Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(35): e2123366119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994633

RESUMO

Variability in resource availability is hypothesized to be a significant driver of primate adaptation and evolution, but most paleoclimate proxies cannot recover environmental seasonality on the scale of an individual lifespan. Oxygen isotope compositions (δ18O values) sampled at high spatial resolution in the dentitions of modern African primates (n = 2,352 near weekly measurements from 26 teeth) track concurrent seasonal precipitation, regional climatic patterns, discrete meteorological events, and niche partitioning. We leverage these data to contextualize the first δ18O values of two 17 Ma Afropithecus turkanensis individuals from Kalodirr, Kenya, from which we infer variably bimodal wet seasons, supported by rainfall reconstructions in a global Earth system model. Afropithecus' δ18O fluctuations are intermediate in magnitude between those measured at high resolution in baboons (Papio spp.) living across a gradient of aridity and modern forest-dwelling chimpanzees (Pan troglodytes verus). This large-bodied Miocene ape consumed seasonally variable food and water sources enriched in 18O compared to contemporaneous terrestrial fauna (n = 66 fossil specimens). Reliance on fallback foods during documented dry seasons potentially contributed to novel dental features long considered adaptations to hard-object feeding. Developmentally informed microsampling recovers greater ecological complexity than conventional isotope sampling; the two Miocene apes (n = 248 near weekly measurements) evince as great a range of seasonal δ18O variation as more time-averaged bulk measurements from 101 eastern African Plio-Pleistocene hominins and 42 papionins spanning 4 million y. These results reveal unprecedented environmental histories in primate teeth and suggest a framework for evaluating climate change and primate paleoecology throughout the Cenozoic.


Assuntos
Evolução Biológica , Mudança Climática , Fósseis , Isótopos de Oxigênio , Pan troglodytes , Dente , África , Animais , Guiné Equatorial , Fósseis/anatomia & histologia , História do Século XXI , Hominidae/anatomia & histologia , Quênia , Isótopos de Oxigênio/análise , Pan troglodytes/anatomia & histologia , Papio/anatomia & histologia , Primatas/anatomia & histologia , Dente/anatomia & histologia , Dente/química
2.
Proc Natl Acad Sci U S A ; 117(4): 1884-1889, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932423

RESUMO

We determined interstellar cosmic ray exposure ages of 40 large presolar silicon carbide grains extracted from the Murchison CM2 meteorite. Our ages, based on cosmogenic Ne-21, range from 3.9 ± 1.6 Ma to ∼3 ± 2 Ga before the start of the Solar System ∼4.6 Ga ago. A majority of the grains have interstellar lifetimes of <300 Ma, which is shorter than theoretical estimates for large grains. These grains condensed in outflows of asymptotic giant branch stars <4.9 Ga ago that possibly formed during an episode of enhanced star formation ∼7 Ga ago. A minority of the grains have ages >1 Ga. Longer lifetimes are expected for large grains. We determined that at least 12 of the analyzed grains were parts of aggregates in the interstellar medium: The large difference in nuclear recoil loss of cosmic ray spallation products 3He and 21Ne enabled us to estimate that the irradiated objects in the interstellar medium were up to 30 times larger than the analyzed grains. Furthermore, we estimate that the majority of the grains acquired the bulk of their cosmogenic nuclides in the interstellar medium and not by exposure to an enhanced particle flux of the early active sun.

3.
Am J Biol Anthropol ; 185(2): e24991, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38923412

RESUMO

OBJECTIVES: Nitrogen isotopes (δ15N) are widely used to study human nursing and weaning ages. Conventional methods involve sampling 1-mm thick sections of tooth dentine-producing an averaging effect that integrates months of formation. We introduce a novel protocol for measuring δ15N by multicollector secondary ion mass spectrometry (SIMS). MATERIALS AND METHODS: We sampled dentine δ15N on a weekly to monthly basis along the developmental axis in two first molars of healthy children from Australia and New Zealand (n = 217 measurements). Nitrogen isotope ratios were determined from measurements of CN- secondary molecular ions in ~35 µm spots. By relating spot position to enamel formation, we identified prenatal dentine, as well as sampling ages over more than 3 years. We also created calcium-normalized barium and strontium maps with laser ablation-inductively coupled plasma-mass spectrometry. RESULTS: We found rapid postnatal δ15N increases of ~2‰-3‰, during which time the children were exclusively breastfed, followed by declines as the breastfeeding frequency decreased. After weaning, δ15N values remained stable for several months, coinciding with diets that did not include meat or cow's milk; values then varied by ~2‰ starting in the third year of life. Barium did not show an immediate postnatal increase, rising after a few months until ~1-1.5 years of age, and falling until or shortly after the cessation of suckling. Initial strontium trends varied but both individuals peaked months after weaning. DISCUSSION: Developmentally informed SIMS measurements of δ15N minimize time averaging and can be precisely related to an individual's early dietary history.


Assuntos
Dentina , Isótopos de Nitrogênio , Humanos , Dentina/química , Dentina/metabolismo , Isótopos de Nitrogênio/análise , Pré-Escolar , Criança , Lactente , Nova Zelândia , Feminino , Espectrometria de Massa de Íon Secundário/métodos , Austrália , Dente Molar/química , Dente Molar/metabolismo , Desmame , Masculino
4.
Nat Commun ; 9(1): 2245, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884814

RESUMO

The Great Oxidation Event (GOE) has been defined as the time interval when sufficient atmospheric oxygen accumulated to prevent the generation and preservation of mass-independent fractionation of sulphur isotopes (MIF-S) in sedimentary rocks. Existing correlations suggest that the GOE was rapid and globally synchronous. Here we apply sulphur isotope analysis of diagenetic sulphides combined with U-Pb and Re-Os geochronology to document the sulphur cycle evolution in Western Australia spanning the GOE. Our data indicate that, from ~2.45 Gyr to beyond 2.31 Gyr, MIF-S was preserved in sulphides punctuated by several episodes of MIF-S disappearance. These results establish the MIF-S record as asynchronous between South Africa, North America and Australia, argue for regional-scale modulation of MIF-S memory effects due to oxidative weathering after the onset of the GOE, and suggest that the current paradigm of placing the GOE at 2.33-2.32 Ga based on the last occurrence of MIF-S in South Africa should be re-evaluated.

5.
Rapid Commun Mass Spectrom ; 39(1): e9921, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39477790

RESUMO

RATIONALE: Micrometeorites are extraterrestrial particles smaller than ~2 mm in diameter, most of which melted during atmospheric entry and crystallised or quenched to form 'cosmic spherules'. Their parentage among meteorite groups can be inferred from triple-oxygen isotope compositions, for example, by secondary ion mass spectrometry (SIMS). This method uses sample efficiently, preserving spherules for other investigations. While SIMS precisions are improving steadily, application requires assumptions about instrumental mass fractionation, which is controlled by sample chemistry and mineralogy (matrix effects). METHODS: We have developed a generic SIMS method using sensitive high-mass resolution ion micro probe-stable isotope (SHRIMP-SI) that can be applied to finely crystalline igneous textures as in cosmic spherules. We correct for oxygen isotope matrix effects using the bulk chemistry of samples obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and model bulk chemical compositions as three-component mixtures of olivine, basaltic glass and Fe-oxide (magnetite), finding a unique matrix correction for each target. RESULTS: Our first results for cosmic spherules from East Antarctica compare favourably with established micrometeorite groups defined by precise and accurate but consumptive bulk oxygen isotope methods. The Fe-oxide content of each spherule is the main control on magnitude of oxygen isotope ratio bias, with effects on δ18O up to ~6‰. Our main peak in compositions closely coincides with so-called 'Group 1' objects identified by consumptive methods. CONCLUSIONS: The magnitude of SIMS matrix effects we find is similar to the previous intraspherule variations, which are now the limiting factor in understanding their compositions. The matrix effect for each spherule should be assessed quantitatively and individually, especially addressing Fe-oxide content. We expect micrometeorite triple-oxygen isotope compositions obtained by SIMS to converge on the main clusters (Groups 1 to 4) after correction firstly for magnetite content and secondarily for other phases (e.g., basaltic glass) in each target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA