Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.642
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(2): 273-283.e12, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28708997

RESUMEN

The emergence of Zika virus (ZIKV) and its association with congenital malformations has prompted the rapid development of vaccines. Although efficacy with multiple viral vaccine platforms has been established in animals, no study has addressed protection during pregnancy. We tested in mice two vaccine platforms, a lipid nanoparticle-encapsulated modified mRNA vaccine encoding ZIKV prM and E genes and a live-attenuated ZIKV strain encoding an NS1 protein without glycosylation, for their ability to protect against transmission to the fetus. Vaccinated dams challenged with a heterologous ZIKV strain at embryo day 6 (E6) and evaluated at E13 showed markedly diminished levels of viral RNA in maternal, placental, and fetal tissues, which resulted in protection against placental damage and fetal demise. As modified mRNA and live-attenuated vaccine platforms can restrict in utero transmission of ZIKV in mice, their further development in humans to prevent congenital ZIKV syndrome is warranted.


Asunto(s)
Vacunas Virales/administración & dosificación , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/fisiología , Aedes/virología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Células Sanguíneas/virología , Embrión de Mamíferos/virología , Femenino , Feto/virología , Humanos , Lípidos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , ARN Mensajero/genética , ARN Mensajero/inmunología , Organismos Libres de Patógenos Específicos , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Vacunas Virales/inmunología , Infección por el Virus Zika/virología
2.
Immunity ; 52(2): 219-221, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075726

RESUMEN

There is no highly effective tuberculosis vaccine. Darrah et al. (2020) and Tait et al. (2019) are setting new benchmarks for protection against infection and pulmonary disease by changing the route of vaccine delivery and by using a protein subunit vaccine with a potent adjuvant.


Asunto(s)
Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis , Tuberculosis , Humanos , Vacunación , Vacunas de Subunidad
3.
Nature ; 601(7894): 617-622, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34814158

RESUMEN

T cell immunity is central for the control of viral infections. CoVac-1 is a peptide-based vaccine candidate, composed of SARS-CoV-2 T cell epitopes derived from various viral proteins1,2, combined with the Toll-like receptor 1/2 agonist XS15 emulsified in Montanide ISA51 VG, aiming to induce profound SARS-CoV-2 T cell immunity to combat COVID-19. Here we conducted a phase I open-label trial, recruiting 36 participants aged 18-80 years, who received a single subcutaneous CoVac-1 vaccination. The primary end point was safety analysed until day 56. Immunogenicity in terms of CoVac-1-induced T cell response was analysed as the main secondary end point until day 28 and in the follow-up until month 3. No serious adverse events and no grade 4 adverse events were observed. Expected local granuloma formation was observed in all study participants, whereas systemic reactogenicity was absent or mild. SARS-CoV-2-specific T cell responses targeting multiple vaccine peptides were induced in all study participants, mediated by multifunctional T helper 1 CD4+ and CD8+ T cells. CoVac-1-induced IFNγ T cell responses persisted in the follow-up analyses and surpassed those detected after SARS-CoV-2 infection as well as after vaccination with approved vaccines. Furthermore, vaccine-induced T cell responses were unaffected by current SARS-CoV-2 variants of concern. Together, CoVac-1 showed a favourable safety profile and induced broad, potent and variant of concern-independent T cell responses, supporting the presently ongoing evaluation in a phase II trial for patients with B cell or antibody deficiency.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Vacunas de Subunidad/inmunología , Administración Cutánea , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Linfocitos T CD8-positivos/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Ensayos Clínicos Fase II como Asunto , Femenino , Granuloma/inmunología , Humanos , Inmunogenicidad Vacunal , Interferón gamma/inmunología , Masculino , Persona de Mediana Edad , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/efectos adversos , Adulto Joven
4.
Nature ; 595(7865): 96-100, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34040257

RESUMEN

Trypanosomes are protozoan parasites that cause infectious diseases, including African trypanosomiasis (sleeping sickness) in humans and nagana in economically important livestock1,2. An effective vaccine against trypanosomes would be an important control tool, but the parasite has evolved sophisticated immunoprotective mechanisms-including antigenic variation3-that present an apparently insurmountable barrier to vaccination. Here we show, using a systematic genome-led vaccinology approach and a mouse model of Trypanosoma vivax infection4, that protective invariant subunit vaccine antigens can be identified. Vaccination with a single recombinant protein comprising the extracellular region of a conserved cell-surface protein that is localized to the flagellum membrane (which we term 'invariant flagellum antigen from T. vivax') induced long-lasting protection. Immunity was passively transferred with immune serum, and recombinant monoclonal antibodies to this protein could induce sterile protection and revealed several mechanisms of antibody-mediated immunity, including a major role for complement. Our discovery identifies a vaccine candidate for an important parasitic disease that has constrained socioeconomic development in countries in sub-Saharan Africa5, and provides evidence that highly protective vaccines against trypanosome infections can be achieved.


Asunto(s)
Antígenos de Protozoos/inmunología , Vacunas Antiprotozoos/inmunología , Trypanosoma vivax/inmunología , Tripanosomiasis Africana/inmunología , Tripanosomiasis Africana/prevención & control , Animales , Antígenos de Protozoos/química , Proteínas del Sistema Complemento/inmunología , Secuencia Conservada/inmunología , Modelos Animales de Enfermedad , Femenino , Flagelos/química , Flagelos/inmunología , Ratones , Ratones Endogámicos BALB C , Vacunas Antiprotozoos/química , Factores de Tiempo , Trypanosoma vivax/química , Trypanosoma vivax/citología , Tripanosomiasis Africana/parasitología , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología
5.
Nature ; 594(7862): 253-258, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33873199

RESUMEN

The development of a portfolio of COVID-19 vaccines to vaccinate the global population remains an urgent public health imperative1. Here we demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses and protection against SARS-CoV-2 in rhesus macaques. We evaluated five adjuvants including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an α-tocopherol-containing oil-in-water emulsion; AS37, a Toll-like receptor 7 (TLR7) agonist adsorbed to alum; CpG1018-alum, a TLR9 agonist formulated in alum; and alum. RBD-NP immunization with AS03, CpG1018-alum, AS37 or alum induced substantial neutralizing-antibody and CD4 T cell responses, and conferred protection against SARS-CoV-2 infection in the pharynges, nares and bronchoalveolar lavage. The neutralizing-antibody response to live virus was maintained up to 180 days after vaccination with RBD-NP in AS03 (RBD-NP-AS03), and correlated with protection from infection. RBD-NP immunization cross-neutralized the B.1.1.7 SARS-CoV-2 variant efficiently but showed a reduced response against the B.1.351 variant. RBD-NP-AS03 produced a 4.5-fold reduction in neutralization of B.1.351 whereas the group immunized with RBD-NP-AS37 produced a 16-fold reduction in neutralization of B.1.351, suggesting differences in the breadth of the neutralizing-antibody response induced by these adjuvants. Furthermore, RBD-NP-AS03 was as immunogenic as a prefusion-stabilized spike immunogen (HexaPro) with AS03 adjuvant. These data highlight the efficacy of the adjuvanted RBD-NP vaccine in promoting protective immunity against SARS-CoV-2 and have led to phase I/II clinical trials of this vaccine (NCT04742738 and NCT04750343).


Asunto(s)
Adyuvantes Inmunológicos , Anticuerpos Neutralizantes/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas de Subunidad/inmunología , Compuestos de Alumbre , Animales , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , COVID-19/virología , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Modelos Animales de Enfermedad , Inmunidad Celular , Inmunidad Humoral , Macaca mulatta/inmunología , Masculino , Oligodesoxirribonucleótidos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Escualeno
6.
PLoS Pathog ; 20(7): e1012220, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976694

RESUMEN

The fungal infection, cryptococcosis, is responsible for >100,000 deaths annually. No licensed vaccines are available. We explored the efficacy and immune responses of subunit cryptococcal vaccines adjuvanted with Cationic Adjuvant Formulation 01 (CAF01). CAF01 promotes humoral and T helper (Th) 1 and Th17 immune responses and has been safely used in human vaccine trials. Four subcutaneous vaccines, each containing single recombinant Cryptococcus neoformans protein antigens, partially protected mice from experimental cryptococcosis. Protection increased, up to 100%, in mice that received bivalent and quadrivalent vaccine formulations. Vaccinated mice that received a pulmonary challenge with C. neoformans had an influx of leukocytes into the lung including robust numbers of polyfunctional CD4+ T cells which produced interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα), and interleukin (IL)-17 upon ex vivo antigenic stimulation. Cytokine-producing lung CD8+ T cells were also found, albeit in lesser numbers. A significant, durable IFNγ response was observed in the lungs, spleen, and blood. Moreover, IFNγ secretion following ex vivo stimulation directly correlated with fungal control in the lungs. Thus, we have developed multivalent cryptococcal vaccines which protect mice from experimental cryptococcosis using an adjuvant which has been safely tested in humans. These preclinical studies suggest a path towards human cryptococcal vaccine trials.


Asunto(s)
Adyuvantes Inmunológicos , Criptococosis , Cryptococcus neoformans , Vacunas Fúngicas , Vacunas de Subunidad , Criptococosis/inmunología , Criptococosis/prevención & control , Animales , Ratones , Vacunas Fúngicas/inmunología , Vacunas Fúngicas/administración & dosificación , Cryptococcus neoformans/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Femenino , Ratones Endogámicos C57BL , Adyuvantes de Vacunas/administración & dosificación , Antígenos Fúngicos/inmunología , Modelos Animales de Enfermedad
8.
Immunity ; 47(2): 221-223, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28813655

RESUMEN

Somatic mutations in cancer can be translated into peptides, termed neoantigens, which can be recognized by the immune system as "foreign" epitopes. Two recent studies in Nature (Sahin et al., 2017; Ott et al., 2017) examine the effects of neoantigen vaccines on patients with stage III or IV melanoma and demonstrate immunogenicity and intriguing clinical safety and efficacy data in phase I studies.


Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Inmunoterapia/métodos , Melanoma/terapia , Neoplasias Cutáneas/terapia , Animales , Antígenos de Neoplasias/genética , Autoantígenos/genética , Ensayos Clínicos Fase I como Asunto , Humanos , Melanoma/inmunología , Melanoma/patología , Mutación/genética , Metástasis de la Neoplasia , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Vacunas de Subunidad
9.
Proc Natl Acad Sci U S A ; 120(25): e2218668120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307481

RESUMEN

A longstanding goal has been to find an antigen-specific preventive therapy, i.e., a vaccine, for autoimmune diseases. It has been difficult to find safe ways to steer the targeting of natural regulatory antigen. Here, we show that the administration of exogenous mouse major histocompatibility complex class II protein bounding a unique galactosylated collagen type II (COL2) peptide (Aq-galCOL2) directly interacts with the antigen-specific TCR through a positively charged tag. This leads to expanding a VISTA-positive nonconventional regulatory T cells, resulting in a potent dominant suppressive effect and protection against arthritis in mice. The therapeutic effect is dominant and tissue specific as the suppression can be transferred with regulatory T cells, which downregulate various autoimmune arthritis models including antibody-induced arthritis. Thus, the tolerogenic approach described here may be a promising dominant antigen-specific therapy for rheumatoid arthritis, and in principle, for autoimmune diseases in general.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Animales , Ratones , Vacunas de Subunidad , Linfocitos T Reguladores , Anticuerpos
10.
N Engl J Med ; 386(22): 2097-2111, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35507481

RESUMEN

BACKGROUND: The ZF2001 vaccine, which contains a dimeric form of the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 and aluminum hydroxide as an adjuvant, was shown to be safe, with an acceptable side-effect profile, and immunogenic in adults in phase 1 and 2 clinical trials. METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 3 trial to investigate the efficacy and confirm the safety of ZF2001. The trial was performed at 31 clinical centers across Uzbekistan, Indonesia, Pakistan, and Ecuador; an additional center in China was included in the safety analysis only. Adult participants (≥18 years of age) were randomly assigned in a 1:1 ratio to receive a total of three 25-µg doses (30 days apart) of ZF2001 or placebo. The primary end point was the occurrence of symptomatic coronavirus disease 2019 (Covid-19), as confirmed on polymerase-chain-reaction assay, at least 7 days after receipt of the third dose. A key secondary efficacy end point was the occurrence of severe-to-critical Covid-19 (including Covid-19-related death) at least 7 days after receipt of the third dose. RESULTS: Between December 12, 2020, and December 15, 2021, a total of 28,873 participants received at least one dose of ZF2001 or placebo and were included in the safety analysis; 25,193 participants who had completed the three-dose regimen, for whom there were approximately 6 months of follow-up data, were included in the updated primary efficacy analysis that was conducted at the second data cutoff date of December 15, 2021. In the updated analysis, primary end-point cases were reported in 158 of 12,625 participants in the ZF2001 group and in 580 of 12,568 participants in the placebo group, for a vaccine efficacy of 75.7% (95% confidence interval [CI], 71.0 to 79.8). Severe-to-critical Covid-19 occurred in 6 participants in the ZF2001 group and in 43 in the placebo group, for a vaccine efficacy of 87.6% (95% CI, 70.6 to 95.7); Covid-19-related death occurred in 2 and 12 participants, respectively, for a vaccine efficacy of 86.5% (95% CI, 38.9 to 98.5). The incidence of adverse events and serious adverse events was balanced in the two groups, and there were no vaccine-related deaths. Most adverse reactions (98.5%) were of grade 1 or 2. CONCLUSIONS: In a large cohort of adults, the ZF2001 vaccine was shown to be safe and effective against symptomatic and severe-to-critical Covid-19 for at least 6 months after full vaccination. (Funded by the National Science and Technology Major Project and others; ClinicalTrials.gov number, NCT04646590.).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas de Subunidad , Adolescente , Adulto , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/uso terapéutico , Método Doble Ciego , Humanos , SARS-CoV-2 , Vacunación , Vacunas , Vacunas de Subunidad/efectos adversos , Vacunas de Subunidad/uso terapéutico , Adulto Joven
11.
Eur J Immunol ; 54(6): e2350620, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561974

RESUMEN

With the continued transmission of SARS-CoV-2 across widely vaccinated populations, it remains important to develop new vaccines and vaccination strategies capable of providing protective immunity and limiting the spread of disease. Heterologous prime-boost vaccination based on the selection of different vaccine formulations and administration routes for priming and booster doses presents a promising strategy for inducing broader immune responses in key systemic and respiratory mucosal compartments. Intranasal vaccination can induce mucosal immune responses at the site of SARS-CoV-2 infection; however, the lack of clinically approved mucosal adjuvants makes it difficult to induce robust immune responses with protein subunit vaccines. Herein, we evaluated the immunogenicity of heterologous prime-boost regimens in mice and hamsters based on a parenteral vaccination of the antigen in combination with sulfated lactosylarchaeol (SLA) archaeosomes, a liposome adjuvant comprised of a single semisynthetic archaeal lipid, followed by an intranasally administered unadjuvanted SARS-CoV-2 spike antigen. Intranasal administration of unadjuvanted spike to mice and hamsters increased serum spike-specific IgG titers and spike-neutralizing activity compared with nonboosted animals. Spike-specific IgA responses were also detected in the bronchoalveolar lavage fluid in the lungs of mice that received an intranasal boost. In hamsters, the intranasal boost showed high efficacy against SARS-CoV-2 infection by protecting from body weight loss and reducing viral titers in the lungs and nasal turbinate. Overall, our heterologous intramuscular prime-intranasal boost with SLA-adjuvanted and unadjuvanted spike, respectively, demonstrated the potential of protein subunit formulations to promote antigen-specific systemic and mucosal immune responses.


Asunto(s)
Administración Intranasal , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Ratones , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Cricetinae , COVID-19/prevención & control , COVID-19/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Femenino , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Inmunización Secundaria , Adyuvantes Inmunológicos/administración & dosificación , Ratones Endogámicos BALB C , Inmunidad Mucosa/inmunología , Humanos , Vacunación/métodos
12.
J Virol ; 98(5): e0021224, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591886

RESUMEN

Porcine rotaviruses (PoRVs) cause severe economic losses in the swine industry. P[7] and P[23] are the predominant genotypes circulating on farms, but no vaccine is yet available. Here, we developed a bivalent subunit PoRV vaccine using truncated versions (VP4*) of the VP4 proteins from P[7] and P[23]. The vaccination of mice with the bivalent subunit vaccine elicited more robust neutralizing antibodies (NAbs) and cellular immune responses than its components, even at high doses. The bivalent subunit vaccine and inactivated bivalent vaccine prepared from strains PoRVs G9P[7] and G9P[23] were used to examine their protective efficacy in sows and suckling piglets after passive immunization. The immunized sows showed significantly elevated NAbs in the serum and colostrum, and the suckling piglets acquired high levels of sIgA antibodies from the colostrum. Challenging subunit-vaccinated or inactivated-vaccinated piglets with homologous virulent strains did not induce diarrhea, except in one or two piglets, which had mild diarrhea. Immunization with the bivalent subunit vaccine and inactivated vaccine also alleviated the microscopic lesions in the intestinal tissues caused by the challenge with the corresponding homologous virulent strain. However, all the piglets in the challenged group displayed mild to watery diarrhea and high levels of viral shedding, whereas the feces and intestines of the piglets in the bivalent subunit vaccine and inactivated vaccine groups had lower viral loads. In summary, our data show for the first time that a bivalent subunit vaccine combining VP4*P[7] and VP4*P[23] effectively protects piglets against the diarrhea caused by homologous virulent strains.IMPORTANCEPoRVs are the main causes of diarrhea in piglets worldwide. The multisegmented genome of PoRVs allows the reassortment of VP4 and VP7 genes from different RV species and strains. The P[7] and P[23] are the predominant genotypes circulating in pig farms, but no vaccine is available at present in China. Subunit vaccines, as nonreplicating vaccines, are an option to cope with variable genotypes. Here, we have developed a bivalent subunit candidate vaccine based on a truncated VP4 protein, which induced robust humoral and cellular immune responses and protected piglets against challenge with homologous PoRV. It also appears to be safe. These data show that the truncated VP4-protein-based subunit vaccine is a promising candidate for the prevention of PoRV diarrhea.


