Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochemistry ; 58(52): 5320-5328, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31095371

RESUMO

Acyl phosphates of ATP (ATPAc) and related nucleotides have proven to be useful for the interrogation of known nucleotide binding sites via specific acylation of conserved lysines (K). In addition, occasional K acylations are identified in proteins without such known sites. Here we present a robust and specific acylation of procaspase-6 by ATPAc at K133 in Jurkat cell lysates. The K133 acylation is dependent on π-π stacking interactions between the adenine moiety of ATPAc and a conserved Y198-Y198 site formed at the homodimeric interface of procaspase-6. Significantly, the Y198A mutation in procaspase-6 abolishes K133 acylation but has no effect on the proteolytic activity of the mature, active caspase-6 Y198A variant. Additional in vitro studies show that ATP can inhibit the autoproteolytic activation of procaspase-6. These observations suggest that ATP, and possibly other nucleotides, may serve as the endogenous ligands for the allosteric site at the procaspase-6 dimer interface, a site that has persisted in its "orphan" status for more than a decade.


Assuntos
Trifosfato de Adenosina/metabolismo , Caspase 6/química , Caspase 6/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Proteômica , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Células Jurkat , Modelos Moleculares , Conformação Proteica
2.
Biochemistry ; 55(38): 5434-41, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27571378

RESUMO

Palbociclib is a cyclin-dependent kinase (CDK) 4/CDK6 inhibitor approved for breast cancer that is estrogen receptor (ER)-positive and human epidermal growth factor receptor 2 (HER2)-negative. We profiled palbociclib in cells either sensitive or resistant to the drug using an ATP/ADP probe-based chemoproteomics platform. Palbociclib only engaged CDK4 or CDK6 in sensitive cells. In resistant cells, no inhibition of CDK4 or CDK6 was observed, although the off-target profiles were similar in both cell types. Prolonged incubation of sensitive cells with the compound (24 h) resulted in the downregulation of additional kinases, including kinases critical for cell cycle progression. This downregulation is consistent with cell cycle arrest caused by palbociclib treatment. Both the direct and indirect targets were also observed in a human tumor xenograft study using the COLO-205 cell line in which phosphorylation of the retinoblastoma protein was tracked as the pharmacodyanamic marker. Together, these results suggest that this probe-based approach could be an important strategy toward predicting patient responsiveness to palbociclib.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Neoplasias/patologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Piridinas/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias/enzimologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biochemistry ; 54(19): 3024-36, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25905789

RESUMO

Hsp90 is an ATP-dependent chaperone of widespread interest as a drug target. Here, using an LC-MS/MS chemoproteomics platform based on a lysine-reactive ATP acyl phosphate probe, several Hsp90 inhibitors were profiled in native cell lysates. Inhibitor specificities for all four human paralogs of Hsp90 were simultaneously monitored at their endogenous relative abundances. Equipotent inhibition of probe labeling in each paralog occurred at sites both proximal to and distal from bound ATP observed in Hsp90 cocrystal structures, suggesting that the ATP probe is assaying a native conformation not predicted by available structures. Inhibitor profiling against a comprehensive panel of protein kinases and other ATP-binding proteins detected in native cell lysates identified PMS2, a member of the GHKL ATPase superfamily as an off-target of NVP-AUY922 and radicicol. Because of the endogenously high levels of Hsp90 paralogs in typical cell lysates, the measured potency of inhibitors was weaker than published IC50 values. Significant inhibition of Hsp90 required inhibitor concentrations above a threshold where off-target activity was detectable. Direct on- and off-target engagement was measured by profiling lysates derived from cells treated with Hsp90 inhibitors. These studies also assessed the downstream cellular pathway effects of Hsp90 inhibition, including the down regulation of several known Hsp90 client proteins and some previously unknown client proteins. Overall, the ATP probe-based assay methodology enabled a broad characterization of Hsp90 inhibitor activity and specificity in native cell lysates.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Proteínas de Choque Térmico HSP90/química , Humanos , Transdução de Sinais , Espectrometria de Massas em Tandem
4.
Bioorg Med Chem Lett ; 23(18): 5217-22, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23916259

RESUMO

As the result of a rhJNK1 HTS, the imidazo[1,2-a]quinoxaline 1 was identified as a 1.6 µM rhJNK1 inhibitor. Optimization of this compound lead to AX13587 (rhJNK1 IC50=160 nM) which was co-crystallized with JNK1 to identify key molecular interactions. Kinase profiling against 125+ kinases revealed AX13587 was an inhibitor of JNK, MAST3, and MAST4 whereas its methylene homolog AX14373 (native JNK1 IC50=47 nM) was a highly specific JNK inhibitor.


Assuntos
Imidazóis/farmacologia , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinoxalinas/farmacologia , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinoxalinas/síntese química , Quinoxalinas/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 22(2): 1005-8, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22202172

RESUMO

We previously disclosed tricylic, 6-carboxylic acid-bearing 4-quinolones as GSK-3ß inhibitors. Herein we discuss the optimization of this series to yield a series of more potent 6-nitrile analogs with insignificant anti-microbial activity. Finally, kinase profiling indicated that members of this class were highly specific GSK-3 inhibitors.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Nitrilas/química , Quinolizinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinolizinas/síntese química , Quinolizinas/química , Staphylococcus aureus/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 21(19): 5948-51, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21873061
7.
Mol Cancer Ther ; 18(4): 771-779, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30837298

RESUMO

The interaction of a drug with its target is critical to achieve drug efficacy. In cases where cellular environment influences target engagement, differences between individuals and cell types present a challenge for a priori prediction of drug efficacy. As such, characterization of environments conducive to achieving the desired pharmacologic outcome is warranted. We recently reported that the clinical CDK4/6 inhibitor palbociclib displays cell type-specific target engagement: Palbociclib engaged CDK4 in cells biologically sensitive to the drug, but not in biologically insensitive cells. Here, we report a molecular explanation for this phenomenon. Palbociclib target engagement is determined by the interaction of CDK4 with CDKN2A, a physiologically relevant protein inhibitor of CDK4. Because both the drug and CDKN2A prevent CDK4 kinase activity, discrimination between these modes of inhibition is not possible by traditional kinase assays. Here, we describe a chemo-proteomics approach that demonstrates high CDK4 target engagement by palbociclib in cells without functional CDKN2A and attenuated target engagement when CDKN2A (or related CDKN2/INK4 family proteins) is abundant. Analysis of biological sensitivity in engineered isogenic cells with low or absent CDKN2A and of a panel of previously characterized cell lines indicates that high levels of CDKN2A predict insensitivity to palbociclib, whereas low levels do not correlate with sensitivity. Therefore, high CDKN2A may provide a useful biomarker to exclude patients from CDK4/6 inhibitor therapy. This work exemplifies modulation of kinase target engagement by endogenous proteinaceous regulators and highlights the importance of cellular context in predicting inhibitor efficacy.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/química , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/química , Inibidor de Quinase Dependente de Ciclina p15/química , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/química , Inibidor p16 de Quinase Dependente de Ciclina/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Células MCF-7 , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Piperazinas/química , Ligação Proteica , Inibidores de Proteínas Quinases/química , Piridinas/química , Transfecção
9.
PLoS One ; 11(3): e0152934, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27031502

RESUMO

We describe the identification of a novel, tumor-specific missense mutation in the active site of casein kinase 1α (CSNK1A1) using activity-based proteomics. Matched normal and tumor colon samples were analyzed using an ATP acyl phosphate probe in a kinase-targeted LC-MS2 platform. An anomaly in the active-site peptide from CSNK1A1 was observed in a tumor sample that was consistent with an altered catalytic aspartic acid. Expression and analysis of the suspected mutant verified the presence of asparagine in the probe-labeled, active-site peptide for CSNK1A1. Genomic sequencing of the colon tumor samples confirmed the presence of a missense mutation in the catalytic aspartic acid of CSNK1A1 (GAC→AAC). To our knowledge, the D163N mutation in CSNK1A1 is a newly defined mutation to the conserved, catalytic aspartic acid of a protein kinase and the first missense mutation identified using activity-based proteomics. The tumorigenic potential of this mutation remains to be determined.


Assuntos
Adenocarcinoma/genética , Caseína Quinase Ialfa/genética , Neoplasias do Colo/genética , Mutação de Sentido Incorreto , Adenocarcinoma/patologia , Sequência de Bases , Caseína Quinase Ialfa/química , Domínio Catalítico , Colo/patologia , Neoplasias do Colo/patologia , Células HEK293 , Humanos , Dados de Sequência Molecular , Proteômica/métodos
10.
Assay Drug Dev Technol ; 1(1 Pt 2): 137-46, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15090140

RESUMO

In the latter stages of drug discovery and development, assays that establish drug selectivity and toxicity are important when side effects, which are often due to lack of specificity, determine drug candidate viability. There has been no comprehensive or systematic methodology to measure these factors outside of whole-animal assays, and such phenomenological assays generally fail to establish the additional targets of a given small molecule, or the molecular origin of toxicity. Consequently, small-molecule development programs destined for failure often reach advanced stages of testing, and the money and time invested in such programs could be saved if information on selectivity were available early in the process. Here, we present a methodology that utilizes chemical ABPs in combination with small-molecule inhibitors to selectively label small-molecule binding sites in whole proteomic samples. In principle, the ABP and small molecule will compete for similar binding sites, such that the small molecule will protect against modification by the ABP. Thus, after removal of the small molecule, the binding site for the ABP will be revealed, and a second probe can then be used to label the small-molecule binding sites selectively. To demonstrate this experimentally, we mapped the binding sites of the DPP4 inhibitor, IT, in a number of different tissue types.


Assuntos
Isoleucina/análogos & derivados , Preparações Farmacêuticas/química , Proteínas/química , Proteoma/química , Animais , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Células Cultivadas , Dipeptidil Peptidase 4/metabolismo , Desenho de Fármacos , Corantes Fluorescentes/química , Humanos , Técnicas In Vitro , Isoleucina/metabolismo , Rim/química , Rim/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Organofosfonatos/química , Preparações Farmacêuticas/metabolismo , Inibidores de Proteases/metabolismo , Proteínas/metabolismo , Relação Estrutura-Atividade , Tiazóis/metabolismo
11.
Curr Protoc Chem Biol ; 5(3): 213-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391084

RESUMO

The protocols in this unit describe efficient and cost-effective approaches to determine the interaction of small-molecule inhibitors with native kinases, and also analyze the interactions between kinases and their binding partners in a cellular setting. The combined attributes of activity-based probes and western blotting procedures provide for quantitative measurement of inhibitor efficacy, isoform selectivity, and post-translational modifications. We further demonstrate the ability to identify protein-protein interactions between a probe-labeled protein and its noncovalent binding partners.


Assuntos
Técnicas Imunológicas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Proteínas Quinases/imunologia , Animais , Linhagem Celular , Células Cultivadas , Receptores ErbB/antagonistas & inibidores , Humanos , Indicadores e Reagentes , MAP Quinase Quinase 4/antagonistas & inibidores , Ligação Proteica , Inibidores de Proteínas Quinases/química , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
12.
Chem Biol ; 18(6): 699-710, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21700206

RESUMO

Protein kinases are intensely studied mediators of cellular signaling, yet important questions remain regarding their regulation and in vivo properties. Here, we use a probe-based chemoprotemics platform to profile several well studied kinase inhibitors against >200 kinases in native cell proteomes and reveal biological targets for some of these inhibitors. Several striking differences were identified between native and recombinant kinase inhibitory profiles, in particular, for the Raf kinases. The native kinase binding profiles presented here closely mirror the cellular activity of these inhibitors, even when the inhibition profiles differ dramatically from recombinant assay results. Additionally, Raf activation events could be detected on live cell treatment with inhibitors. These studies highlight the complexities of protein kinase behavior in the cellular context and demonstrate that profiling with only recombinant/purified enzymes can be misleading.


Assuntos
Proteínas Quinases/química , Trifosfato de Adenosina/química , Linhagem Celular Tumoral , Dasatinibe , Humanos , MAP Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase 5/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiazóis/química , Tiazóis/farmacologia , Quinases raf/antagonistas & inibidores , Quinases raf/genética , Quinases raf/metabolismo
13.
Biochemistry ; 46(2): 350-8, 2007 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-17209545

RESUMO

The central role of protein kinases in signal transduction pathways has generated intense interest in targeting these enzymes for a wide range of therapeutic indications. Here we report a method for identifying and quantifying protein kinases in any biological sample or tissue from any species. The procedure relies on acyl phosphate-containing nucleotides, prepared from a biotin derivative and ATP or ADP. The acyl phosphate probes react selectively and covalently at the ATP binding sites of at least 75% of the known human protein kinases. Biotinylated peptide fragments from labeled proteomes are captured and then sequenced and identified using a mass spectrometry-based analysis platform to determine the kinases present and their relative levels. Further, direct competition between the probes and inhibitors can be assessed to determine inhibitor potency and selectivity against native protein kinases, as well as hundreds of other ATPases. The ability to broadly profile kinase activities in native proteomes offers an exciting prospect for both target discovery and inhibitor selectivity profiling.


Assuntos
Nucleotídeos de Adenina/metabolismo , Proteínas Quinases/metabolismo , Nucleotídeos de Adenina/química , Sítios de Ligação , Linhagem Celular , Sequência Conservada , Humanos , Modelos Moleculares , Técnicas de Sonda Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Proteínas Quinases/genética , Proteoma , Transdução de Sinais , Estaurosporina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA