIONS: Results of these clinical and laboratory investigations suggested that low serum CC16 was associated with smoking-related decline in lung function, demonstrated the first time in a Chinese cohort. The data also lend support to the putative role of CC16 in protection against smoking-related bronchial epithelial damage. (Abstract word count: 243) US CLINICAL TRIAL REGISTRY: NCT01185652 , first posted 20 August, 2010.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Células Epiteliales/metabolismo , Pulmón/fisiopatología , Mucosa Respiratoria/patología , Uteroglobina/metabolismo , Adulto , Anciano , Biomarcadores/metabolismo , Femenino , Volumen Espiratorio Forzado , Hong Kong , Humanos , Modelos Lineales , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Uteroglobina/genética
20.
Sheng Li Xue Bao ; 70(5): 481-488, 2018 Oct 25.
Artículo en Zh | MEDLINE | ID: mdl-30377686

RESUMEN

Epithelial-mesenchymal transition (EMT) occurring in alveolar epithelial cells plays an important role in the development and progression of pulmonary fibrosis. Previous studies showed that antiflammin-1 (the active fragment of uteroglobin) effectively inhibited bleomycin-induced pulmonary fibrosis. However, its mechanism is still far from being clarified. In this study, we investigated the effects of antiflammin-1 on EMT in A549 cells induced by transforming growth factor-ß1 (TGF-ß1) and the underlying mechanism by using morphological observation and Western blot. The results showed that the expression of α-smooth muscle actin (α-SMA) increased significantly while the expression of E-cadherin decreased significantly in A549 cells following treatment with TGF-ß1 concomitant with morphological change of A549 cells from pebble-like shape epithelial cells to spindle-like mesenchymal shape. This process of EMT in A549 cells induced by TGF-ß1 was significantly inhibited when A549 cells were co-incubated with TGF-ß1 and antiflammin-1. Furthermore, the anti-lipocalin interacting membrane receptor (LIMR) antibody and PD98059 (an ERK signaling pathway blocker) attenuated the inhibitory effect of antiflammin-1 on TGF-ß1-induced EMT, respectively. Our findings indicate that antiflammin-1 can inhibit EMT in A549 cells induced by TGF-ß1, which is related to LIMR and its downstream ERK signaling pathway.


Asunto(s)
Células Epiteliales/citología , Transición Epitelial-Mesenquimal , Fragmentos de Péptidos/metabolismo , Receptores de Superficie Celular/metabolismo , Uteroglobina/metabolismo , Células A549 , Actinas/metabolismo , Células Epiteliales Alveolares , Antígenos CD , Bleomicina , Cadherinas , Células Epiteliales/efectos de los fármacos , Flavonoides , Humanos , Transducción de Señal , Factor de Crecimiento Transformador beta1/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA