Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 649
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(5): e1010102, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35500027

RESUMEN

Vibrio cholerae respires both aerobically and anaerobically and, while oxygen may be available to it during infection, other terminal electron acceptors are proposed for population expansion during infection. Unlike gastrointestinal pathogens that stimulate significant inflammation leading to elevated levels of oxygen or alternative terminal electron acceptors, V. cholerae infections are not understood to induce a notable inflammatory response. To ascertain the respiration requirements of V. cholerae during infection, we used Multiplex Genome Editing by Natural Transformation (MuGENT) to create V. cholerae strains lacking aerobic or anaerobic respiration. V. cholerae strains lacking aerobic respiration were attenuated in infant mice 105-fold relative to wild type, while strains lacking anaerobic respiration had no colonization defect, contrary to earlier work suggesting a role for anaerobic respiration during infection. Using several approaches, including one we developed for this work termed Comparative Multiplex PCR Amplicon Sequencing (CoMPAS), we determined that the bd-I and cbb3 oxidases are essential for small intestinal colonization of V. cholerae in the infant mouse. The bd-I oxidase was also determined as the primary oxidase during growth outside the host, making V. cholerae the only example of a Gram-negative bacterial pathogen in which a bd-type oxidase is the primary oxidase for energy acquisition inside and outside of a host.


Asunto(s)
Cólera , Complejo IV de Transporte de Electrones , Intestinos , Oxidorreductasas , Vibrio cholerae , Animales , Proteínas Bacterianas/metabolismo , Cólera/microbiología , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Intestinos/microbiología , Ratones , Estrés Oxidativo , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Respiración , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972433

RESUMEN

Bacterial cells can self-organize into structured communities at fluid-fluid interfaces. These soft, living materials composed of cells and extracellular matrix are called pellicles. Cells residing in pellicles garner group-level survival advantages such as increased antibiotic resistance. The dynamics of pellicle formation and, more generally, how complex morphologies arise from active biomaterials confined at interfaces are not well understood. Here, using Vibrio cholerae as our model organism, a custom-built adaptive stereo microscope, fluorescence imaging, mechanical theory, and simulations, we report a fractal wrinkling morphogenesis program that differs radically from the well-known coalescence of wrinkles into folds that occurs in passive thin films at fluid-fluid interfaces. Four stages occur: growth of founding colonies, onset of primary wrinkles, development of secondary curved ridge instabilities, and finally the emergence of a cascade of finer structures with fractal-like scaling in wavelength. The time evolution of pellicle formation depends on the initial heterogeneity of the film microstructure. Changing the starting bacterial seeding density produces three variations in the sequence of morphogenic stages, which we term the bypass, crystalline, and incomplete modes. Despite these global architectural transitions, individual microcolonies remain spatially segregated, and thus, the community maintains spatial and genetic heterogeneity. Our results suggest that the memory of the original microstructure is critical in setting the morphogenic dynamics of a pellicle as an active biomaterial.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Fractales , Modelos Biológicos , Vibrio cholerae/ultraestructura , Fenómenos Biomecánicos , Simulación por Computador , Heterogeneidad Genética , Imagen Óptica , Vibrio cholerae/genética , Vibrio cholerae/crecimiento & desarrollo
3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443205

RESUMEN

The type 6 secretion system (T6SS) is a dynamic organelle encoded by many gram-negative bacteria that can be used to kill competing bacterial prey species in densely occupied niches. Some predatory species, such as Vibrio cholerae, use their T6SS in an untargeted fashion while in contrast, Pseudomonas aeruginosa assembles and fires its T6SS apparatus only after detecting initial attacks by other bacterial prey cells; this targeted attack strategy has been termed the T6SS tit-for-tat response. Molecules that interact with the P. aeruginosa outer membrane such as polymyxin B can also trigger assembly of T6SS organelles via a signal transduction pathway that involves protein phosphorylation. Recent work suggests that a phospholipase T6SS effector (TseL) of V. cholerae can induce T6SS dynamic activity in P. aeruginosa when delivered to or expressed in the periplasmic space of this organism. Here, we report that inhibiting expression of essential genes involved in outer membrane biogenesis can also trigger T6SS activation in P. aeruginosa Specifically, we developed a CRISPR interference (CRISPRi) system to knock down expression of bamA, tolB, and lptD and found that these knockdowns activated T6SS activity. This increase in T6SS activity was dependent on the same signal transduction pathway that was previously shown to be required for the tit-for-tat response. We conclude that outer membrane perturbation can be sensed by P. aeruginosa to activate the T6SS even when the disruption is generated by aberrant cell envelope biogenesis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Sistemas CRISPR-Cas , Membrana Celular/metabolismo , Genes Esenciales/fisiología , Proteínas Periplasmáticas/metabolismo , Pseudomonas aeruginosa/genética , Sistemas de Secreción Tipo VI/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Membrana Celular/genética , Membrana Celular/patología , Supervivencia Celular/genética , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Genes Esenciales/genética , Genotipo , Proteínas Periplasmáticas/genética , Fenotipo , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , RNA-Seq , Transducción de Señal/genética , Estrés Fisiológico , Vibrio cholerae/genética , Vibrio cholerae/crecimiento & desarrollo
4.
Proc Natl Acad Sci U S A ; 117(20): 11010-11017, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32355001

RESUMEN

Vibrio cholerae remains a major global health threat, disproportionately impacting parts of the world without adequate infrastructure and sanitation resources. In aquatic environments, V. cholerae exists both as planktonic cells and as biofilms, which are held together by an extracellular matrix. V. cholerae biofilms have been shown to be hyperinfective, but the mechanism of hyperinfectivity is unclear. Here we show that biofilm-grown cells, irrespective of the surfaces on which they are formed, are able to markedly outcompete planktonic-grown cells in the infant mouse. Using an imaging technique designed to render intestinal tissue optically transparent and preserve the spatial integrity of infected intestines, we reveal and compare three-dimensional V. cholerae colonization patterns of planktonic-grown and biofilm-grown cells. Quantitative image analyses show that V. cholerae colonizes mainly the medial portion of the small intestine and that both the abundance and localization patterns of biofilm-grown cells differ from that of planktonic-grown cells. In vitro biofilm-grown cells activate expression of the virulence cascade, including the toxin coregulated pilus (TCP), and are able to acquire the cholera toxin-carrying CTXФ phage. Overall, virulence factor gene expression is also higher in vivo when infected with biofilm-grown cells, and modulation of their regulation is sufficient to cause the biofilm hyperinfectivity phenotype. Together, these results indicate that the altered biogeography of biofilm-grown cells and their enhanced production of virulence factors in the intestine underpin the biofilm hyperinfectivity phenotype.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Regulación hacia Arriba , Vibrio cholerae/genética , Factores de Virulencia/genética , Animales , Toxina del Cólera , Modelos Animales de Enfermedad , Fimbrias Bacterianas , Intestinos/diagnóstico por imagen , Intestinos/microbiología , Intestinos/patología , Ratones , Fenotipo , Vibrio cholerae/crecimiento & desarrollo , Virulencia/genética
5.
Proc Natl Acad Sci U S A ; 116(28): 14216-14221, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239347

RESUMEN

Collective behavior in spatially structured groups, or biofilms, is the norm among microbes in their natural environments. Though biofilm formation has been studied for decades, tracing the mechanistic and ecological links between individual cell morphologies and the emergent features of cell groups is still in its infancy. Here we use single-cell-resolution confocal microscopy to explore biofilms of the human pathogen Vibrio cholerae in conditions mimicking its marine habitat. Prior reports have noted the occurrence of cellular filamentation in V. cholerae, with variable propensity to filament among both toxigenic and nontoxigenic strains. Using a filamenting strain of V. cholerae O139, we show that cells with this morphotype gain a profound competitive advantage in colonizing and spreading on particles of chitin, the material many marine Vibrio species depend on for growth in seawater. Furthermore, filamentous cells can produce biofilms that are independent of primary secreted components of the V. cholerae biofilm matrix; instead, filamentous biofilm architectural strength appears to derive at least in part from the entangled mesh of cells themselves. The advantage gained by filamentous cells in early chitin colonization and growth is countered in long-term competition experiments with matrix-secreting V. cholerae variants, whose densely packed biofilm structures displace competitors from surfaces. Overall, our results reveal an alternative mode of biofilm architecture that is dependent on filamentous cell morphology and advantageous in environments with rapid chitin particle turnover. This insight provides an environmentally relevant example of how cell morphology can impact bacterial fitness.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Biopelículas/crecimiento & desarrollo , Cólera/microbiología , Vibrio cholerae/crecimiento & desarrollo , Citoesqueleto de Actina/metabolismo , Quitina/metabolismo , Humanos , Microscopía Confocal , Agua de Mar , Análisis de la Célula Individual , Propiedades de Superficie , Vibrio cholerae/patogenicidad , Vibrio cholerae/ultraestructura
6.
Molecules ; 27(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35208951

RESUMEN

A 24 kDa leucine-rich protein from ion exchange fractions of Solanum trilobatum, which has anti-bacterial activity against both the Gram-negative Vibrio cholerae and Gram-positive Staphylococcus aureus bacteria has been purified. In this study, mass spectrometry analysis identified the leucine richness and found a luminal binding protein (LBP). Circular dichroism suggests that the protein was predominantly composed of α- helical contents of its secondary structure. Scanning electron microscopy visualized the characteristics and morphological and structural changes in LBP-treated bacterium. Further in vitro studies confirmed that mannose-, trehalose- and raffinose-treated LBP completely inhibited the hemagglutination ability towards rat red blood cells. Altogether, these studies suggest that LBP could bind to sugar moieties which are abundantly distributed on bacterial surface which are essential for maintaining the structural integrity of bacteria. Considering that Solanum triolbatum is a well-known medicinal and edible plant, in order to shed light on its ancient usage in this work, an efficient anti-microbial protein was isolated, characterized and its in vitro functional study against human pathogenic bacteria was evaluated.


Asunto(s)
Antibacterianos , Hojas de la Planta/química , Proteínas de Plantas , Solanum/química , Staphylococcus aureus/crecimiento & desarrollo , Vibrio cholerae/crecimiento & desarrollo , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología
7.
J Bacteriol ; 203(10)2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33649152

RESUMEN

The Gram-negative bacterium Vibrio cholerae adapts to changes in the environment by selectively producing the necessary machinery to take up and metabolize available carbohydrates. The import of fructose by the fructose-specific phosphoenolpyruvate (PEP) phosphotransferase system (PTS) is of particular interest because of its putative connection to cholera pathogenesis and persistence. Here, we describe the expression and regulation of fruB, which encodes an EIIA-FPr fusion protein as part of the fructose-specific PTS in V. cholerae Using a series of transcriptional reporter fusions and additional biochemical and genetic assays, we identified Cra (catabolite repressor/activator) and cAMP receptor protein (CRP) as regulators of fruB expression and determined that this regulation is dependent upon the presence or absence of PTS sugars. Cra functions as a repressor, downregulating fruB expression in the absence of fructose when components of PTSFru are not needed. CRP functions as an activator of fruB expression. We also report that Cra and CRP can affect fruB expression independently; however, CRP can modulate cra expression in the presence of fructose and glucose. Evidence from this work provides the foundation for continued investigations into PTSFru and its relationship to the V. cholerae life cycle.IMPORTANCEVibrio cholerae is the causative agent of cholera disease. While current treatments of care are accessible, we still lack an understanding of the molecular mechanisms that allow V. cholerae to survive in both aquatic reservoirs and the human small intestine, where pathogenesis occurs. Central to V. cholerae's survival is its ability to use available carbon sources. Here, we investigate the regulation of fruB, which encodes a protein central to the import and metabolism of fructose. We show that fruB expression is controlled by the transcriptional regulators Cra and CRP. This work contributes toward a clearer understanding of how carbon source availability impacts the physiology and, potentially, the persistence of the pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Fructosa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Proteínas Represoras/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Proteínas Bacterianas/genética , Represión Catabólica , Proteína Receptora de AMP Cíclico/genética , Regulación hacia Abajo , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Represoras/genética , Sitio de Iniciación de la Transcripción , Activación Transcripcional , Vibrio cholerae/crecimiento & desarrollo
8.
J Biol Chem ; 295(52): 18524-18538, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33087444

RESUMEN

The divalent anion sodium symporter (DASS) family (SLC13) plays critical roles in metabolic homeostasis, influencing many processes, including fatty acid synthesis, insulin resistance, and adiposity. DASS transporters catalyze the Na+-driven concentrative uptake of Krebs cycle intermediates and sulfate into cells; disrupting their function can protect against age-related metabolic diseases and can extend lifespan. An inward-facing crystal structure and an outward-facing model of a bacterial DASS family member, VcINDY from Vibrio cholerae, predict an elevator-like transport mechanism involving a large rigid body movement of the substrate-binding site. How substrate binding influences the conformational state of VcINDY is currently unknown. Here, we probe the interaction between substrate binding and protein conformation by monitoring substrate-induced solvent accessibility changes of broadly distributed positions in VcINDY using a site-specific alkylation strategy. Our findings reveal that accessibility to all positions tested is modulated by the presence of substrates, with the majority becoming less accessible in the presence of saturating concentrations of both Na+ and succinate. We also observe separable effects of Na+ and succinate binding at several positions suggesting distinct effects of the two substrates. Furthermore, accessibility changes to a solely succinate-sensitive position suggests that substrate binding is a low-affinity, ordered process. Mapping these accessibility changes onto the structures of VcINDY suggests that Na+ binding drives the transporter into an as-yet-unidentified conformational state, involving rearrangement of the substrate-binding site-associated re-entrant hairpin loops. These findings provide insight into the mechanism of VcINDY, which is currently the only structurally characterized representative of the entire DASS family.


Asunto(s)
Transportadores de Ácidos Dicarboxílicos/química , Transportadores de Ácidos Dicarboxílicos/metabolismo , Conformación Proteica , Sodio/metabolismo , Solventes/química , Vibrio cholerae/metabolismo , Sitios de Unión , Transporte Biológico , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , Vibrio cholerae/crecimiento & desarrollo
9.
Microbiology (Reading) ; 167(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33332258

RESUMEN

In order to cause disease, pathogenic strains of Vibrio cholerae rely on intricate regulatory networks to orchestrate the transition between their native aquatic environment and the human host. For example, bacteria in a nutrient-starved environment undergo a metabolic shift called the stringent response, which is mediated by the alarmone ppGpp and an RNA-polymerase binding transcriptional factor, DksA. In O1 serogroup strains of V. cholerae, which use the toxin co-regulated pilus (TCP) and cholera toxin (CT) as primary virulence factors, DksA was reported to have additional functions as a mediator of virulence gene expression. However, little is known about the regulatory networks coordinating virulence phenotypes in pathogenic strains that use TCP/CT-independent virulence mechanisms. We therefore investigated whether functions of DksA outside of the stringent response are conserved in type three secretion system (T3SS)-positive V. cholerae. In using the T3SS-positive clinically isolated O39 serogroup strain AM-19226, we observed an increase in dksA expression in the presence of bile at 37 °C. However, DksA was not required for wild-type levels of T3SS structural gene expression, or for colonization in vivo. Rather, data indicate that DksA positively regulates the expression of master regulators in the motility hierarchy. Interestingly, the ΔdksA strain forms a less robust biofilm than the WT parent strain at both 30 and 37 °C. We also found that DksA regulates the expression of hapR, encoding a major regulator of biofilm formation and protease expression. Athough DksA does not appear to modulate T3SS virulence factor expression, its activity is integrated into existing regulatory networks governing virulence-related phenotypes. Strain variations therefore may take advantage of conserved ancestral proteins to expand regulons responding to in vivo signals and thus coordinate multiple phenotypes important for infection.


Asunto(s)
Bilis/metabolismo , Factores de Transcripción/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Vibrio cholerae/patogenicidad , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Cólera/microbiología , Regulación Bacteriana de la Expresión Génica , Humanos , Locomoción/genética , Metaloendopeptidasas/metabolismo , Ratones , Fenotipo , Serogrupo , Factores de Transcripción/genética , Vibrio cholerae/genética , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/metabolismo , Virulencia
10.
IUBMB Life ; 73(2): 418-431, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33372380

RESUMEN

Vibrio cholerae is the causative agent of the diarrheal disease cholera, for which biofilm communities are considered to be environmental reservoirs. In endemic regions, and after algal blooms, which may result from phosphate enrichment following agricultural runoff, the bacterium is released from biofilms resulting in seasonal disease outbreaks. However, the molecular mechanism by which V. cholerae senses its environment and switches lifestyles from the biofilm-bound state to the planktonic state is largely unknown. Here, we report that the major biofilm scaffolding protein RbmA undergoes autocatalytic proteolysis via a phosphate-dependent induced proximity activation mechanism. Furthermore, we show that RbmA mutants that are defective in autoproteolysis cause V. cholerae biofilms to grow larger and mechanically stronger, correlating well with the observation that RbmA stability directly affects microbial community homeostasis and rheological properties. In conclusion, our biophysical study characterizes a novel phosphate-dependent breakdown pathway of RbmA, while microbiological data suggest a new, sensory role of this biofilm scaffolding element.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Compuestos de Magnesio/farmacología , Fosfatos/farmacología , Proteolisis , Vibrio cholerae/metabolismo , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/crecimiento & desarrollo
11.
BMC Biol ; 18(1): 43, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32349767

RESUMEN

BACKGROUND: In fast-growing bacteria, the genomic location of ribosomal protein (RP) genes is biased towards the replication origin (oriC). This trait allows optimizing their expression during exponential phase since oriC neighboring regions are in higher dose due to multifork replication. Relocation of s10-spc-α locus (S10), which codes for most of the RP, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction on its dosage, its expression, and bacterial growth rate. However, a mechanism linking S10 dosage to cell physiology has still not been determined. RESULTS: We hypothesized that S10 dosage perturbations impact protein synthesis capacity. Strikingly, we observed that in Vibrio cholerae, protein production capacity was independent of S10 position. Deep sequencing revealed that S10 relocation altered chromosomal replication dynamics and genome-wide transcription. Such changes increased as a function of oriC-S10 distance. Since RP constitutes a large proportion of cell mass, lower S10 dosage could lead to changes in macromolecular crowding, impacting cell physiology. Accordingly, cytoplasm fluidity was higher in mutants where S10 is most distant from oriC. In hyperosmotic conditions, when crowding differences are minimized, the growth rate and replication dynamics were highly alleviated in these strains. CONCLUSIONS: The genomic location of RP genes ensures its optimal dosage. However, besides of its essential function in translation, their genomic position sustains an optimal macromolecular crowding essential for maximizing growth. Hence, this could be another mechanism coordinating DNA replication to bacterial growth.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dosificación de Gen , Genes Bacterianos , Origen de Réplica , Proteínas Ribosómicas/metabolismo , Vibrio cholerae/genética , Replicación del ADN , ADN Bacteriano/fisiología , Vibrio cholerae/crecimiento & desarrollo
12.
J Bacteriol ; 202(24)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32631948

