RESUMO
Sleep recordings are increasingly being conducted in patients' homes where patients apply the sensors themselves according to instructions. However, certain sensor types such as cup electrodes used in conventional polysomnography are unfeasible for self-application. To overcome this, self-applied forehead montages with electroencephalography and electro-oculography sensors have been developed. We evaluated the technical feasibility of a self-applied electrode set from Nox Medical (Reykjavik, Iceland) through home sleep recordings of healthy and suspected sleep-disordered adults (n = 174) in the context of sleep staging. Subjects slept with a double setup of conventional type II polysomnography sensors and self-applied forehead sensors. We found that the self-applied electroencephalography and electro-oculography electrodes had acceptable impedance levels but were more prone to losing proper skin-electrode contact than the conventional cup electrodes. Moreover, the forehead electroencephalography signals recorded using the self-applied electrodes expressed lower amplitudes (difference 25.3%-43.9%, p < 0.001) and less absolute power (at 1-40 Hz, p < 0.001) than the polysomnography electroencephalography signals in all sleep stages. However, the signals recorded with the self-applied electroencephalography electrodes expressed more relative power (p < 0.001) at very low frequencies (0.3-1.0 Hz) in all sleep stages. The electro-oculography signals recorded with the self-applied electrodes expressed comparable characteristics with standard electro-oculography. In conclusion, the results support the technical feasibility of the self-applied electroencephalography and electro-oculography for sleep staging in home sleep recordings, after adjustment for amplitude differences, especially for scoring Stage N3 sleep.
Assuntos
Eletroencefalografia , Sono , Adulto , Humanos , Polissonografia/métodos , Estudos de Viabilidade , Eletroculografia/métodos , Fases do Sono , EletrodosRESUMO
Determining sleep stages accurately is an important part of the diagnostic process for numerous sleep disorders. However, as the sleep stage scoring is done manually following visual scoring rules there can be considerable variation in the sleep staging between different scorers. Thus, this study aimed to comprehensively evaluate the inter-rater agreement in sleep staging. A total of 50 polysomnography recordings were manually scored by 10 independent scorers from seven different sleep centres. We used the 10 scorings to calculate a majority score by taking the sleep stage that was the most scored stage for each epoch. The overall agreement for sleep staging was κ = 0.71 and the mean agreement with the majority score was 0.86. The scorers were in perfect agreement in 48% of all scored epochs. The agreement was highest in rapid eye movement sleep (κ = 0.86) and lowest in N1 sleep (κ = 0.41). The agreement with the majority scoring varied between the scorers from 81% to 91%, with large variations between the scorers in sleep stage-specific agreements. Scorers from the same sleep centres had the highest pairwise agreements at κ = 0.79, κ = 0.85, and κ = 0.78, while the lowest pairwise agreement between the scorers was κ = 0.58. We also found a moderate negative correlation between sleep staging agreement and the apnea-hypopnea index, as well as the rate of sleep stage transitions. In conclusion, although the overall agreement was high, several areas of low agreement were also found, mainly between non-rapid eye movement stages.
Assuntos
Síndromes da Apneia do Sono , Sono , Humanos , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Fases do Sono , Síndromes da Apneia do Sono/diagnósticoRESUMO
Sleep-disordered breathing, ranging from habitual snoring to severe obstructive sleep apnea, is a prevalent public health issue. Despite rising interest in sleep and awareness of sleep disorders, sleep research and diagnostic practices still rely on outdated metrics and laborious methods reducing the diagnostic capacity and preventing timely diagnosis and treatment. Consequently, a significant portion of individuals affected by sleep-disordered breathing remain undiagnosed or are misdiagnosed. Taking advantage of state-of-the-art scientific, technological, and computational advances could be an effective way to optimize the diagnostic and treatment pathways. We discuss state-of-the-art multidisciplinary research, review the shortcomings in the current practices of SDB diagnosis and management in adult populations, and provide possible future directions. We critically review the opportunities for modern data analysis methods and machine learning to combine multimodal information, provide a perspective on the pitfalls of big data analysis, and discuss approaches for developing analysis strategies that overcome current limitations. We argue that large-scale and multidisciplinary collaborative efforts based on clinical, scientific, and technical knowledge and rigorous clinical validation and implementation of the outcomes in practice are needed to move the research of sleep-disordered breathing forward, thus increasing the quality of diagnostics and treatment.