Asunto(s)
Vacunas contra Rotavirus , Vacunas de Subunidad , Animales , Femenino , Ratones , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Diarrea/prevención & control , Diarrea/virología , Diarrea/veterinaria , Diarrea/inmunología , Genotipo , Inmunidad Celular , Ratones Endogámicos BALB C , Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus/inmunología , Vacunas contra Rotavirus/administración & dosificación , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Vacunación , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación
13.
J Virol ; 98(7): e0062224, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38953377

RESUMEN

African swine fever virus causes a lethal hemorrhagic disease in domestic swine and wild boar for which currently licensed commercial vaccines are only available in Vietnam. Development of subunit vaccines is complicated by the lack of information on protective antigens as well as suitable delivery systems. Our previous work showed that a pool of eight African swine fever virus genes vectored using an adenovirus prime and modified vaccinia virus boost could prevent fatal disease after challenge with a virulent genotype I isolate of the virus. Here, we identify antigens within this pool of eight that are essential for the observed protection and demonstrate that adenovirus-prime followed by adenovirus-boost can also induce protective immune responses against genotype I African swine fever virus. Immunization with a pool of adenoviruses expressing individual African swine fever virus genes partially tailored to genotype II virus did not protect against challenge with genotype II Georgia 2007/1 strain, suggesting that different antigens may be required to induce cross-protection for genetically distinct viruses. IMPORTANCE: African swine fever virus causes a lethal hemorrhagic disease in domestic pigs and has killed millions of animals across Europe and Asia since 2007. Development of safe and effective subunit vaccines against African swine fever has been problematic due to the complexity of the virus and a poor understanding of protective immunity. In a previous study, we demonstrated that a complex combination of eight different virus genes delivered using two different viral vector vaccine platforms protected domestic pigs from fatal disease. In this study, we show that three of the eight genes are required for protection and that one viral vector is sufficient, significantly reducing the complexity of the vaccine. Unfortunately, this combination did not protect against the current outbreak strain of African swine fever virus, suggesting that more work to identify immunogenic and protective viral proteins is required to develop a truly effective African swine fever vaccine.


Asunto(s)
Adenoviridae , Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Vectores Genéticos , Genotipo , Vacunas Virales , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/prevención & control , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/inmunología , Porcinos , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/administración & dosificación , Vectores Genéticos/genética , Adenoviridae/genética , Adenoviridae/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/genética , Antígenos Virales/inmunología , Antígenos Virales/genética
14.
J Immunol ; 211(6): 981-993, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37493438

RESUMEN

Current vaccine efforts to combat SARS-CoV-2 are focused on the whole spike protein administered as mRNA, viral vector, or protein subunit. However, the SARS-CoV-2 receptor-binding domain (RBD) is the immunodominant portion of the spike protein, accounting for 90% of serum neutralizing activity. In this study, we constructed several versions of RBD and together with aluminum hydroxide or DDA (dimethyldioctadecylammonium bromide)/TDB (d-(+)-trehalose 6,6'-dibehenate) adjuvant evaluated immunogenicity in mice. We generated human angiotensin-converting enzyme 2 knock-in mice to evaluate vaccine efficacy in vivo following viral challenge. We found that 1) subdomain (SD)1 was essential for the RBD to elicit maximal immunogenicity; 2) RBDSD1 produced in mammalian HEK cells elicited better immunogenicity than did protein produced in insect or yeast cells; 3) RBDSD1 combined with the CD4 Th1 adjuvant DDA/TDB produced higher neutralizing Ab responses and stronger CD4 T cell responses than did aluminum hydroxide; 4) addition of monomeric human Fc receptor to RBDSD1 (RBDSD1Fc) significantly enhanced immunogenicity and neutralizing Ab titers; 5) the Beta version of RBDSD1Fc provided a broad range of cross-neutralization to multiple antigenic variants of concern, including Omicron; and 6) the Beta version of RBDSD1Fc with DDA/TDB provided complete protection against virus challenge in the knock-in mouse model. Thus, we have identified an optimized RBD-based subunit vaccine suitable for clinical trials.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Animales , Ratones , SARS-CoV-2 , Vacunas contra la COVID-19 , Hidróxido de Aluminio , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Mamíferos
15.
Proc Natl Acad Sci U S A ; 119(32): e2204078119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914154

RESUMEN

Peptide-based cancer vaccines are widely investigated in the clinic but exhibit modest immunogenicity. One approach that has been explored to enhance peptide vaccine potency is covalent conjugation of antigens with cell-penetrating peptides (CPPs), linear cationic and amphiphilic peptide sequences designed to promote intracellular delivery of associated cargos. Antigen-CPPs have been reported to exhibit enhanced immunogenicity compared to free peptides, but their mechanisms of action in vivo are poorly understood. We tested eight previously described CPPs conjugated to antigens from multiple syngeneic murine tumor models and found that linkage to CPPs enhanced peptide vaccine potency in vivo by as much as 25-fold. Linkage of antigens to CPPs did not impact dendritic cell activation but did promote uptake of linked antigens by dendritic cells both in vitro and in vivo. However, T cell priming in vivo required Batf3-dependent dendritic cells, suggesting that antigens delivered by CPP peptides were predominantly presented via the process of cross-presentation and not through CPP-mediated cytosolic delivery of peptide to the classical MHC class I antigen processing pathway. Unexpectedly, we observed that many CPPs significantly enhanced antigen accumulation in draining lymph nodes. This effect was associated with the ability of CPPs to bind to lymph-trafficking lipoproteins and protection of CPP-antigens from proteolytic degradation in serum. These two effects resulted in prolonged presentation of CPP-peptides in draining lymph nodes, leading to robust T cell priming and expansion. Thus, CPPs can act through multiple unappreciated mechanisms to enhance T cell priming that can be exploited for cancer vaccines with enhanced potency.


Asunto(s)
Vacunas contra el Cáncer , Péptidos de Penetración Celular , Inmunogenicidad Vacunal , Ganglios Linfáticos , Animales , Presentación de Antígeno , Antígenos , Vacunas contra el Cáncer/inmunología , Péptidos de Penetración Celular/farmacología , Reactividad Cruzada , Células Dendríticas/inmunología , Ganglios Linfáticos/inmunología , Ratones , Linfocitos T/inmunología , Vacunas de Subunidad/inmunología
16.
J Infect Dis ; 229(Supplement_2): S285-S292, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37804521

RESUMEN

COVID-19 has intensified humanity's concern about the emergence of new pandemics. Since 2018, epidemic outbreaks of the mpox virus have become worrisome. In June 2022, the World Health Organization declared the disease a global health emergency, with 14 500 cases reported by the Centers for Disease Control and Prevention in 60 countries. Therefore, the development of a vaccine based on the current virus genome is paramount in combating new cases. In view of this, we hypothesized the obtainment of rational immunogenic peptides predicted from proteins responsible for entry of the mpox virus into the host (A17L, A26L/A30L, A33R, H2R, L1R), exit (A27L, A35R, A36R, C19L), and both (B5R). To achieve this, we aligned the genome sequencing data of mpox virus isolated from an infected individual in the United States in June 2022 (ON674051.1) with the reference genome dated 2001 (NC_003310.1) for conservation analysis. The Immune Epitope Database server was used for the identification and characterization of the epitopes of each protein related to major histocompatibility complex I or II interaction and recognition by B-cell receptors, resulting in 138 epitopes for A17L, 233 for A28L, 48 for A33R, 77 for H2R, 77 for L1R, 270 for A27L, 72 for A35R, A36R, 148 for C19L, and 276 for B5R. These epitopes were tested in silico for antigenicity, physicochemical properties, and allergenicity, resulting in 51, 40, 10, 34, 38, 57, 25, 7, 47, and 53 epitopes, respectively. Additionally, to select an epitope with the highest promiscuity of binding to major histocompatibility complexes and B-cell receptor simultaneously, all epitopes of each protein were aligned, and the most repetitive and antigenic regions were identified. By classifying the results, we obtained 23 epitopes from the entry proteins, 16 from the exit proteins, and 7 from both. Subsequently, 1 epitope from each protein was selected, and all 3 were fused to construct a chimeric protein that has potential as a multiepitope vaccine. The constructed vaccine was then analyzed for its physicochemical, antigenic, and allergenic properties. Protein modeling, molecular dynamics, and molecular docking were performed on Toll-like receptors 2, 4, and 8, followed by in silico immune simulation of the vaccine. Finally, the results indicate an effective, stable, and safe vaccine that can be further tested, especially in vitro and in vivo, to validate the findings demonstrated in silico.


Asunto(s)
Inmunoinformática , Mpox , Humanos , Simulación del Acoplamiento Molecular , Péptidos , Epítopos , Epítopos de Linfocito T , Epítopos de Linfocito B , Biología Computacional , Vacunas de Subunidad
17.
Infect Immun ; 92(3): e0045523, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38289122

RESUMEN

Melioidosis is a disease that is difficult to treat due to the causative organism, Burkholderia pseudomallei being inherently antibiotic resistant and it having the ability to invade, survive, and replicate in an intracellular environment. Combination therapy approaches are routinely being evaluated in animal models with the aim of improving the level of protection and clearance of colonizing bacteria detected. In this study, a subunit vaccine layered with the antibiotic finafloxacin was evaluated in vivo against an inhalational infection with B. pseudomallei in Balb/c mice. Groups of mice vaccinated, infected, and euthanized at antibiotic initiation had a reduced bacterial load compared to those that had not been immunized. In addition, the subunit vaccine provided a synergistic effect when it was delivered with a CpG ODN and finafloxacin was initiated at 48 h post-challenge. Vaccination was also shown to improve the outcome, in a composite measure of survival and clearance. In summary, layering a subunit vaccine with the antibiotic finafloxacin is a promising therapeutic alternative for use in the treatment of B. pseudomallei infections.


Asunto(s)
Burkholderia pseudomallei , Melioidosis , Animales , Ratones , Ratones Endogámicos BALB C , Melioidosis/tratamiento farmacológico , Melioidosis/prevención & control , Antibacterianos/uso terapéutico , Vacunación , Vacunas de Subunidad , Modelos Animales de Enfermedad
18.
Circulation ; 147(9): 728-742, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36562301

RESUMEN

BACKGROUND: The metalloprotease ADAMTS-7 (a disintegrin and metalloproteinase with thrombospondin type 1 motif 7) is a novel locus associated with human coronary atherosclerosis. ADAMTS-7 deletion protects against atherosclerosis and vascular restenosis in rodents. METHODS: We designed 3 potential vaccines consisting of distinct B cell epitopic peptides derived from ADAMTS-7 and conjugated with the carrier protein KLH (keyhole limpet hemocyanin) as well as aluminum hydroxide as an adjuvant. Arterial ligation or wire injury was used to induce neointima in mice, whereas ApoE-/- and LDLR-/- (LDLR [low-density lipoprotein receptor]) mice fed a high-fat diet were applied to assess atherosclerosis. In addition, coronary stent implantation was performed on vaccine-immunized Bama miniature pigs, followed by optical coherence tomography to evaluate coronary intimal hyperplasia. RESULTS: A vaccine, ATS7vac, was screened out from 3 candidates to effectively inhibit intimal thickening in murine carotid artery ligation models after vaccination. As well, immunization with ATS7vac alleviated neointima formation in murine wire injury models and mitigated atherosclerotic lesions in both hyperlipidemic ApoE-/- and LDLR-/- mice without lowering lipid levels. Preclinically, ATS7vac markedly impeded intimal hyperplasia in swine stented coronary arteries, but without significant immune-related organ injuries. Mechanistically, ATS7vac vaccination produced specific antibodies against ADAMTS-7, which markedly repressed ADAMTS-7-mediated COMP (cartilage oligomeric matrix protein) and TSP-1 (thrombospondin-1) degradation and subsequently inhibited vascular smooth muscle cell migration but promoted re-endothelialization. CONCLUSIONS: ATS7vac is a novel atherosclerosis vaccine that also alleviates in-stent restenosis. The application of ATS7vac would be a complementary therapeutic avenue to the current lipid-lowering strategy for atherosclerotic disease.


Asunto(s)
Aterosclerosis , Neointima , Animales , Ratones , Proteínas ADAM/metabolismo , Aterosclerosis/patología , Modelos Animales de Enfermedad , Hiperplasia/metabolismo , Lípidos , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Porcinos , Trombospondinas/metabolismo , Vacunas de Subunidad/metabolismo , Proteína ADAMTS7
19.
Am J Physiol Renal Physiol ; 326(6): F1054-F1065, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695075

RESUMEN

Diabetic nephropathy remains the leading cause of end-stage kidney disease in many countries, and additional therapeutic targets are needed to prevent its development and progression. Some angiogenic factors are involved in the pathogenesis of diabetic nephropathy. Vasohibin-2 (VASH2) is a novel proangiogenic factor, and our previous study showed that glomerular damage is inhibited in diabetic Vash2 homozygous knockout mice. Therefore, we established a VASH2-targeting peptide vaccine as a tool for anti-VASH2 therapy in diabetic nephropathy. In this study, the preventive effects of the VASH2-targeting peptide vaccine against glomerular injury were examined in a streptozotocin (STZ)-induced diabetic mouse model. The mice were subcutaneously injected with the vaccine at two doses 2 wk apart and then intraperitoneally injected with 50 mg/kg STZ for 5 consecutive days. Glomerular injury was evaluated 20 wk after the first vaccination. Treatment with the VASH2-targeting peptide vaccine successfully induced circulating anti-VASH2 antibody without inflammation in major organs. Although the vaccination did not affect blood glucose levels, it significantly prevented hyperglycemia-induced increases in urinary albumin excretion and glomerular volume. The vaccination did not affect increased VASH2 expression but significantly inhibited renal angiopoietin-2 (Angpt2) expression in the diabetic mice. Furthermore, it significantly prevented glomerular macrophage infiltration. The preventive effects of vaccination on glomerular injury were also confirmed in db/db mice. Taken together, the results of this study suggest that the VASH2-targeting peptide vaccine may prevent diabetic glomerular injury in mice by inhibiting Angpt2-mediated microinflammation.NEW & NOTEWORTHY This study demonstrated preventive effects of VASH2-targeting peptide vaccine therapy on albuminuria and glomerular microinflammation in STZ-induced diabetic mouse model by inhibiting renal Angpt2 expression. The vaccination was also effective in db/db mice. The results highlight the importance of VASH2 in the pathogenesis of early-stage diabetic nephropathy and the practicability of anti-VASH2 strategy as a vaccine therapy.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Vacunas de Subunidad , Animales , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/inmunología , Masculino , Vacunas de Subunidad/farmacología , Vacunas de Subunidad/inmunología , Albuminuria/prevención & control , Ratones Endogámicos C57BL , Angiopoyetina 2/metabolismo , Ratones , Glomérulos Renales/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/inmunología , Proteínas Angiogénicas/metabolismo , Vacunas de Subunidades Proteicas
20.
Biochem Biophys Res Commun ; 711: 149919, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38608435

RESUMEN

Subunit vaccines are among the most useful vaccine modalities; however, their low immunogenicity necessitates the addition of adjuvants. Although adjuvants improve immune responses induced by vaccines, they often cause adverse reactions. To address this, we developed an adjuvant-free subunit vaccine platform that uses pre-existing antibodies generated from past infections or vaccinations as carriers for the delivery of vaccine antigens. Although we have confirmed the usefulness of this platform for nasal vaccines, its suitability as a parenterally injectable vaccine remains uncertain. Here, we verified the potential of our vaccine platform to harness pre-existing immunity for parenterally injectable vaccines. We generated RBD-HA by combining the receptor binding domain (RBD) derived from SARS-CoV-2 as a vaccine antigen with hemagglutinin (HA) sourced from influenza viruses to serve as the carrier protein. We revealed that subcutaneous vaccination with RBD-HA effectively triggered strong RBD-specific IgG responses in mice previously infected with the influenza A virus, even in the absence of adjuvants, and conferred protection to mice against SARS-CoV-2 upon challenge. Furthermore, we revealed that vaccination with RBD-HA did not induce an inflammatory response, such as inflammatory cytokine production, swelling, and recruitment of inflammatory immune cells, whereas conventional vaccines combined with adjuvants induced these adverse reactions. In addition, we demonstrated the remarkable versatility of this platform using a vaccine antigen derived from Streptococcus pneumoniae. These findings indicate the potential of this adjuvant-free vaccine platform to enhance the efficacy of parenterally injectable subunit vaccines and reduce adverse reactions.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunoglobulina G , Ratones Endogámicos BALB C , SARS-CoV-2 , Animales , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Ratones , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Humanos , Anticuerpos Antivirales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA