RESUMO
Determining the transmissibility, prevalence and patterns of movement of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is central to our understanding of the impact of the pandemic and to the design of effective control strategies. Phylogenies (evolutionary trees) have provided key insights into the international spread of SARS-CoV-2 and enabled investigation of individual outbreaks and transmission chains in specific settings. Phylodynamic approaches combine evolutionary, demographic and epidemiological concepts and have helped track virus genetic changes, identify emerging variants and inform public health strategy. Here, we review and synthesize studies that illustrate how phylogenetic and phylodynamic techniques were applied during the first year of the pandemic, and summarize their contributions to our understanding of SARS-CoV-2 transmission and control.
Assuntos
COVID-19 , Pandemias , Humanos , Pandemias/prevenção & controle , Filogenia , SARS-CoV-2/genéticaRESUMO
The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/virologia , Cidades/epidemiologia , Busca de Comunicante , Inglaterra/epidemiologia , Genoma Viral/genética , Humanos , Quarentena/legislação & jurisprudência , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/isolamento & purificação , Viagem/legislação & jurisprudênciaRESUMO
Outer membrane porins in Gram-negative bacteria facilitate antibiotic influx. In Klebsiella pneumoniae, modifications in the porin OmpK36 are implicated in increasing resistance to carbapenems. An analysis of large K. pneumoniae genome collections, encompassing major healthcare-associated clones, revealed the recurrent emergence of a synonymous cytosine-to-thymine transition at position 25 (25c > t) in ompK36. We show that the 25c > t transition increases carbapenem resistance through depletion of OmpK36 from the outer membrane. The mutation attenuates K. pneumoniae in a murine pneumonia model, which accounts for its limited clonal expansion observed by phylogenetic analysis. However, in the context of carbapenem treatment, the 25c > t transition tips the balance toward treatment failure, thus accounting for its recurrent emergence. Mechanistically, the 25c > t transition mediates an intramolecular messenger RNA (mRNA) interaction between a uracil encoded by 25t and the first adenine within the Shine-Dalgarno sequence. This specific interaction leads to the formation of an RNA stem structure, which obscures the ribosomal binding site thus disrupting translation. While mutations reducing OmpK36 expression via transcriptional silencing are known, we uniquely demonstrate the repeated selection of a synonymous ompK36 mutation mediating translational suppression in response to antibiotic pressure.
Assuntos
Antibacterianos , Proteínas de Bactérias , Carbapenêmicos , Klebsiella pneumoniae , Porinas , Resistência beta-Lactâmica , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Modelos Animais de Doenças , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Camundongos , Testes de Sensibilidade Microbiana , Mutação , Filogenia , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Porinas/classificação , Porinas/genética , RNA Mensageiro/metabolismo , Resistência beta-Lactâmica/genéticaRESUMO
Mutations in outer membrane porins act in synergy with carbapenemase enzymes to increase carbapenem resistance in the important nosocomial pathogen, Klebsiella pneumoniae (KP). A key example is a di-amino acid insertion, Glycine-Aspartate (GD), in the extracellular loop 3 (L3) region of OmpK36 which constricts the pore and restricts entry of carbapenems into the bacterial cell. Here we combined genomic and experimental approaches to characterise the diversity, spread and impact of different L3 insertion types in OmpK36. We identified L3 insertions in 3588 (24.1%) of 14,888 KP genomes with an intact ompK36 gene from a global collection. GD insertions were most common, with a high concentration in the ST258/512 clone that has spread widely in Europe and the Americas. Aspartate (D) and Threonine-Aspartate (TD) insertions were prevalent in genomes from Asia, due in part to acquisitions by KP sequence types ST16 and ST231 and subsequent clonal expansions. By solving the crystal structures of novel OmpK36 variants, we found that the TD insertion causes a pore constriction of 41%, significantly greater than that achieved by GD (10%) or D (8%), resulting in the highest levels of resistance to selected antibiotics. We show that in the absence of antibiotics KP mutants harbouring these L3 insertions exhibit both an in vitro and in vivo competitive disadvantage relative to the isogenic parental strain expressing wild type OmpK36. We propose that this explains the reversion of GD and TD insertions observed at low frequency among KP genomes. Finally, we demonstrate that strains expressing L3 insertions remain susceptible to drugs targeting carbapenemase-producing KP, including novel beta lactam-beta lactamase inhibitor combinations. This study provides a contemporary global view of OmpK36-mediated resistance mechanisms in KP, integrating surveillance and experimental data to guide treatment and drug development strategies.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácido Aspártico , Proteínas de Bactérias/metabolismo , Células Clonais , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Testes de Sensibilidade Microbiana , Porinas/genética , Porinas/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismoRESUMO
BACKGROUND: In 2015, the UK government established the Fleming Fund with the aim to address critical gaps in surveillance of antimicrobial resistance (AMR) in low- and middle-income countries in Asia and Africa. Among a large portfolio of grants, the Capturing Data on Antimicrobial Resistance Patterns and Trends in Use in Regions of Asia (CAPTURA) project was awarded with the specific objective of expanding the volume of historical data on AMR, consumption (AMC), and use (AMU) in the human healthcare sector across 12 countries in South and Southeast Asia. METHODS: Starting in early 2019, the CAPTURA consortium began working with local governments and >100 relevant data-holding facilities across the region to identify, assess for quality, prioritize, and subsequently retrieve data on AMR, AMC, and AMU. Relevant and shared data were collated and analyzed to provide local overviews for national stakeholders as well as regional context, wherever possible. RESULTS: From the vast information resource generated on current surveillance capacity and data availability, the project has highlighted gaps and areas for quality improvement and supported comprehensive capacity-building activities to optimize local data-collection and -management practices. CONCLUSIONS: The project has paved the way for expansion of surveillance networks to include both the academic and private sector in several countries and has actively engaged in discussions to promote data sharing at the local, national, and regional levels. This paper describes the overarching approach to, and emerging lessons from, the CAPTURA project, and how it contributes to other ongoing efforts to strengthen national AMR surveillance in the region and globally.
Assuntos
Antibacterianos , Distinções e Prêmios , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Ásia/epidemiologia , África/epidemiologiaRESUMO
Antimicrobial resistance (AMR) is a multifaceted global health problem disproportionately affecting low- and middle-income countries (LMICs). The Capturing data on Antimicrobial resistance Patterns and Trends in Use in Regions of Asia (CAPTURA) project was tasked to expand the volume of AMR and antimicrobial use data in Asia. The CAPTURA project used 2 data-collection streams: facility data and project metadata. Project metadata constituted information collected to map out data sources and assess data quality, while facility data referred to the retrospective data collected from healthcare facilities. A down-selection process, labelled "the funnel approach" by the project, was adopted to use the project metadata in prioritizing and selecting laboratories for retrospective AMR data collection. Moreover, the metadata served as a guide for understanding the AMR data once they were collected. The findings from CAPTURA's metadata add to the current discourse on the limitation of AMR data in LMICs. There is generally a low volume of AMR data generated as there is a lack of microbiology laboratories with sufficient antimicrobial susceptibility testing capacity. Many laboratories in Asia are still capturing data on paper, resulting in scattered or unused data not readily accessible or shareable for analyses. There is also a lack of clinical and epidemiological data captured, impeding interpretation and in-depth understanding of the AMR data. CAPTURA's experience in Asia suggests that there is a wide spectrum of capacity and capability of microbiology laboratories within a country and region. As local AMR surveillance is a crucial instrument to inform context-specific measures to combat AMR, it is important to understand and assess current capacity-building needs while implementing activities to enhance surveillance systems.
Assuntos
Antibacterianos , Países em Desenvolvimento , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Farmacorresistência Bacteriana , Ásia/epidemiologiaRESUMO
BACKGROUND: A key factor driving the development and maintenance of antibacterial resistance (ABR) is individuals' use of antibiotics (ABs) to treat illness. To better understand motivations and context for antibiotic use we use the concept of a patient treatment-seeking pathway: a treatment journey encompassing where patients go when they are unwell, what motivates their choices, and how they obtain antibiotics. This paper investigates patterns and determinants of patient treatment-seeking pathways, and how they intersect with AB use in East Africa, a region where ABR-attributable deaths are exceptionally high. METHODS: The Holistic Approach to Unravelling Antibacterial Resistance (HATUA) Consortium collected quantitative data from 6,827 adult outpatients presenting with urinary tract infection (UTI) symptoms in Kenya, Tanzania, and Uganda between February 2019- September 2020, and conducted qualitative in-depth patient interviews with a subset (n = 116). We described patterns of treatment-seeking visually using Sankey plots and explored explanations and motivations using mixed-methods. Using Bayesian hierarchical regression modelling, we investigated the associations between socio-demographic, economic, healthcare, and attitudinal factors and three factors related to ABR: self-treatment as a first step, having a multi-step treatment pathway, and consuming ABs. RESULTS: Although most patients (86%) sought help from medical facilities in the first instance, many (56%) described multi-step, repetitive treatment-seeking pathways, which further increased the likelihood of consuming ABs. Higher socio-economic status patients were more likely to consume ABs and have multi-step pathways. Reasons for choosing providers (e.g., cost, location, time) were conditioned by wider structural factors such as hybrid healthcare systems and AB availability. CONCLUSION: There is likely to be a reinforcing cycle between complex, repetitive treatment pathways, AB consumption and ABR. A focus on individual antibiotic use as the key intervention point in this cycle ignores the contextual challenges patients face when treatment seeking, which include inadequate access to diagnostics, perceived inefficient public healthcare and ease of purchasing antibiotics without prescription. Pluralistic healthcare landscapes may promote more complex treatment seeking and therefore inappropriate AB use. We recommend further attention to healthcare system factors, focussing on medical facilities (e.g., accessible diagnostics, patient-doctor interactions, information flows), and community AB access points (e.g., drug sellers).
Assuntos
Antibacterianos , Atenção à Saúde , Adulto , Humanos , Pesquisa Qualitativa , Teorema de Bayes , Uganda , Antibacterianos/farmacologia , Antibacterianos/uso terapêuticoRESUMO
Molecular and genomic surveillance systems for bacterial pathogens currently rely on tracking clonally evolving lineages. By contrast, plasmids are usually excluded or analyzed with low-resolution techniques, despite being the primary vectors of antibiotic resistance genes across many key pathogens. Here, we used a combination of long- and short-read sequence data of Klebsiella pneumoniae isolates (n = 1,717) from a European survey to perform an integrated, continent-wide study of chromosomal and plasmid diversity. This revealed three contrasting modes of dissemination used by carbapenemase genes, which confer resistance to last-line carbapenems. First, blaOXA-48-like genes have spread primarily via the single epidemic pOXA-48-like plasmid, which emerged recently in clinical settings and spread rapidly to numerous lineages. Second, blaVIM and blaNDM genes have spread via transient associations of many diverse plasmids with numerous lineages. Third, blaKPC genes have transmitted predominantly by stable association with one successful clonal lineage (ST258/512) yet have been mobilized among diverse plasmids within this lineage. We show that these plasmids, which include pKpQIL-like and IncX3 plasmids, have a long association (and are coevolving) with the lineage, although frequent recombination and rearrangement events between them have led to a complex array of mosaic plasmids carrying blaKPC Taken altogether, these results reveal the diverse trajectories of antibiotic resistance genes in clinical settings, summarized as using one plasmid/multiple lineages, multiple plasmids/multiple lineages, and multiple plasmids/one lineage. Our study provides a framework for the much needed incorporation of plasmid data into genomic surveillance systems, an essential step toward a more comprehensive understanding of resistance spread.
Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Klebsiella/genética , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Antibacterianos/uso terapêutico , Carbapenêmicos/uso terapêutico , Linhagem da Célula/genética , Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Genoma Bacteriano/genética , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/patogenicidade , Plasmídeos/genética , Análise de Sequência de DNA/métodosRESUMO
We report the persistent circulation of third-generation cephalosporin resistant Salmonella Typhi in Mumbai, linked to the acquisition and maintenance of a previously characterized IncX3 plasmid carrying the ESBL gene blaSHV-12 and the fluoroquinolone resistance gene qnrB7 in the genetic context of a triple mutant also associated with fluoroquinolone resistance.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Salmonella typhi , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Fluoroquinolonas , Humanos , Índia/epidemiologia , Testes de Sensibilidade Microbiana , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/genética , beta-Lactamases/genéticaRESUMO
Whole-genome sequencing (WGS) is finding important applications in the surveillance of antimicrobial resistance (AMR), providing the most granular data and broadening the scope of niches and locations that can be surveilled. A common but often overlooked application of WGS is to replace or augment reference laboratory services for AMR surveillance. WGS has supplanted traditional strain subtyping in many comprehensive reference laboratories and is now the gold standard for rapidly ruling isolates into or out of suspected outbreak clusters. These and other properties give WGS the potential to serve in AMR reference functioning where a reference laboratory did not hitherto exist. In this perspective, we describe how we have employed a WGS approach, and an academic-public health system collaboration, to provide AMR reference laboratory services in Nigeria, as a model for leapfrogging to national AMR surveillance.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Surtos de Doenças , Farmacorresistência Bacteriana/genética , Nigéria , Sequenciamento Completo do GenomaRESUMO
In this Supplement, we detail outputs of the National Institute for Health Research Global Health Research Unit on Genomic Surveillance of Antimicrobial Resistance project, covering practical implementation of whole-genome sequencing across our consortium, which consists of laboratories in Colombia, India, Nigeria, and the Philippines.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Genômica , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Sequenciamento Completo do GenomaRESUMO
Advanced genomics and sequencing technologies are increasingly becoming critical for global health applications such as pathogen and antimicrobial resistance (AMR) surveillance. Limited resources challenge capacity development in low- and middle-income countries (LMICs), with few countries having genomics facilities and adequately trained staff. Training research and public health experts who are directly involved in the establishment of such facilities offers an effective, but limited, solution to a growing need. Instead, training them to impart their knowledge and skills to others provides a sustainable model for scaling up the much needed capacity and capability for genomic sequencing and analysis locally with global impact. We designed and developed a Train-the-Trainer course integrating pedagogical aspects with genomic and bioinformatics activities. The course was delivered to 18 participants from 12 countries in Africa, Asia, and Latin America. A combination of teaching strategies culminating in a group project created a foundation for continued development at home institutions. Upon follow-up after 6 months, at least 40% of trainees had initiated training programs and collaborations to build capacity at local, national, and regional level. This work provides a framework for implementing a training and capacity building program for the application of genomics tools and resources in AMR surveillance.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Fortalecimento Institucional , Países em Desenvolvimento , Farmacorresistência Bacteriana/genética , Genômica , HumanosRESUMO
BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a threat to public health in India because of its high dissemination, mortality, and limited treatment options. Its genomic variability is reflected in the diversity of sequence types, virulence factors, and antimicrobial resistance (AMR) mechanisms. This study aims to characterize the clonal relationships and genetic mechanisms of resistance and virulence in CRKP isolates in India. MATERIALS AND METHODS: We characterized 344 retrospective K. pneumoniae clinical isolates collected from 8 centers across India collected in 2013-2019. Susceptibility to antibiotics was tested with VITEK 2. Capsular types, multilocus sequence type, virulence genes, AMR determinants, plasmid replicon types, and a single-nucleotide polymorphism phylogeny were inferred from their whole genome sequences. RESULTS: Phylogenetic analysis of the 325 Klebsiella isolates that passed quality control revealed 3 groups: K. pneumoniae sensu stricto (nâ =â 307), K. quasipneumoniae (nâ =â 17), and K. variicola (nâ =â 1). Sequencing and capsular diversity analysis of the 307 K. pneumoniae sensu stricto isolates revealed 28 sequence types, 26 K-locus types, and 11 O-locus types, with ST231, KL51, and O1V2 being predominant. blaOXA-48-like and blaNDM-1/5 were present in 73.2% and 24.4% of isolates, respectively. The major plasmid replicon types associated with carbapenase genes were IncF (51.0%) and Col group (35.0%). CONCLUSION: Our study documents for the first time the genetic diversity of K and O antigens circulating in India. The results demonstrate the practical applicability of genomic surveillance and its utility in tracking the population dynamics of CRKP. It alerts us to the urgency for longitudinal surveillance of these transmissible lineages.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Genômica , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Estudos Retrospectivos , beta-Lactamases/genéticaRESUMO
The administration and governance of grant funding across global health organizations presents enormous challenges. Meeting these challenges is crucial to ensuring that funds are used in the most effective way to improve health outcomes, in line with the United Nations' Sustainable Development Goal 3, "Ensure healthy lives and promote well-being for all at all ages." The Good Financial Grant Practice (GFGP) Standard (ARS 1651) is the world's first and, currently, only international standard for the financial governance and management of grant funding. Through consensus building and global harmonization between both low- and middle-income and high-income country players, the GFGP Standard has achieved a leveling impact: GFGP applies equally to, and can be implemented by, all types of organization, regardless of location, size, or whether they predominantly give or receive funding. GFGP can be used as a tool for addressing some of the challenges of the current funding model. Here, we describe our experiences and lessons learned from implementing GFGP across 4 diverse research institutions in India, Nigeria, Colombia, and the Philippines as part of our National Institute for Health Research Global Health Research Unit on Genomic Surveillance of Antimicrobial Resistance.
Assuntos
Organização do Financiamento , Saúde Global , Humanos , Renda , Índia , NigériaRESUMO
Antimicrobial resistance (AMR) is considered a global threat, and novel drug discovery needs to be complemented with systematic and standardized epidemiological surveillance. Surveillance data are currently generated using phenotypic characterization. However, due to poor scalability, this approach does little for true epidemiological investigations. There is a strong case for whole-genome sequencing (WGS) to enhance the phenotypic data. To establish global AMR surveillance using WGS, we developed a laboratory implementation approach that we applied within the NIHR Global Health Research Unit (GHRU) on Genomic Surveillance of Antimicrobial Resistance. In this paper, we outline the laboratory implementation at 4 units: Colombia, India, Nigeria, and the Philippines. The journey to embedding WGS capacity was split into 4 phases: Assessment, Assembly, Optimization, and Reassessment. We show that on-boarding WGS capabilities can greatly enhance the real-time processing power within regional and national AMR surveillance initiatives, despite the high initial investment in laboratory infrastructure and maintenance. Countries looking to introduce WGS as a surveillance tool could begin by sequencing select Global Antimicrobial Resistance Surveillance System (GLASS) priority pathogens that can demonstrate the standardization and impact genome sequencing has in tackling AMR.
Assuntos
Antibacterianos , Laboratórios , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Genômica , Humanos , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Klebsiella pneumoniae is a critically important pathogen in the Philippines. Isolates are commonly resistant to at least 2 classes of antibiotics, yet mechanisms and spread of its resistance are not well studied. METHODS: A retrospective sequencing survey was performed on carbapenem-, extended spectrum beta-lactam-, and cephalosporin-resistant Klebsiella pneumoniae isolated at 20 antimicrobial resistance (AMR) surveillance sentinel sites from 2015 through 2017. We characterized 259 isolates using biochemical methods, antimicrobial susceptibility testing, and whole-genome sequencing (WGS). Known AMR mechanisms were identified. Potential outbreaks were investigated by detecting clusters from epidemiologic, phenotypic, and genome-derived data. RESULTS: Prevalent AMR mechanisms detected include blaCTX-M-15 (76.8%) and blaNDM-1 (37.5%). An epidemic IncFII(Yp) plasmid carrying blaNDM-1 was also detected in 46 isolates from 6 sentinel sites and 14 different sequence types (STs). This plasmid was also identified as the main vehicle of carbapenem resistance in 2 previously unrecognized local outbreaks of ST348 and ST283 at 2 different sentinel sites. A third local outbreak of ST397 was also identified but without the IncFII(Yp) plasmid. Isolates in each outbreak site showed identical STs and K- and O-loci, and similar resistance profiles and AMR genes. All outbreak isolates were collected from blood of children aged < 1 year. CONCLUSION: WGS provided a better understanding of the epidemiology of multidrug resistant Klebsiella in the Philippines, which was not possible with only phenotypic and epidemiologic data. The identification of 3 previously unrecognized Klebsiella outbreaks highlights the utility of WGS in outbreak detection, as well as its importance in public health and in implementing infection control programs.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Idoso , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Criança , Surtos de Doenças , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filipinas/epidemiologia , Plasmídeos/genética , Estudos Retrospectivos , beta-Lactamases/genéticaRESUMO
BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an emerging public health problem. This study explores the specifics of CRKP epidemiology in Colombia based on whole genome sequencing (WGS) of the National Reference Laboratory at Instituto Nacional de Salud (INS)'s 2013-2017 sample collection. METHODS: A total of 425 CRKP isolates from 21 departments were analyzed by HiSeq-X10®Illumina high-throughput sequencing. Bioinformatic analysis was performed, primarily using the pipelines developed collaboratively by the National Institute for Health Research Global Health Research Unit (GHRU) on Genomic Surveillance of Antimicrobial Resistance (AMR), and AGROSAVIA. RESULTS: Of the 425 CRKP isolates, 91.5% were carbapenemase-producing strains. The data support a recent expansion and the endemicity of CRKP in Colombia with the circulation of 7 high-risk clones, the most frequent being CG258 (48.39% of isolates). We identified genes encoding carbapenemases blaKPC-3, blaKPC-2, blaNDM-1, blaNDM-9, blaVIM-2, blaVIM-4, and blaVIM-24, and various mobile genetic elements (MGE). The virulence of CRKP isolates was low, but colibactin (clb3) was present in 25.2% of isolates, and a hypervirulent CRKP clone (CG380) was reported for the first time in Colombia. ST258, ST512, and ST4851 were characterized by low levels of diversity in the core genome (ANI > 99.9%). CONCLUSIONS: The study outlines complex CRKP epidemiology in Colombia. CG258 expanded clonally and carries specific carbapenemases in specific MGEs, while the other high-risk clones (CG147, CG307, and CG152) present a more diverse complement of carbapenemases. The specifics of the Colombian situation stress the importance of WGS-based surveillance to monitor evolutionary trends of sequence types (STs), MGE, and resistance and virulence genes.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Colômbia/epidemiologia , Genômica , Humanos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , beta-Lactamases/genéticaRESUMO
BACKGROUND: Klebsiella species, including the notable pathogen K. pneumoniae, are increasingly associated with antimicrobial resistance (AMR). Genome-based surveillance can inform interventions aimed at controlling AMR. However, its widespread implementation requires tools to streamline bioinformatic analyses and public health reporting. METHODS: We developed the web application Pathogenwatch, which implements analytics tailored to Klebsiella species for integration and visualization of genomic and epidemiological data. We populated Pathogenwatch with 16 537 public Klebsiella genomes to enable contextualization of user genomes. We demonstrated its features with 1636 genomes from 4 low- and middle-income countries (LMICs) participating in the NIHR Global Health Research Unit (GHRU) on AMR. RESULTS: Using Pathogenwatch, we found that GHRU genomes were dominated by a small number of epidemic drug-resistant clones of K. pneumoniae. However, differences in their distribution were observed (eg, ST258/512 dominated in Colombia, ST231 in India, ST307 in Nigeria, ST147 in the Philippines). Phylogenetic analyses including public genomes for contextualization enabled retrospective monitoring of their spread. In particular, we identified hospital outbreaks, detected introductions from abroad, and uncovered clonal expansions associated with resistance and virulence genes. Assessment of loci encoding O-antigens and capsule in K. pneumoniae, which represent possible vaccine candidates, showed that 3 O-types (O1-O3) represented 88.9% of all genomes, whereas capsule types were much more diverse. CONCLUSIONS: Pathogenwatch provides a free, accessible platform for real-time analysis of Klebsiella genomes to aid surveillance at local, national, and global levels. We have improved representation of genomes from GHRU participant countries, further facilitating ongoing surveillance.
Assuntos
Infecções por Klebsiella , Klebsiella , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Genômica , Humanos , Klebsiella/genética , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae , Filogenia , Estudos Retrospectivos , beta-Lactamases/genéticaRESUMO
Performing whole genome sequencing (WGS) for the surveillance of antimicrobial resistance offers the ability to determine not only the antimicrobials to which rates of resistance are increasing, but also the evolutionary mechanisms and transmission routes responsible for the increase at local, national, and global scales. To derive WGS-based outputs, a series of processes are required, beginning with sample and metadata collection, followed by nucleic acid extraction, library preparation, sequencing, and analysis. Throughout this pathway there are many data-related operations required (informatics) combined with more biologically focused procedures (bioinformatics). For a laboratory aiming to implement pathogen genomics, the informatics and bioinformatics activities can be a barrier to starting on the journey; for a laboratory that has already started, these activities may become overwhelming. Here we describe these data bottlenecks and how they have been addressed in laboratories in India, Colombia, Nigeria, and the Philippines, as part of the National Institute for Health Research Global Health Research Unit on Genomic Surveillance of Antimicrobial Resistance. The approaches taken include the use of reproducible data parsing pipelines and genome sequence analysis workflows, using technologies such as Data-flo, the Nextflow workflow manager, and containerization of software dependencies. By overcoming barriers to WGS implementation in countries where genome sampling for some species may be underrepresented, a body of evidence can be built to determine the concordance of antimicrobial sensitivity testing and genome-derived resistance, and novel high-risk clones and unknown mechanisms of resistance can be discovered.
Assuntos
Antibacterianos , Genômica , Antibacterianos/uso terapêutico , Biologia Computacional/métodos , Genoma Bacteriano , Humanos , Software , Sequenciamento Completo do Genoma/métodosRESUMO
BACKGROUND: Klebsiella pneumoniae is a World Health Organization high-priority antibiotic-resistant pathogen. However, little is known about Klebsiella lineages circulating in Nigeria. METHODS: We performed whole-genome sequencing (WGS) of 141 Klebsiella isolated between 2016 and 2018 from clinical specimens at 3 antimicrobial-resistance (AMR) sentinel surveillance tertiary hospitals in southwestern Nigeria. We conducted in silico multilocus sequence typing; AMR gene, virulence gene, plasmid, and K and O loci profiling; as well as phylogenetic analyses, using publicly available tools and Nextflow pipelines. RESULTS: Phylogenetic analysis revealed that the majority of the 134 K. pneumoniae and 5 K. quasipneumoniae isolates from Nigeria characterized are closely related to globally disseminated multidrug-resistant clones. Of the 39 K. pneumoniae sequence types (STs) identified, the most common were ST307 (15%), ST5241 (12%), ST15 (~9%), and ST25 (~6%). ST5241, 1 of 10 novel STs detected, is a single locus variant of ST636 carrying dfrA14, tetD, qnrS, and oqxAB resistance genes. The extended-spectrum ß-lactamase (ESBL) gene blaCTX_M-15 was seen in 72% of K. pneumoniae genomes, while 8% encoded a carbapenemase. No isolate carried a combination of carbapenemase-producing genes. Four likely outbreak clusters from 1 facility, within STs 17, 25, 307, and 5241, were ESBL but not carbapenemase-bearing clones. CONCLUSIONS: This study uncovered known and novel K. pneumoniae lineages circulating in 3 hospitals in Southwest Nigeria that include multidrug-resistant ESBL producers. Carbapenemase-producing isolates remain uncommon. WGS retrospectively identified outbreak clusters, pointing to the value of genomic approaches in AMR surveillance for improving infection prevention and control in Nigerian hospitals.