Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 588(7838): 424-428, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328663

RESUMO

Exotic states such as topological insulators, superconductors and quantum spin liquids are often challenging or impossible to create in a single material1-3. For example, it is unclear whether topological superconductivity, which has been suggested to be a key ingredient for topological quantum computing, exists in any naturally occurring material4-9. The problem can be circumvented by deliberately selecting the combination of materials in heterostructures so that the desired physics emerges from interactions between the different components1,10-15. Here we use this designer approach to fabricate van der Waals heterostructures that combine a two-dimensional (2D) ferromagnet with a superconductor, and we observe 2D topological superconductivity in the system. We use molecular-beam epitaxy to grow 2D islands of ferromagnetic chromium tribromide16 on superconducting niobium diselenide. We then use low-temperature scanning tunnelling microscopy and spectroscopy to reveal the signatures of one-dimensional Majorana edge modes. The fabricated 2D van der Waals heterostructure provides a high-quality, tunable system that can be readily integrated into device structures that use topological superconductivity. The layered heterostructures can be readily accessed by various external stimuli, potentially allowing external control of 2D topological superconductivity through electrical17, mechanical18, chemical19 or optical means20.

2.
Nano Lett ; 23(8): 3412-3417, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040471

RESUMO

Two-dimensional magnetic materials provide an ideal platform to explore collective many-body excitations associated with spin fluctuations. In particular, it should be feasible to explore, manipulate, and ultimately design magnonic excitations in two-dimensional van der Waals magnets in a controllable way. Here we demonstrate the emergence of moiré magnon excitations, stemming from the interplay of spin-excitations in monolayer CrBr3 and the moiré pattern arising from the lattice mismatch with the underlying substrate. The existence of moiré magnons is further confirmed via inelastic quasiparticle interference, showing the appearance of a dispersion pattern correlated with the moiré length scale. Our results provide a direct visualization in real-space of the dispersion of moiré magnons, demonstrating the versatility of moiré patterns in creating emergent many-body excitations.

3.
Nano Lett ; 22(1): 328-333, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978831

RESUMO

The search for artificial topological superconductivity has been limited by the stringent conditions required for its emergence. As exemplified by the recent discoveries of various correlated electronic states in twisted van der Waals materials, moiré patterns can act as a powerful knob to create artificial electronic structures. Here, we demonstrate that a moiré pattern between a van der Waals superconductor and a monolayer ferromagnet creates a periodic potential modulation that enables the realization of a topological superconducting state that would not be accessible in the absence of the moiré. The magnetic moiré pattern gives rise to Yu-Shiba-Rusinov minibands and periodic modulation of the Majorana edge modes that we detect using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Moiré patterns and, more broadly, periodic potential modulations are powerful tools to overcome the conventional constraints for realizing and controlling topological superconductivity.

4.
Nat Commun ; 13(1): 7499, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470857

RESUMO

Atomic-scale manipulation in scanning tunneling microscopy has enabled the creation of quantum states of matter based on artificial structures and extreme miniaturization of computational circuitry based on individual atoms. The ability to autonomously arrange atomic structures with precision will enable the scaling up of nanoscale fabrication and expand the range of artificial structures hosting exotic quantum states. However, the a priori unknown manipulation parameters, the possibility of spontaneous tip apex changes, and the difficulty of modeling tip-atom interactions make it challenging to select manipulation parameters that can achieve atomic precision throughout extended operations. Here we use deep reinforcement learning (DRL) to control the real-world atom manipulation process. Several state-of-the-art reinforcement learning (RL) techniques are used jointly to boost data efficiency. The DRL agent learns to manipulate Ag adatoms on Ag(111) surfaces with optimal precision and is integrated with path planning algorithms to complete an autonomous atomic assembly system. The results demonstrate that state-of-the-art DRL can offer effective solutions to real-world challenges in nanofabrication and powerful approaches to increasingly complex scientific experiments at the atomic scale.

5.
ACS Nano ; 15(8): 13794-13802, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34313424

RESUMO

Transition metal chalcogenides (TMCs) are a large family of 2D materials that are currently attracting intense interest. TMCs with 3d transition metals provide opportunities for introducing magnetism and strong correlations into the material with manganese standing out as a particularly attractive option due to its large magnetic moment. Here we report on the successful synthesis of monolayer manganese selenide on a NbSe2 substrate. Using scanning tunneling microscopy and spectroscopy experiments and global structure prediction calculations at the density functional theory level, we identify the atomic structure and magnetic and electronic properties of the layered Mn2Se2 phase. The structure is similar to the layered bulk phase of CuI or a buckled bilayer of h-BN. Interestingly, our results suggest that the monolayer is antiferromagnetic, but with an unusual out-of-plane ordering that results in two ferromagnetic planes.

6.
Adv Mater ; 33(23): e2006850, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938604

RESUMO

The ability to imprint a given material property to another through a proximity effect in layered 2D materials has opened the way to the creation of designer materials. Here, molecular-beam epitaxy is used for direct synthesis of a superconductor-ferromagnet heterostructure by combining superconducting niobium diselenide (NbSe2 ) with the monolayer ferromagnetic chromium tribromide (CrBr3 ). Using different characterization techniques and density-functional theory calculations, it is confirmed that the CrBr3 monolayer retains its ferromagnetic ordering with a magnetocrystalline anisotropy favoring an out-of-plane spin orientation. Low-temperature scanning tunneling microscopy measurements show a slight reduction of the superconducting gap of NbSe2 and the formation of a vortex lattice on the CrBr3 layer in experiments under an external magnetic field. The results contribute to the broader framework of exploiting proximity effects to realize novel phenomena in 2D heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA