RESUMEN
In their recent Nature paper, Garcia-Martin et al. show that sequences within a microRNA influence how much of that microRNA is sent to another cell through extracellular vesicles. This supports a growing body of data demonstrating that cells use RNA to talk, but we know much less about how they listen.
Asunto(s)
MicroARNs , Vesículas Transportadoras/metabolismo , Comunicación Celular , MicroARNs/metabolismoRESUMEN
Autophagy is a versatile degradation system for maintaining cellular homeostasis whereby cytosolic materials are sequestered in a double-membrane autophagosome and subsequently delivered to lysosomes, where they are broken down. In multicellular organisms, newly formed autophagosomes undergo a process called 'maturation', in which they fuse with vesicles originating from endolysosomal compartments, including early/late endosomes and lysosomes, to form amphisomes, which eventually become degradative autolysosomes. This fusion process requires the concerted actions of multiple regulators of membrane dynamics, including SNAREs, tethering proteins and RAB GTPases, and also transport of autophagosomes and late endosomes/lysosomes towards each other. Multiple mechanisms modulate autophagosome maturation, including post-translational modification of key components, spatial distribution of phosphoinositide lipid species on membranes, RAB protein dynamics, and biogenesis and function of lysosomes. Nutrient status and various stresses integrate into the autophagosome maturation machinery to coordinate the progression of autophagic flux. Impaired autophagosome maturation is linked to the pathogenesis of various human diseases, including neurodegenerative disorders, cancer and myopathies. Furthermore, invading pathogens exploit various strategies to block autophagosome maturation, thus evading destruction and even subverting autophagic vacuoles (autophagosomes, amphisomes and autolysosomes) for survival, growth and/or release. Here, we discuss the recent progress in our understanding of the machinery and regulation of autophagosome maturation, the relevance of these mechanisms to human pathophysiology and how they are harnessed by pathogens for their benefit. We also provide perspectives on targeting autophagosome maturation therapeutically.
Asunto(s)
Autofagosomas/genética , Autofagia/genética , Enfermedades Neurodegenerativas/genética , Vesículas Transportadoras/genética , Endosomas/genética , Humanos , Lisosomas/genética , Enfermedades Neurodegenerativas/patología , Fagosomas/genética , Procesamiento Proteico-Postraduccional/genética , Proteínas SNARE/genética , Proteínas de Unión al GTP rab/genéticaRESUMEN
A long-standing question in cell biology is how endocytic vesicles and tubules detach from the plasma membrane in the absence of constriction by dynamin. In this issue of Cell, Simunovic et al. describe an elegant biophysical model in which friction between lipids and BAR-domain proteins drives the scission of elongating membrane tubules.
Asunto(s)
Endocitosis , Fricción , Membrana Celular , Dinaminas , Vesículas TransportadorasRESUMEN
The plasma membrane of eukaryotic cells is not a simple sheet of lipids and proteins but is differentiated into subdomains with crucial functions. Caveolae, small pits in the plasma membrane, are the most abundant surface subdomains of many mammalian cells. The cellular functions of caveolae have long remained obscure, but a new molecular understanding of caveola formation has led to insights into their workings. Caveolae are formed by the coordinated action of a number of lipid-interacting proteins to produce a microdomain with a specific structure and lipid composition. Caveolae can bud from the plasma membrane to form an endocytic vesicle or can flatten into the membrane to help cells withstand mechanical stress. The role of caveolae as mechanoprotective and signal transduction elements is reviewed in the context of disease conditions associated with caveola dysfunction.
Asunto(s)
Caveolas/metabolismo , Membrana Celular/genética , Vesículas Transportadoras/genética , Caveolas/química , Caveolas/patología , Membrana Celular/química , Endocitosis/genética , Humanos , Transducción de Señal/genética , Estrés Mecánico , Relación Estructura-Actividad , Vesículas Transportadoras/químicaRESUMEN
The epidermal growth factor receptor (EGFR) represents one of the most common target proteins in anti-cancer therapy. To directly examine the structural and dynamical properties of EGFR activation by the epidermal growth factor (EGF) in native membranes, we have developed a solid-state nuclear magnetic resonance (ssNMR)-based approach supported by dynamic nuclear polarization (DNP). In contrast to previous crystallographic results, our experiments show that the ligand-free state of the extracellular domain (ECD) is highly dynamic, while the intracellular kinase domain (KD) is rigid. Ligand binding restricts the overall and local motion of EGFR domains, including the ECD and the C-terminal region. We propose that the reduction in conformational entropy of the ECD by ligand binding favors the cooperative binding required for receptor dimerization, causing allosteric activation of the intracellular tyrosine kinase.
Asunto(s)
Receptores ErbB/química , Receptores ErbB/metabolismo , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/aislamiento & purificación , Humanos , Membranas Intracelulares/química , Resonancia Magnética Nuclear Biomolecular , Multimerización de Proteína , Termodinámica , Vesículas Transportadoras/químicaRESUMEN
A zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under homeostatic conditions, mutant macrophages accumulate undigested lysosomal material, which disrupts endocytic recycling and impairs their migration to, and thus engulfment of, dying cells. This causes a buildup of unengulfed cell debris. During mycobacterial infection, macrophages with lysosomal storage cannot migrate toward infected macrophages undergoing apoptosis in the tuberculous granuloma. The unengulfed apoptotic macrophages undergo secondary necrosis, causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal storage similarly impairs migration to newly infecting mycobacteria. This phenotype is recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of their alveolar macrophages exhibit lysosomal accumulations of tobacco smoke particulates and do not migrate to Mycobacterium tuberculosis. The incapacitation of highly microbicidal first-responding macrophages may contribute to smokers' susceptibility to tuberculosis.
Asunto(s)
Susceptibilidad a Enfermedades , Lisosomas/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Infecciones por Mycobacterium/inmunología , Infecciones por Mycobacterium/patología , Animales , Granuloma/metabolismo , Macrófagos/citología , Macrófagos Alveolares/inmunología , Mycobacterium marinum , Alveolos Pulmonares/inmunología , Fumar , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vesículas Transportadoras/metabolismo , Tuberculosis/inmunología , Tuberculosis/patología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Through a network of progressively maturing vesicles, the endosomal system connects the cell's interior with extracellular space. Intriguingly, this network exhibits a bilateral architecture, comprised of a relatively immobile perinuclear vesicle "cloud" and a highly dynamic peripheral contingent. How this spatiotemporal organization is achieved and what function(s) it curates is unclear. Here, we reveal the endoplasmic reticulum (ER)-located ubiquitin ligase Ring finger protein 26 (RNF26) as the global architect of the entire endosomal system, including the trans-Golgi network (TGN). To specify perinuclear vesicle coordinates, catalytically competent RNF26 recruits and ubiquitinates the scaffold p62/sequestosome 1 (p62/SQSTM1), in turn attracting ubiquitin-binding domains (UBDs) of various vesicle adaptors. Consequently, RNF26 restrains fast transport of diverse vesicles through a common molecular mechanism operating at the ER membrane, until the deubiquitinating enzyme USP15 opposes RNF26 activity to allow vesicle release into the cell's periphery. By drawing the endosomal system's architecture, RNF26 orchestrates endosomal maturation and trafficking of cargoes, including signaling receptors, in space and time.
Asunto(s)
Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Neoplasias/metabolismo , Línea Celular Tumoral , Células Dendríticas/citología , Células Dendríticas/metabolismo , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Proteína Sequestosoma-1/metabolismo , Vesículas Transportadoras/metabolismo , Proteasas Ubiquitina-Específicas/metabolismoRESUMEN
Antigen presentation is essential for establishing immune tolerance and for immune responses against infectious disease and cancer. Although antigen presentation can be mediated by autophagy, here we demonstrate a pathway for mitochondrial antigen presentation (MitAP) that relies on the generation and trafficking of mitochondrial-derived vesicles (MDVs) rather than on autophagy/mitophagy. We find that PINK1 and Parkin, two mitochondrial proteins linked to Parkinson's disease (PD), actively inhibit MDV formation and MitAP. In absence of PINK1 or Parkin, inflammatory conditions trigger MitAP in immune cells, both in vitro and in vivo. MitAP and the formation of MDVs require Rab9 and Sorting nexin 9, whose recruitment to mitochondria is inhibited by Parkin. The identification of PINK1 and Parkin as suppressors of an immune-response-eliciting pathway provoked by inflammation suggests new insights into PD pathology.
Asunto(s)
Presentación de Antígeno , Mitocondrias/inmunología , Enfermedad de Parkinson/inmunología , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células Dendríticas/patología , Modelos Animales de Enfermedad , Inflamación/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Enfermedad de Parkinson/patología , Proteínas Quinasas/genética , Vesículas Transportadoras/metabolismo , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Clathrin-mediated endocytosis is a key process in vesicular trafficking that transports a wide range of cargo molecules from the cell surface to the interior. Clathrin-mediated endocytosis was first described over 5 decades ago. Since its discovery, over 50 proteins have been shown to be part of the molecular machinery that generates the clathrin-coated endocytic vesicles. These proteins and the different steps of the endocytic process that they mediate have been studied in detail. However, we still lack a good understanding of how all these different components work together in a highly coordinated manner to drive vesicle formation. Nevertheless, studies in recent years have provided several important insights into how endocytic vesicles are built, starting from initiation, cargo loading and the mechanisms governing membrane bending to membrane scission and the release of the vesicle into the cytoplasm.
Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Vesículas Transportadoras/metabolismo , Animales , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Membrana Celular/fisiología , HumanosRESUMEN
Most cancer cells release heterogeneous populations of extracellular vesicles (EVs) containing proteins, lipids, and nucleic acids. In vitro experiments showed that EV uptake can lead to transfer of functional mRNA and altered cellular behavior. However, similar in vivo experiments remain challenging because cells that take up EVs cannot be discriminated from non-EV-receiving cells. Here, we used the Cre-LoxP system to directly identify tumor cells that take up EVs in vivo. We show that EVs released by malignant tumor cells are taken up by less malignant tumor cells located within the same and within distant tumors and that these EVs carry mRNAs involved in migration and metastasis. By intravital imaging, we show that the less malignant tumor cells that take up EVs display enhanced migratory behavior and metastatic capacity. We postulate that tumor cells locally and systemically share molecules carried by EVs in vivo and that this affects cellular behavior.
Asunto(s)
Células Neoplásicas Circulantes/metabolismo , Animales , Línea Celular Tumoral , Humanos , Integrasas/metabolismo , Ratones , Metástasis de la Neoplasia , Vesículas Transportadoras/metabolismoRESUMEN
Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM.
Asunto(s)
Transporte Activo de Núcleo Celular , Cápside/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Vesículas Transportadoras/ultraestructura , Animales , Cápside/ultraestructura , Chlorocebus aethiops , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Herpesvirus Humano 1/metabolismo , Herpesvirus Suido 1/metabolismo , Membrana Nuclear/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dímeros de Pirimidina , Dispersión del Ángulo Pequeño , Vesículas Transportadoras/metabolismo , Células Vero , Proteínas Virales/química , Proteínas Virales/metabolismoRESUMEN
Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi complex is highly selective. As a general rule, such transport is limited to soluble and membrane-associated secretory proteins that have reached properly folded and assembled conformations. To secure the efficiency, fidelity, and control of this crucial transport step, cells use a combination of mechanisms. The mechanisms are based on selective retention of proteins in the ER to prevent uptake into transport vesicles, on selective capture of proteins in COPII carrier vesicles, on inclusion of proteins in these vesicles by default as part of fluid and membrane bulk flow, and on selective retrieval of proteins from post-ER compartments by retrograde vesicle transport.
Asunto(s)
Vías Secretoras , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Humanos , Transporte de Proteínas , Vesículas Transportadoras/metabolismoRESUMEN
The 2013 Nobel Prize in Physiology or Medicine has been awarded to James Rothman, Randy Schekman, and Thomas Südhof "for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells". I present a personal view of the membrane trafficking field, highlighting the contributions of these three Nobel laureates in a historical context.
Asunto(s)
Fisiología/historia , Vesículas Transportadoras/metabolismo , Calcio/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Historia del Siglo XX , Premio Nobel , Proteínas SNARE/químicaRESUMEN
The trans-Golgi network (TGN) is an important cargo sorting station within the cell where newly synthesized proteins are packaged into distinct transport carriers that are targeted to various destinations. To maintain the fidelity of protein transport, elaborate protein sorting machinery is employed to mediate sorting of specific cargo proteins into distinct transport carriers. Protein sorting requires assembly of the cytosolic sorting machinery onto the TGN membrane and capture of cargo proteins. We review the cytosolic and transmembrane sorting machinery that function at the TGN and describe molecular interactions and regulatory mechanisms that enable accurate protein sorting. In addition, we highlight the importance of TGN sorting in physiology and disease.
Asunto(s)
Transporte de Proteínas/fisiología , Red trans-Golgi/fisiología , Factor 1 de Ribosilacion-ADP/fisiología , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/fisiología , Polaridad Celular , Citosol/fisiología , Humanos , Lípidos de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Modelos Biológicos , Modelos Moleculares , Fosfolípidos/fisiología , Conformación Proteica , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas/inmunología , Relación Estructura-Actividad , Vesículas Transportadoras/fisiología , Proteínas de Transporte Vesicular/fisiología , Red trans-Golgi/inmunologíaRESUMEN
In the 1980s, exosomes were described as vesicles of endosomal origin secreted from reticulocytes. Interest increased around these extracellular vesicles, as they appeared to participate in several cellular processes. Exosomes bear proteins, lipids, and RNAs, mediating intercellular communication between different cell types in the body, and thus affecting normal and pathological conditions. Only recently, scientists acknowledged the difficulty of separating exosomes from other types of extracellular vesicles, which precludes a clear attribution of a particular function to the different types of secreted vesicles. To shed light into this complex but expanding field of science, this review focuses on the definition of exosomes and other secreted extracellular vesicles. Their biogenesis, their secretion, and their subsequent fate are discussed, as their functions rely on these important processes.
Asunto(s)
Comunicación Celular/fisiología , Micropartículas Derivadas de Células/fisiología , Vesículas Transportadoras/fisiología , Animales , Linfocitos B/metabolismo , Transporte Biológico , Centrifugación por Gradiente de Densidad , Técnicas Citológicas , Endosomas/fisiología , Endosomas/ultraestructura , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Exosomas/fisiología , Líquido Extracelular/metabolismo , Humanos , Fusión de Membrana , Lípidos de la Membrana/fisiología , Proteínas de la Membrana/fisiología , MicroARNs/metabolismo , Neoplasias/metabolismo , Células Procariotas/metabolismo , Células Procariotas/ultraestructura , ARN Mensajero/metabolismo , Reticulocitos/metabolismo , Proteínas SNARE/fisiología , Proteínas de Unión al GTP rab/fisiologíaRESUMEN
Membrane-bound transport carriers are used to transfer cargo between membranes of the secretory and the endocytic pathways. The generation of these carriers can be classified into three steps: segregation of cargo away from the residents of a donor compartment (cargo sorting), generation of membrane curvature commensurate with the size of the cargo (membrane budding or tubulation), and finally separation of the nascent carrier from the donor membrane by a scission or membrane fission event. This review summarizes advances in our understanding of some of the best-characterized proteins required for the membrane fission that separates a transport carrier from its progenitor compartment: the large GTPase dynamin, the small guanine nucleotide-binding (G) proteins of the Arf family, BAR (Bin-amphiphysin-Rvs) domain proteins, and protein kinase D. These proteins share their ability to insert into membranes and oligomerize to create the large curvatures; however, the overall process of fission that involves these proteins appears to be quite different.
Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Transporte Biológico , Proteínas Portadoras/química , Endocitosis , Humanos , Proteínas de la Membrana/química , Proteínas SNARE/metabolismo , Vesículas Transportadoras/químicaRESUMEN
Endocytosis, like many dynamic cellular processes, requires precise temporal and spatial orchestration of complex protein machinery to mediate membrane budding. To understand how this machinery works, we directly correlated fluorescence microscopy of key protein pairs with electron tomography. We systematically located 211 endocytic intermediates, assigned each to a specific time window in endocytosis, and reconstructed their ultrastructure in 3D. The resulting virtual ultrastructural movie defines the protein-mediated membrane shape changes during endocytosis in budding yeast. It reveals that clathrin is recruited to flat membranes and does not initiate curvature. Instead, membrane invagination begins upon actin network assembly followed by amphiphysin binding to parallel membrane segments, which promotes elongation of the invagination into a tubule. Scission occurs on average 9 s after initial bending when invaginations are â¼100 nm deep, releasing nonspherical vesicles with 6,400 nm2 mean surface area. Direct correlation of protein dynamics with ultrastructure provides a quantitative 4D resource.
Asunto(s)
Membrana Celular/ultraestructura , Endocitosis , Saccharomyces cerevisiae/ultraestructura , Actinas/metabolismo , Tomografía con Microscopio Electrónico , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismoRESUMEN
The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that mediate topologically similar membrane-sculpting processes, including cytokinesis, retroviral egress, and multivesicular body (MVB) biogenesis. Although ESCRT-III drives membrane remodeling that creates MVBs, its structure and the mechanism of vesicle formation are unclear. Using electron microscopy, we visualize an ESCRT-II:ESCRT-III supercomplex and propose how it mediates vesicle formation. We define conformational changes that activate ESCRT-III subunit Snf7 and show that it assembles into spiraling ~9 nm protofilaments on lipid monolayers. A high-content flow cytometry assay further demonstrates that mutations halting ESCRT-III assembly block ESCRT function. Strikingly, the addition of Vps24 and Vps2 transforms flat Snf7 spirals into membrane-sculpting helices. Finally, we show that ESCRT-II and ESCRT-III coassemble into ~65 nm diameter rings indicative of a cargo-sequestering supercomplex. We propose that ESCRT-III has distinct architectural stages that are modulated by ESCRT-II to mediate cargo capture and vesicle formation by ordered assembly.
Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Cuerpos Multivesiculares/química , Mutación , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Vesículas Transportadoras/metabolismoRESUMEN
Defects in primary cilia lead to devastating disease because of their roles in sensation and developmental signaling but much is unknown about ciliary structure and mechanisms of their formation and maintenance. We used cryo-electron tomography to obtain 3D maps of the connecting cilium and adjacent cellular structures of a modified primary cilium, the rod outer segment, from wild-type and genetically defective mice. The results reveal the molecular architecture of the cilium and provide insights into protein functions. They suggest that the ciliary rootlet is involved in cellular transport and stabilizes the axoneme. A defect in the BBSome membrane coat caused defects in vesicle targeting near the base of the cilium. Loss of the proteins encoded by the Cngb1 gene disrupted links between the disk and plasma membranes. The structures of the outer segment membranes support a model for disk morphogenesis in which basal disks are enveloped by the plasma membrane.
Asunto(s)
Cilios/ultraestructura , Enfermedades de la Retina/patología , Segmento Externo de la Célula en Bastón/ultraestructura , Animales , Membrana Celular/metabolismo , Cilios/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Retina/química , Retina/metabolismo , Segmento Externo de la Célula en Bastón/química , Segmento Externo de la Célula en Bastón/metabolismo , Vesículas Transportadoras/metabolismoRESUMEN
SNAREs provide a large part of the specificity and energy needed for membrane fusion and, to do so, must be localized to their correct membranes. Here, we show that the R-SNAREs VAMP8, VAMP3, and VAMP2, which cycle between the plasma membrane and endosomes, bind directly to the ubiquitously expressed, PtdIns4,5P(2)-binding, endocytic clathrin adaptor CALM/PICALM. X-ray crystallography shows that the N-terminal halves of their SNARE motifs bind the CALM(ANTH) domain as helices in a manner that mimics SNARE complex formation. Mutation of residues in the CALM:SNARE interface inhibits binding in vitro and prevents R-SNARE endocytosis in vivo. Thus, CALM:R-SNARE interactions ensure that R-SNAREs, required for the fusion of endocytic clathrin-coated vesicles with endosomes and also for subsequent postendosomal trafficking, are sorted into endocytic vesicles. CALM's role in directing the endocytosis of small R-SNAREs may provide insight into the association of CALM/PICALM mutations with growth retardation, cognitive defects, and Alzheimer's disease.