RESUMEN

Both fermentative and respiratory processes contribute to bacterial metabolic adaptations to low oxygen tension (hypoxia). In the absence of O2 as a respiratory electron sink, many bacteria utilize alternative electron acceptors, such as nitrate (NO3-). During canonical NO3- respiration, NO3- is reduced in a stepwise manner to N2 by a dedicated set of reductases. Vibrio cholerae, the etiological agent of cholera, requires only a single periplasmic NO3- reductase (NapA) to undergo NO3- respiration, suggesting that the pathogen possesses a noncanonical NO3- respiratory chain. In this study, we used complementary transposon-based screens to identify genetic determinants of general hypoxic growth and NO3- respiration in V. cholerae We found that while the V. cholerae NO3- respiratory chain is primarily composed of homologues of established NO3- respiratory genes, it also includes components previously unlinked to this process, such as the Na+-NADH dehydrogenase Nqr. The ethanol-generating enzyme AdhE was shown to be the principal fermentative branch required during hypoxic growth in V. cholerae Relative to single adhE or napA mutant strains, a V. cholerae strain lacking both genes exhibited severely impaired hypoxic growth in vitro and in vivo Our findings reveal the genetic basis of a specific interaction between disparate energy production pathways that supports pathogen fitness under shifting conditions. Such metabolic specializations in V. cholerae and other pathogens are potential targets for antimicrobial interventions.IMPORTANCE Bacteria reprogram their metabolism in environments with low oxygen levels (hypoxia). Typically, this occurs via regulation of two major, but largely independent, metabolic pathways: fermentation and respiration. In this study, we found that the diarrheal pathogen Vibrio cholerae has a respiratory chain for NO3- that consists largely of components found in other NO3- respiratory systems but also contains several proteins not previously linked to this process. Both AdhE-dependent fermentation and NO3- respiration were required for efficient pathogen growth under both laboratory conditions and in an animal infection model. These observations provide a specific example of fermentative respiratory interactions and identify metabolic vulnerabilities that may be targetable for new antimicrobial agents in V. cholerae and related pathogens.


Asunto(s)
Oxígeno/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cólera/microbiología , Transporte de Electrón , Fermentación , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Nitratos/metabolismo , Oxígeno/análisis , Vibrio cholerae/crecimiento & desarrollo
13.
J Bacteriol ; 202(24)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32540930

RESUMEN

Current mouse models for evaluating the efficacy of live oral cholera vaccines (OCVs) have important limitations. Conventionally raised adult mice are resistant to intestinal colonization by Vibrio cholerae, but germfree mice can be colonized and have been used to study OCV immunogenicity. However, germfree animals have impaired immune systems and intestinal physiology; also, live OCVs colonize germfree mice for many months, which does not mimic the clearance kinetics of live OCVs in humans. In this study, we leveraged antibiotic-treated, conventionally raised adult mice to study the effects of transient intestinal colonization by a live OCV V. cholerae strain. In a single-dose vaccination regimen, we found that HaitiV, a live-attenuated OCV candidate, was cleared by streptomycin-treated adult mice within 2 weeks after oral inoculation. This transient colonization elicited far stronger adaptive immune correlates of protection against cholera than did inactivated whole-cell HaitiV. Infant mice from HaitiV-vaccinated dams were also significantly more protected from choleric disease than pups from inactivated-HaitiV-vaccinated dams. Our findings establish the benefits of antibiotic-treated mice for live-OCV studies as well as their limitations and underscore the immunogenicity of HaitiV.IMPORTANCE Oral cholera vaccines (OCVs) are being deployed to combat cholera, but current killed OCVs require multiple doses and show little efficacy in young children. Live OCVs have the potential to overcome these limitations, but small-animal models for testing OCVs have shortcomings. We used an antibiotic treatment protocol for conventional adult mice to study the effects of short-term colonization by a single dose of HaitiV, a live-OCV candidate. Vaccinated mice developed vibriocidal antibodies against V. cholerae and delivered pups that were resistant to cholera, whereas mice vaccinated with inactivated HaitiV did not. These findings demonstrate HaitiV's immunogenicity and suggest that this antibiotic treatment protocol will be useful for evaluating the efficacy of live OCVs.


Asunto(s)
Vacunas contra el Cólera/inmunología , Cólera/inmunología , Intestinos/microbiología , Vacunas de Productos Inactivados/inmunología , Vibrio cholerae/inmunología , Inmunidad Adaptativa , Animales , Antibacterianos/administración & dosificación , Anticuerpos Antibacterianos/inmunología , Cólera/microbiología , Cólera/prevención & control , Vacunas contra el Cólera/administración & dosificación , Vacunas contra el Cólera/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Intestinos/inmunología , Ratones , Ratones Endogámicos C57BL , Estreptomicina/administración & dosificación , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/genética , Vibrio cholerae/genética , Vibrio cholerae/crecimiento & desarrollo
14.
Environ Microbiol ; 22(10): 4244-4256, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31970854

RESUMEN

Populations of the bacterium Vibrio cholerae consist of dozens of distinct lineages, with primarily (but not exclusively) members of the pandemic generating lineage capable of causing the diarrhoeal disease cholera. Assessing the composition and temporal dynamics of such populations requires extensive isolation efforts and thus only rarely covers large geographic areas or timeframes exhaustively. We developed a culture-independent amplicon sequencing strategy based on the protein-coding gene viuB (vibriobactin utilization) to study the structure of a V. cholerae population over the course of a summer. We show that the 26 co-occurring V. cholerae lineages continuously compete for limited space on nutrient-rich particles where only a few of them can grow to large numbers. Differential abundance of lineages between locations and size-fractions associated with a particle-attached or free-swimming lifestyle could reflect adaptation to various environmental niches. In particular, a major V. cholerae lineage occasionally grows to large numbers on particles but remain undetectable using isolation-based methods, indicating selective culturability for some members of the species. We thus demonstrate that isolation-based studies may not accurately reflect the structure and complex dynamics of V. cholerae populations and provide a scalable high-throughput method for both epidemiological and ecological approaches to studying this species.


Asunto(s)
Proteínas Bacterianas/genética , Catecoles/metabolismo , Cólera/microbiología , Oxazoles/metabolismo , Vibrio cholerae/genética , Adaptación Fisiológica/genética , Humanos , Dinámica Poblacional , Vibrio cholerae/crecimiento & desarrollo
15.
Microbiology (Reading) ; 166(12): 1136-1148, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33150864

RESUMEN

Vibrio cholerae, the Gram-negative facultative pathogen, resides in the aquatic environment and infects humans and causes diarrhoeagenic cholera. Although the environment differs drastically, V. cholerae thrives in both of these conditions aptly and chitinases play a vital role in their persistence and nutrient acquisition. Chitinases also play a role in V. cholerae pathogenesis. Chitinases and its downstream chitin utilization genes are regulated by sensor histidine kinase ChiS, which also plays a significant role in pathogenesis. Recent exploration suggests that CytR, a transcription factor of the LacI family in V. cholerae, also regulates chitinase secretion in environmental conditions. Since chitinases and chitinase regulator ChiS is involved in pathogenesis, CytR might also play a significant role in pathogenicity. However, the role of CytR in pathogenesis is yet to be known. This study explores the regulation of CytR on the activation of ChiS in the presence of mucin and its role in pathogenesis. Therefore, we created a CytR isogenic mutant strain of V. cholerae (CytR¯) and found considerably less ß-hexosaminidase enzyme production, which is an indicator of ChiS activity. The CytR¯ strain greatly reduced the expression of chitinases chiA1 and chiA2 in mucin-supplemented media. Electron microscopy showed that the CytR¯ strain was aflagellate. The expression of flagellar-synthesis regulatory genes flrB, flrC and class III flagellar-synthesis genes were reduced in the CytR¯ strain. The isogenic CytR mutant showed less growth compared to the wild-type in mucin-supplemented media as well as demonstrated highly retarded motility and reduced mucin-layer penetration. The CytR mutant revealed decreased adherence to the HT-29 cell line. In animal models, reduced fluid accumulation and colonization were observed during infection with the CytR¯ strain due to reduced expression of ctxB, toxT and tcpA. Collectively these data suggest that CytR plays an important role in V. cholerae pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Represoras/metabolismo , Vibrio cholerae/patogenicidad , Animales , Adhesión Bacteriana , Proteínas Bacterianas/genética , Toxina del Cólera/metabolismo , Flagelos/metabolismo , Regulación Bacteriana de la Expresión Génica , Células HT29 , Humanos , Intestinos/microbiología , Intestinos/patología , Locomoción , Ratones , Mucinas/metabolismo , Conejos , Proteínas Represoras/genética , Vibrio cholerae/genética , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/metabolismo , Virulencia/genética
16.
Biochem Biophys Res Commun ; 528(3): 493-498, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32505345

RESUMEN

FLAG-tags are commonly used for protein abundance measurements and for identification of protein-protein interactions in living cells. We have observed that the cholera pathogen Vibrio cholerae encodes a FLAG-antibody-reactive protein and identified this protein as an outer membrane porin, Porin4, which contains a sequence very similar to the 3xFLAG epitope tag. We have demonstrated the binding affinity of the conserved peptide sequence (called Porin 4 tag) in Porin4 against monoclonal anti-FLAG M2 antibody. In addition, we created a porin4 deletion mutant, which can be used for background-less FLAG antibody detection experiments.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Proteínas Bacterianas/metabolismo , Oligopéptidos/inmunología , Vibrio cholerae/metabolismo , Marcadores de Afinidad/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ratones , Mutación , Porinas/genética , Porinas/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/crecimiento & desarrollo
17.
Arch Microbiol ; 202(2): 343-349, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31664493

RESUMEN

The subject of analysis in this report was the antibiotic susceptibility of V. cholerae under glucose supplementation since the metabolites can significantly alter the antibiotic sensitivity of bacteria. Glucose could change the antibiotic susceptibility in a growth phase-dependent manner, however, the antibiotic susceptibility of exponentially growing cells was not affected in the presence of glucose. What has been shown is that the stationary phase cells which show higher antibiotic tolerance, could be sensitized to ciprofloxacin and ampicillin by glucose supplementation (tenfold sensitive). The glucose increases the respiration which in turn increases the metabolism and cell division rate. Furthermore, the addition of glucose could increase the susceptibility of persister cells to ciprofloxacin only. In general, the bacterial susceptibility can be increased by combining the antibiotics with glucose.


Asunto(s)
Ampicilina/farmacología , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Glucosa/metabolismo , Vibrio cholerae/efectos de los fármacos , Farmacorresistencia Bacteriana/fisiología , Pruebas de Sensibilidad Microbiana , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/metabolismo
18.
PLoS Genet ; 13(3): e1006702, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28358835

RESUMEN

Homologous recombination between the circular chromosomes of bacteria can generate chromosome dimers. They are resolved by a recombination event at a specific site in the replication terminus of chromosomes, dif, by dedicated tyrosine recombinases. The reaction is under the control of a cell division protein, FtsK, which assembles into active DNA pumps at mid-cell during septum formation. Previous studies suggested that activation of Xer recombination at dif was restricted to chromosome dimers in Escherichia coli but not in Vibrio cholerae, suggesting that FtsK mainly acted on chromosome dimers in E. coli but frequently processed monomeric chromosomes in V. cholerae. However, recent microscopic studies suggested that E. coli FtsK served to release the MatP-mediated cohesion and/or cell division apparatus-interaction of sister copies of the dif region independently of chromosome dimer formation. Here, we show that these apparently paradoxical observations are not linked to any difference in the dimer resolution machineries of E. coli and V. cholerae but to differences in the timing of segregation of their chromosomes. V. cholerae harbours two circular chromosomes, chr1 and chr2. We found that whatever the growth conditions, sister copies of the V. cholerae chr1 dif region remain together at mid-cell until the onset of constriction, which permits their processing by FtsK and the activation of dif-recombination. Likewise, sister copies of the dif region of the E. coli chromosome only separate after the onset of constriction in slow growth conditions. However, under fast growth conditions the dif sites separate before constriction, which restricts XerCD-dif activity to resolving chromosome dimers.


Asunto(s)
Cromosomas Bacterianos/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Recombinación Homóloga/genética , Proteínas de la Membrana/genética , Ciclo Celular/genética , División Celular/genética , Proteínas Cromosómicas no Histona/genética , ADN Circular/genética , Escherichia coli/crecimiento & desarrollo , Integrasas/genética , Imagen Óptica , Recombinasas/genética , Vibrio cholerae/genética , Vibrio cholerae/crecimiento & desarrollo
19.
J Bacteriol ; 201(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30858300

RESUMEN

Korormicin is an antibiotic produced by some pseudoalteromonads which selectively kills Gram-negative bacteria that express the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR.) We show that although korormicin is an inhibitor of Na+-NQR, the antibiotic action is not a direct result of inhibiting enzyme activity. Instead, perturbation of electron transfer inside the enzyme promotes a reaction between O2 and one or more redox cofactors in the enzyme (likely the flavin adenine dinucleotide [FAD] and 2Fe-2S center), leading to the production of reactive oxygen species (ROS). All Pseudoalteromonas contain the nqr operon in their genomes, including Pseudoalteromonas strain J010, which produces korormicin. We present activity data indicating that this strain expresses an active Na+-NQR and that this enzyme is not susceptible to korormicin inhibition. On the basis of our DNA sequence data, we show that the Na+-NQR of Pseudoalteromonas J010 carries an amino acid substitution (NqrB-G141A; Vibrio cholerae numbering) that in other Na+-NQRs confers resistance against korormicin. This is likely the reason that a functional Na+-NQR is able to exist in a bacterium that produces a compound that typically inhibits this enzyme and causes cell death. Korormicin is an effective antibiotic against such pathogens as Vibrio cholerae, Aliivibrio fischeri, and Pseudomonas aeruginosa but has no effect on Bacteroides fragilis and Bacteroides thetaiotaomicron, microorganisms that are important members of the human intestinal microflora.IMPORTANCE As multidrug antibiotic resistance in pathogenic bacteria continues to rise, there is a critical need for novel antimicrobial agents. An essential requirement for a useful antibiotic is that it selectively targets bacteria without significant effects on the eukaryotic hosts. Korormicin is an excellent candidate in this respect because it targets a unique respiratory enzyme found only in prokaryotes, the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR). Korormicin is synthesized by some species of the marine bacterium Pseudoalteromonas and is a potent and specific inhibitor of Na+-NQR, an enzyme that is essential for the survival and proliferation of many Gram-negative human pathogens, including Vibrio cholerae and Pseudomonas aeruginosa, among others. Here, we identified how korormicin selectively kills these bacteria. The binding of korormicin to Na+-NQR promotes the formation of reactive oxygen species generated by the reaction of the FAD and the 2Fe-2S center cofactors with O2.


Asunto(s)
Antibacterianos/farmacología , Antibiosis , Pseudoalteromonas/metabolismo , Especies Reactivas de Oxígeno/agonistas , Aliivibrio fischeri/efectos de los fármacos , Aliivibrio fischeri/enzimología , Aliivibrio fischeri/crecimiento & desarrollo , Aliivibrio fischeri/patogenicidad , Antibacterianos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides fragilis/efectos de los fármacos , Bacteroides fragilis/enzimología , Bacteroides fragilis/crecimiento & desarrollo , Bacteroides thetaiotaomicron/efectos de los fármacos , Bacteroides thetaiotaomicron/enzimología , Bacteroides thetaiotaomicron/crecimiento & desarrollo , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/farmacología , Flavina-Adenina Dinucleótido/metabolismo , Expresión Génica , Lactonas/farmacología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Operón , Oxidación-Reducción , Estructura Secundaria de Proteína , Pseudoalteromonas/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/patogenicidad , Quinona Reductasas/antagonistas & inhibidores , Quinona Reductasas/genética , Quinona Reductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/enzimología , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/patogenicidad
20.
Microbiology (Reading) ; 165(7): 737-746, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31124781

RESUMEN

Vibrio cholerae can survive environmental adversities by entering into a viable but non-culturable (VBNC) state and is able to resuscitate under favourable conditions. In this study, an environmental strain of V. cholerae (AN59) showed a decrease in culturability from 4×107 to ≤ 3 c.f.u. ml -1 in artificial seawater media at 4 °C within 35 days. During the course of VBNC progression, viability was confirmed by real-time RT-PCR which showed reduced but stable expression of molecular chaperones groEL and dnaK. Resuscitation was induced in VBNC microcosm by a temperature increase from 4 to 37 °C for 24 h. The results obtained from resuscitation and growth experiments suggest that 103-104 c.f.u. ml -1 of VBNC cells should recover upon temperature increase and grow to attain 107 c.f.u. ml -1. We used comparative proteomics to differentiate recovery from the VBNC state and selected 19 proteins whose expression was significantly variable between these two states. These proteins were mainly related to carbohydrate metabolism, phosphate utilization, stress response, transport and translation. The main difference in the proteome profile was higher protein expression in the recovery state compared to VBNC state. However, during recovery Pi-starvation led to expression of PhoX, PstB and Xds, which might help in utilization of extracellular DNA to promote growth after resuscitation. In addition, the expression of EctC suggests that osmotic adaptation is necessary to grow at high salinity. Detection of AhpC in the VBNC and recovery state indicates the significance of the oxidative stress response. A temperature-induced VBNC and recovery state is a combination of adaptive and survival responses under nutrient limitation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Regulación Bacteriana de la Expresión Génica , Viabilidad Microbiana , Proteómica , Temperatura , Vibrio cholerae/química , Vibrio cholerae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA