RESUMO
Panasqueira mine is a tin-tungsten mineralization hosted by metasediments with quartz veins rich in ferberite. The mineralization also comprises wolframite, cassiterite, chalcopyrite, several sulfides, carbonates and silver sulfosalts. The mining and beneficiation processes produce arsenic-rich mine wastes laid up in huge tailings (Barroca Grande and Rio tailings). The contents of As, Cd, Cr, Cu, Pb and Zn were estimated in rhizosphere soils, irrigation waters, road dusts and in potatoes, cabbages, lettuces and beans, collected on local gardens of four neighborhood Panasqueira mine villages: S. Francisco de Assis (SFA) and Barroca suffering the influence of tailings; Unhais-o-Velho and Casegas considered as non-polluted areas. The mean concentrations of metals in rhizosphere soils and vegetables exceed the reference guidelines values and seem to be linked to the sulfides. The rhizosphere ecological risks were ranked in the order of Cd > As > Cu > Pb > Zn > Cr and SFA > Barroca > Casegas > Unhais-o-Velho. Metal concentrations, in vegetables, were found in the order of lettuce > cabbage > potatoes and SFA > Barroca > Casegas > Unhais-o-Velho. For cabbages and lettuces, the tendency of contamination is roots > leaves and for potatoes is roots > leaves > tubers. The risk for residents, due to ingesting of metals/metalloid, by consuming vegetables grown around the sampling area, was calculated and the result indicates that the inhabitants of these villages are probably exposed to some potential health risks through the intake of heavy metals and metalloids via consuming their vegetables.
Assuntos
Metais Pesados/análise , Mineração , Poluentes do Solo/análise , Verduras/química , Poluentes Químicos da Água/análise , Irrigação Agrícola , Arsênio/análise , Cádmio/análise , Cromo/análise , Cobre/análise , Monitoramento Ambiental , Chumbo/análise , Portugal , Medição de Risco , Estanho , Tungstênio , Zinco/análiseRESUMO
Through the years, mining and beneficiation processes in Panasqueira Sn-W mine (Central Portugal) produced large amounts of As-rich mine wastes laid up in huge tailings and open-air impoundments (Barroca Grande and Rio tailings) that are the main source of pollution in the surrounding area once they are exposed to the weathering conditions leading to the formation of acid mine drainage (AMD) and consequently to the contamination of the surrounding environments, particularly soils. The active mine started the exploration during the nineteenth century. This study aims to look at the extension of the soil pollution due to mining activities and tailing erosion by combining data on the degree of soil contamination that allows a better understanding of the dynamics inherent to leaching, transport, and accumulation of some potential toxic elements in soil and their environmental relevance. Soil samples were collected in the surrounding soils of the mine, were digested in aqua regia, and were analyzed for 36 elements by inductively coupled plasma mass spectrometry (ICP-MS). Selected results are that (a) an association of elements like Ag, As, Bi, Cd, Cu, W, and Zn strongly correlated and controlled by the local sulfide mineralization geochemical signature was revealed; (b) the global area discloses significant concentrations of As, Bi, Cd, and W linked to the exchangeable and acid-soluble bearing phases; and (c) wind promotes the mechanical dispersion of the rejected materials, from the milled waste rocks and the mineral processing plant, with subsequent deposition on soils and waters. Arsenic- and sulfide-related heavy metals (such as Cu and Cd) are associated to the fine materials that are transported in suspension by surface waters or associated to the acidic waters, draining these sites and contaminating the local soils. Part of this fraction, especially for As, Cd, and Cu, is temporally retained in solid phases by precipitation of soluble secondary minerals (through the precipitation of hydrated metal sulfates) in warm, dry periods, but such minerals are easily dissolved during rainy periods. Climate is an important instability factor, and the hot and dry summers and cold, rainy, and windy winters in this region are physical phenomena that enhance the good receptivity of these soils to retain some of the metals present in the primary and also the secondary mineralogy. Considering the obtained results from both the sequential chemical extraction and the environmental risk assessment according to the risk assessment code, Ag, Cd, Cu, and Zn are classified with very high risk while As is classified with medium risk.
Assuntos
Monitoramento Ambiental/métodos , Mineração , Poluentes do Solo/análise , Arsênio/análise , Meio Ambiente , Poluição Ambiental/análise , Poluição Ambiental/estatística & dados numéricos , Metais/análise , Metais Pesados/análise , Minerais/análise , Portugal , Solo , Sulfetos/análiseRESUMO
Polyoxometalates are known to be inhibitors of a diverse collection of enzymes, although the specific interactions that lead to this bioactivity are still unclear. Spectroscopic characterization may be an invaluable if indirect tool for remedying this problem, yet this requires clear, cogent assignment of polyoxometalate spectra before the complicating effect of their binding to large biomolecules can be considered. We report the use of FT-IR and resonance Raman spectroscopies alongside density functional theory to describe the vibrational and electronic structures of decavanadate, [V10O28]6-. Our computational model, which reproduced the majority of vibrational features to within 10 cm-1, was used to identify an axial oxo ligand as the most likely position of the acidic proton in the related cluster [HV10O28]5-. As resonance Raman spectroscopy can directly interrogate chromophores embedded in complex systems, this approach may be of general use in answering structural questions about polyoxometalate-enzyme systems.