Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biochem Genet ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713442

RESUMO

Bladder cancer is the most common urinary tract neoplasm, affecting many people annually. Current diagnostic and surveillance methods for bladder cancer are frequently invasive and lack sensitivity and specificity. This study aimed to develop an accurate and non-invasive urine-based gene expression assay, including fibroblast growth factor receptor 3 (FGFR3), homeobox A13 (HOXA13), and polo-like kinase 1 (PLK1), to diagnose non-muscle-invasive bladder cancer (NMIBC) at stages Ta and T1. The samples were acquired from 62 patients with NMIBC, 31 control individuals, and 31 patients with non-cancerous genitourinary tract diseases. The expression levels of three relevant genes were determined using quantitative RT-PCR. In addition, the sensitivity and specificity of the data for these genes were computed. Our results showed that PLK1, HOXA13, and FGFR3 expressions of genes were significantly elevated in patients compared to the control groups (p = 0.0001; p = 0.039). The sensitivity and specificity for the FGFR3 gene were 55% and 76%, respectively (p = 0.39). These parameters for HOXA13 were 100% and 93% (p = 0.0001) and for PLK1 were 100% and 86% (p = 0.0001) for diagnosing and monitoring NMIBC. HOXA13 and PLK 1 exhibited adequate specificity and sensitivity for diagnosis. The results of this research showed that despite the higher expression of these genes in urine, only HOXA13 and PLK1 had sufficient and proper specificity and sensitivity, so the urinary expression of these two genes can be used in future studies for diagnosis and monitoring in cancer bladder.

2.
Pflugers Arch ; 475(4): 437-452, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36692542

RESUMO

Aging is a natural process coupled with oxidative stress and chronic inflammation, gradually associated with losing organ function over time. Therefore, the objective of the current work was to peruse the protective effects of 8-week moderate-intensity interval training (MIIT) and ginger extract supplementation on some biomarkers of oxidative stress, inflammation, and lipid metabolism in the liver of elderly males Wistar rats (animal study with ethical code IR.BMSU.REC.1401.015). A total of thirty-two 22-month-aged male Wistar rats were randomly assigned to four groups: (1) control, (2) MIIT, (3) ginger, and (4) MIIT + ginger. After 8 weeks of treadmill training and ginger extract supplementation, the biochemical parameters (liver enzyme and lipid profile), inflammatory mediators (leucine-rich α-2 glycoprotein 1 (LRG1), tumor necrosis factor-alpha, and interleukin-6), pro-oxidant (malondialdehyde), antioxidant biomarkers (catalase, superoxide dismutase, total antioxidant capacity), some lipid metabolism regulators (carnitine palmitoyltransferase 1, adipose triglyceride lipase, acetyl-CoA carboxylase, CD36, and AMP-activated protein kinase), and liver histopathological changes were appraised. The acquired findings pointed out that MIIT combined with ginger extract appreciably diminished the serum levels of LRG1, liver enzymes, and lipid profile relative to the other groups after 8 weeks of intervention. Furthermore, ginger + MIIT caused a great improvement in the liver levels of antioxidant biomarkers, pro-oxidant, pro-inflammatory biomarkers, lipid metabolism regulators, and liver tissue impairment compared to the other groups. The findings suggested that MIIT + ginger was more effective in improving examined indices relative to the other groups.


Assuntos
Antioxidantes , Zingiber officinale , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Ratos Wistar , Zingiber officinale/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Biomarcadores/metabolismo , Lipídeos
3.
Mol Biol Rep ; 48(8): 5905-5912, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34313925

RESUMO

BACKGROUND: Several genome-wide association studies showed that a series of genetic variants located at the chromosome 9p21 locus are strongly associated with coronary artery disease (CAD). RATIONALE AND PURPOSE OF THE STUDY: In the present study, the relationship of rs3088440 (G > A) in cyclin-dependent kinase inhibitor 2A (CDKN2A) gene site with the presence of coronary artery disease (CAD) and its severity was evaluated in an Iranian population. METHODS AND RESULTS: The presence of rs3088440 (G > A) genotypes was assessed by polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) technique in 324 CAD patients and 148 normal controls. rs3088440 (G > A) polymorphism was associated with increased risk of CAD in the total population (adjusted OR = 1.76, 95% CI = 1.10-2.82; p-value = 0.017) or in women (adjusted OR = 2.96, 95% CI = 1.34-6.55; p-value = 0.007), but not in the men (adjusted OR = 1.35, 95% CI = 0.70-2.6; p-value = 0.368). CONCLUSIONS: Our findings suggest that the presence of rs3088440 (G > A) is potentially linked with the risk of CAD and its severity in whole study subjects or in women only, independent of CAD risk factors.


Assuntos
Doença da Artéria Coronariana/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Idoso , Alelos , Estudos de Casos e Controles , Cromossomos Humanos Par 9/genética , Doença da Artéria Coronariana/epidemiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Frequência do Gene/genética , Genes p16/fisiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco
4.
J Fluoresc ; 27(5): 1829-1838, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28555407

RESUMO

In the present study, biological evaluation of a new synthesized anti-cancer compound, amyl-glycine1, 10-phenanthroline Platinum nitrate (Pt(II) complex), was investigated at different temperatures by spectroscopic methods (far-UV circular dichroism (CD) and fluorescence) and modeling methods (docking and FRET). Human serum albumin (HSA), one of the vital proteins in drug delivery system in the body, was used as a target protein. The Pt(II) complex is able to quench the intrinsic fluorescence of HSA considerably. Binding and thermodynamic parameters of the interaction between the protein and the ligand were analyzed by fluorescence quenching method. The far-UV CD spectra revealed that the secondary structure of HSA did not show any noticeable change upon interaction with Pt(II) complex at both 25 and 37°C. The calculation of fluorescence resonance energy transfer (FRET) confirmed that quenching mechanism is static, and the observed distance between the donor and acceptor is 1.18 nm. Molecular docking results are in agreement with experimental data suggesting that there is one site on HSA at which Pt(II) complex binds spontaneously. Moreover, docking results together with FRET evaluation illustrated that Pt(II) complex is located near Trp214 at a distance of 1.96 nm. Our experimental and theoretical results indicated that the driving forces for Pt(II) complex interaction with HSA are hydrogen bonding and van der Waals interactions. The combination of molecular docking and spectroscopy methods suggested that use of this new Pt(II) complex as an anti-cancer agent, is an effective innovative approach in cancer chemotherapy providing a better understanding of effects of new designed drugs.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Modelos Moleculares , Fenantrolinas/farmacologia , Albumina Sérica Humana/química , Antineoplásicos/química , Sítios de Ligação , Complexos de Coordenação/química , Glicina/química , Humanos , Simulação de Acoplamento Molecular , Fenantrolinas/química , Ligação Proteica , Conformação Proteica , Albumina Sérica Humana/metabolismo , Espectrometria de Fluorescência , Termodinâmica
5.
Int J Endocrinol ; 2024: 2247748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524871

RESUMO

Background: Diabetes mellitus (DM) presents a significant global health challenge with considerable cardiovascular implications. Coenzyme Q10 (CoQ10) has gained recognition for its potential as a natural antioxidant supplement in the management of diabetes and its associated cardiovascular complications. Aim: This comprehensive review systematically examines the scientific rationale underlying the therapeutic properties of CoQ10 in mitigating the impact of diabetes and its cardiovascular consequences. The analysis encompasses preclinical trials (in vitro and in vivo) and clinical studies evaluating the efficacy and mechanisms of action of CoQ10. Result & Discussion. Findings reveal that CoQ10, through its potent antioxidant and anti-inflammatory attributes, demonstrates significant potential in reducing oxidative stress, ameliorating lipid profiles, and regulating blood pressure, which are crucial aspects in managing diabetes-induced cardiovascular complications. CoQ10, chemically represented as C59H90O4, was administered in capsule form for human studies at doses of 50, 100, 150, 200, and 300 mg per day and at concentrations of 10 and 20 µM in sterile powder for experimental investigations and 10 mg/kg in powder for mouse studies, according to the published research. Clinical trials corroborate these preclinical findings, demonstrating improved glycemic control, lipid profiles, and blood pressure in patients supplemented with CoQ10. Conclusion: In conclusion, CoQ10 emerges as a promising natural therapeutic intervention for the comprehensive management of diabetes and its associated cardiovascular complications. Its multifaceted impacts on the Nrf2/Keap1/ARE pathway, oxidative stress, and metabolic regulation highlight its potential as an adjunct in the treatment of diabetes and related cardiovascular disorders. However, further extensive clinical investigations are necessary to fully establish its therapeutic potential and assess potential synergistic effects with other compounds.

6.
Arch Physiol Biochem ; 129(2): 354-362, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33030073

RESUMO

In December 2019, a new infectious complication called CoronaVirus Infectious Disease-19, briefly COVID-19, caused by SARS-COV-2, is identified in Wuhan, China. It spread all over the world and became a pandemic. In many individuals who had suffered SARS-COV-2 infection, cytokine storm starts through cytokine overproduction and leads to Acute Respiratory Syndrome (ARS), organ failure, and death. According to the obtained evidence, Vitamin D (VitD) enhances the ACE2/Ang(1-7)/MasR pathway activity, and it also reduces cytokine storms and the ARS risk. Therefore, VitD intake may be beneficial for patients with SARS-COV-2 infection exposed to cytokine storm but do not suffer hypotension. In the present review, we have explained the effects of VitD on the renin-angiotensin system (RAS) function and angiotensin-converting enzyme2 (ACE2) expression. Furthermore, we have reviewed the biochemical and immunological effects of VitD on immune function in the underlying diseases and its role in the COVID-19 pandemic.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Vitamina D/uso terapêutico , Vitamina D/farmacologia , Pandemias , Síndrome da Liberação de Citocina , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/farmacologia , Peptidil Dipeptidase A , Sistema Renina-Angiotensina , Vitaminas/uso terapêutico , Vitaminas/farmacologia
7.
Adv Biomed Res ; 12: 157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564439

RESUMO

Background: Growing evidence strongly indicates pivotal roles of gender differences in the occurrence and survival rate of patients with bladder cancer, with a higher incidence in males and poorer prognosis in females. Nevertheless, the molecular basis underlying gender-specific differences in bladder cancer remains unknown. The current study has tried to detect key genes contributing to gender differences in bladder cancer patients. Materials and Methods: The gene expression profile of GSE13507 was firstly obtained from the Gene Expression Omnibus (GEO) database. Further, differentially expressed genes (DEGs) were screened between males and females using R software. Protein-protein interactive (PPI) network analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Kaplan-Meier survival analyses were also performed. Results: We detected six hub genes contributing to gender differences in bladder cancer patients, containing IGF2, CCL5, ASPM, CDC20, BUB1B, and CCNB1. Our analyses demonstrated that CCNB1 and BUB1B were upregulated in tumor tissues of female subjects with bladder cancer. Other genes, such as IGF2 and CCL5, were associated with a poor outcome in male patients with bladder cancer. Additionally, three signaling pathways (focal adhesion, rheumatoid arthritis, and human T-cell leukemia virus infection) were identified to be differentially downregulated in bladder cancer versus normal samples in both genders. Conclusion: Our findings suggested that gender differences may modulate the expression of key genes that contributed to bladder cancer occurrence and prognosis.

8.
Nanomedicine (Lond) ; 18(3): 259-277, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37125618

RESUMO

Aims: Achieving an effective biocompatible system for siRNAs delivery to the tumor site remains a significant challenge. Materials & methods: Selenium nanoparticles (SeNPs) modified by chitosan (CS) and hyaluronic acid (HA) were fabricated for PLK1 siRNAs (siPLK1) delivery to the bladder cancer cells. The HA-CS-SeNP@siPLK1 efficacy was evaluated using in vitro and in vivo models. Results: HA-CS-SeNP@siPLK1 was selectively internalized into T24 cells through clathrin-mediated endocytosis. Treatment with HA-CS-SeNP@siPLK1 successfully silenced the PLK1 gene, inhibited cell proliferation and induced cell cycle arrest in vitro. HA-CS-SeNP@siPLK1 could also inhibit tumor growth in vivo without causing systemic toxicity. Conclusion: Our results suggest that HA-CS-SeNPs may provide a good vehicle for delivering siPLK1 to the bladder tumor site.


siRNAs are small biomolecules shown as novel insights in cancer gene therapy because of their capability to silence target genes. However, achieving an effective biocompatible system for siRNA delivery to the tumor site remains a significant challenge. This work aimed to develop a nanoparticle-based delivery system consisting of selenium nanoparticles modified by chitosan and hyaluronic acid to sustain the release of siRNAs to bladder cancer cells. The results of this study demonstrated that this nanosystem successfully silenced the PLK1 gene and reduced the proliferation in vitro and in vivo. These findings suggest that hyaluronic acid-chitosan-selenium nanoparticles may open a new insight for targeted gene therapy for bladder cancer.


Assuntos
Quitosana , Nanopartículas , Selênio , Neoplasias da Bexiga Urinária , Humanos , RNA Interferente Pequeno/genética , Ácido Hialurônico , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo
9.
Curr Pharm Des ; 29(28): 2264-2275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37817526

RESUMO

BACKGROUND: In the recent decade, there has been increasing interest in preventing ovarian toxicity after chemotherapy exposure. It has been documented that ginger (Zingiber officinale) might normalize the hormonal balance and control the menstrual cycle.. OBJECTIVE: This study has analyzed whether ginger extract protects against cyclophosphamide (CP)-induced ovarian failure in rats. METHODS: Rats were distributed into four groups consisting of vehicle, CP, ginger, and CP + ginger. At the end of the treatment, all rats were killed under anesthesia to obtain ovarian tissues and blood samples for histological, molecular, and biochemical experiments. RESULTS: Our results indicated that ginger improves CP-caused histological changes in ovarian tissues and significantly restores serum hormonal abnormalities. Ginger also showed unique antioxidant, anti-inflammatory, and antiapoptotic properties in the ovarian tissues of CP-induced rats. Further, our findings indicated that ginger might activate the Nrf2 and SIRT and inhibit the PI3K/AKT pathway in the ovaries of CP-treated rats. In conclusion, ginger was found to protect against CP-caused ovarian toxicity in rats. CONCLUSION: The protective impacts of ginger may mediate, at least partly, by alleviating the oxidant state, inhibiting pro-inflammatory conditions, and exhibiting antiapoptotic activities.


Assuntos
Antioxidantes , Zingiber officinale , Feminino , Ratos , Animais , Antioxidantes/farmacologia , Ovário , Zingiber officinale/química , Fosfatidilinositol 3-Quinases , Ciclofosfamida/toxicidade
10.
Front Bioeng Biotechnol ; 10: 1013541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324898

RESUMO

Co-delivery of siRNA or miRNA with chemotherapeutic drugs into tumor sites is an attractive synergetic strategy for treating colorectal cancer (CRC) due to their complementary mechanisms. In the current work, a liposome nanoparticle (Huang et al., Cancer Metastasis Rev., 2018, 37, 173-187) coated by cationic chitosan (CS) using a controlled layer-by-layer (LbL) process was designed to deliver simultaneous si-KRAS, miRNA-532-3p, and 5-Fluorouracil (5-FU) into CRC cells. The LbL NPs exhibited a spherical structure with an average size of 165.9 nm and effectively protected si-KRAS and miRNA-532-3p against degradation by serum and nucleases. Interestingly, the LbL NPs were successfully entered into cells and efficiently promoted cytotoxicity and suppressed cancer cell migration and invasion. In vivo, the LbL NPs reduced tumor growth in SW480-tumor-bearing mice models. In conclusion, these results suggested that the LbL NPs co-loaded with 5-FU and miR-532-3p/si-KRAS might provide a promising potential strategy for inhibiting the malignant phenotypes of CRC cells.

11.
Front Bioeng Biotechnol ; 10: 949704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992340

RESUMO

Bladder cancer is one of the concerning urological malignant diseases in the world, which has a clinical need for effective targeted therapy. The development of nanotechnology-based gene delivery to bladder tumor sites is an effective strategy for targeted cancer therapy with low/no toxicity. With this view, in the present work, the mesoporous silica nanoparticles (MSNs) modified with c(RGDfK)-PLGA-PEG [c(RGDfK)-MSN NPs] were constructed for co-delivery of miR-34a and siPD-L1 within bladder cancer cells and tissues. Our findings showed that miR-34a is downregulated while PD-L1 is up-regulated in cell lines and animal studies. This nano-carrier is biocompatible in the serum environment and effectively protects miR-34a and siPD-L1 against serum degradation. However, we showed that c(RGDfK)-MSN NPs could simultaneously downregulate PD-L1 expression and up-regulate miR-34a in the T24 cells and T24 mice model and enhance anti-tumor effects both in vivo and in vitro. In conclusion, these findings presented new suggestions for improving targeted therapeutic strategies with specified molecular objectives for bladder cancer treatment.

12.
Sci Rep ; 12(1): 15872, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151457

RESUMO

Diabetic retinopathy is a severe microvascular problem in diabetes mellitus. Silymarin is a flavonoid compound, and according to previous studies, it is a bioactive compound with potent antioxidant and anti-inflammatory properties. This investigation aims to peruse the impact of silymarin against diabetic retinopathy in streptozotocin (STZ)-provoked rats. Thirty-two adult male Wistar rats were randomly allocated into the control group, STZ group, STZ + silymarin (50 mg/kg), and STZ + silymarin (100 mg/kg). STZ rats received silymarin every day until 2 months after diabetes induction. The serum and retinal tissues were collected 2 months after silymarin treatment to determine biochemical and molecular analyses. Silymarin markedly lowered the serum glucose concentration in diabetic rats. Silymarin reduced the increased levels of advanced glycosylated end products (AGEs), the receptors for AGEs (RAGE), and reactive oxygen species (ROS) in diabetic rats. Silymarin also attenuated the phosphorylation of p38 MAP kinase and nuclear factor (NF)-κB p65 and diminished diabetes-induced overexpression of inflammatory cytokines, vascular endothelial growth factor (VEGF), adhesion molecules, and extracellular matrix proteins in STZ rats. Our data suggested that silymarin has protective effects against diabetic retinopathy, which might be related to the inhibition of the AGEs/RAGE axis and its antioxidant and anti-inflammatory activities.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Silimarina , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Citocinas/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Proteínas da Matriz Extracelular , Glucose/efeitos adversos , Masculino , NF-kappa B/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/efeitos adversos , Silimarina/farmacologia , Silimarina/uso terapêutico , Estreptozocina/efeitos adversos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular , Proteínas Quinases p38 Ativadas por Mitógeno
13.
Gene ; 823: 146275, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35189245

RESUMO

BACKGROUND: Silibinin, the principal flavonoid derived from milk thistle seeds, has been demonstrated to have strong inhibitory effects against human malignancies. The inhibitory function of silibinin on ovarian cancer, however, is not fully identified. In this essay, both in vivo and in vitro investigations were conducted to survey the silibinin's blocking effects on ovarian cancer. METHODS: The impacts of silibinin on two ovarian cancer cell lines, SKOV-3 and A2870, were determined by evaluating cell viability, migration, invasion, and apoptosis. Q-RT-PCR and western blotting techniques were carried out to explore the protein levels of signaling pathway markers. A mouse xenograft model was utilized to determine the silibinin efficacy in inhibiting tumor growth. RESULTS: After cell treatment with silibinin, cell viability, migration, and invasion were appreciably inhibited in cancer cell lines, but cell apoptosis was promoted. Also, silibinin reversed the epithelial-mesenchymal transition (EMT) mechanism by inducing E-cadherin expression and reducing N-cadherin and vimentin expression, suppressing the levels of regulators related to EMT such as Snail, Slug, and ZEB1 transcription factors, and also decreasing PI3K/AKT, Smad2/3, and ß-catenin intermediate molecules in vitro. Silibinin effectively ameliorated tumor growth in vivo. CONCLUSION: silibinin could be considered a potent agent against ovarian cancer based on the results.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Silibina/administração & dosagem , Animais , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Invasividade Neoplásica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Silibina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Gene ; 823: 146365, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35257789

RESUMO

BACKGROUND: Silibinin is a polyphenolic compound that could modulate estrogen receptor activation. Vascular dysfunction is considered a key initiator in atherosclerosis and may occur in the postmenopausal period. This manuscript compares estrogen and silibinin's impacts on factors that change endothelial function in ovariectomized (OVX) rats. METHODS: 32 female Wistar rats were subdivided into control; OVX; OVX + estrogen (1 mg/kg/day); and OVX + silibinin (50 mg/kg/day) groups. After the experimental period, lipid profile, atherogenic indices, and histopathology of endothelium were monitored. The vascular oxidative stress, adhesion molecules, inflammatory cytokine levels, nitric oxide (NO), angiotensin-II (Ang-II), and endothelin-1 (ET-1) were also analyzed. RESULTS: Silibinin treatment, similar to estrogen, significantly normalized the adverse changes of OVX on vascular function, including improved lipid profile and oxidative stress, increased endothelial nitric oxide synthase (eNOS) expression, diminished inflammatory status, and reduced adhesion molecule levels, ET-1 and Ang-II substances. Our findings also revealed that the administration with estrogen or silibinin resulted in a normal endothelium layer in the aorta tissues of OVX rats. CONCLUSION: Estrogen and silibinin have similar effects in improving vascular function. These treatments' protective impacts on vasculature indicate their potential benefits on the cardiovascular system in the postmenopausal period.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Estrogênios/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ovariectomia/efeitos adversos , Silibina/administração & dosagem , Animais , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pós-Menopausa , Ratos , Ratos Wistar , Silibina/farmacologia
15.
Iran J Public Health ; 50(5): 1037-1047, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34183962

RESUMO

BACKGROUND: Piperine is a natural compound obtained from the Piper nigrum that exhibits anti-proliferative and anti-cancer activity in cancer cell lines. We analyzed the cytotoxic effect of piperine combined with cisplatin compound in the human MCF-7 breast cancer cell line and the underlying mechanism. METHODS: The present in vitro study was performed on MCF-7 cell line in Jahrom University of Medical Sciences between, Jahrom, Iran from 2016 to 2017. Cultured MCF-7 cells were seeded into four groups: a control group (untreated group), a group treated with cisplatin, a group treated with piperine and a group treated with cisplatin and piperine. Cell viability was analyzed using the MTT assay method. Flow c-ytometric analysis was investigated for apoptosis. The mRNA and protein expression of the apoptotic regulators p53, Bcl-2, Bax, caspase 3 and caspase 9 were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis. RESULTS: Piperine (20 and 30 µM) in combination with cisplatin (5, 10 and 15 µM) for 24 h synergistically inhibited cell viability of MCF-7 breast cancer cells more than piperine and cisplatin used alone. Synergistic anti-breast cancer activities cisplatin (5 µM) and piperine (20 µM) were via inducing apoptosis. Piperine (20 µM) and cisplatin (5 µM) for 24 h induce apoptosis strongly through reduction of Bcl-2 and increase of caspase 3, p53, caspase 9, and Bax. CONCLUSION: Piperine in combination with cisplatin could trigger p53-mediated apoptosis more effective than cisplatin alone in MCF-7 breast cancer cells, reducing the toxic dose of cisplatin used in cancer chemotherapy.

16.
Iran J Allergy Asthma Immunol ; 20(1): 11-23, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33639626

RESUMO

The Coronavirus disease 2019 (COVID-19) virus spread from Wuhan, China, in 2019 and is spreading rapidly around the world. COVID-19 victims are almost associated with cardiovascular disease, high blood pressure, diabetes, and other underlying diseases. Concerning the high prevalence of these disorders, widespread mortality threatens global society, and its fatality rate may increase with increasing COVID-19 prevalence in countries with older populations. Therefore, evaluating patients' clinical status with severe COVID-19 infection and their medical history can help manage treatment. Currently, one of the considered treatments is angiotensin-converting enzyme 2 (ACE2) inhibition. This study investigated virus entry mechanisms through membrane receptors, their role in the pathogenesis of COVID-19 and underlying diseases, and treatment methods based on the viral entrance inhibition. According to existing studies, inhibition of ACE2 can increase oxidative stress, inflammation, fibrosis and ultimately exacerbate underlying diseases such as cardiovascular disease, kidney disease, diabetes, and hypertension in individuals with COVID-19. The ACE2 inhibition is not suitable for patients with COVID-19 with underlying diseases, but it seems that the recombinant ACE2 solution is more appropriate for inhibiting the virus in these patients if hypotension would be monitored.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , SARS-CoV-2/fisiologia , Internalização do Vírus/efeitos dos fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Humanos , Hipotensão/etiologia , Hipotensão/prevenção & controle , Monitorização Fisiológica , Peptidil Dipeptidase A/metabolismo
17.
Gene ; 787: 145638, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33848578

RESUMO

BACKGROUND: Green tea is a natural compound with anti-neoplastic properties. Paclitaxel (PTX) is a natural anti-tumor medication used to manage patients with advanced ovarian cancer. This manuscript evaluated the cytotoxic effects of green tea extract combined with PTX drug in two human ovarian cancer cell lines (p53-negative cell line, SKOV-3; and mutant type p53 cell line, OVCAR-3) and underlying mechanisms. METHODS: The human ovarian cancer cell lines were treated with green tea extract, PTX, and green tea plus PTX for 24 h, and cell viability was assessed using the MTT method. Flow cytometric analyses were carried out to detect apoptosis. For the apoptotic process, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis were applied to study pAkt, Bax, Bcl-2, Cytochrome C (Cyt-C), cleaved-caspase-3, and cleaved-caspase-9 levels after drug treatments. RESULTS: Our results pointed out that various green tea (25 and 50 µg/ml) concentrations combined with PTX (20 and 40 µg/ml) synergistically inhibited cell viability of cancer cells more than green tea or PTX alone after 24 h of treatment. Also, green tea and PTX combination induced apoptosis in ovarian cancer cells by blocking the phosphorylation of Akt and the expression of Bcl-2 while inducing Bax, Cyt-C, cleaved-caspase 3, and cleaved-caspase 9. CONCLUSION: Our results showed that the combination of green tea and PTX could be more potent than the individual drug to induce cytotoxicity and apoptosis in ovarian cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Extratos Vegetais/farmacologia , Chá/química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Humanos , Extratos Vegetais/química , Polifenóis/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
18.
Gene ; 794: 145774, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34126197

RESUMO

BACKGROUND: Transforming growth factor-ß (TGF-ß)-induced Epithelial-to-mesenchymal transition (EMT) process is a fundamental target for preventing cervical cancer cells' progression and invasion. Green tea and its principal active substance, Epigallocatechin-3-gallate (EGCG), demonstrate anti-tumor activities in various tumor cells. METHODS: The cell viability of two cervical cancer cell lines, Hela and SiHa, in the experimental groups was examined employing the MTT method, and ROS generation was probed applying 2',7'-dichlorofluorescein diacetate-based assay. The Smad signaling and EMT process was evaluated utilizing western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR). Chromatin immunoprecipitation (ChIP) and Smad binding element (SBE)-luciferase assays were employed to measure Smad-DNA interaction and Smad transcriptional activity, respectively. RESULTS: EGCG (0-100 µmol/L) and green tea extract (0-250 µg/ml) suppressed the viability of cancer cells in a dose-dependent manner (p < 0.01). Our conclusions affirmed that pre-incubation with green tea extract (80 µg/ml) and EGCG (60 µmol/L) significantly reversed the impacts of TGF-ß in Hela and SiHa cells by decreasing Vimentin, ZEB, Slug, Snail, and Twist and increasing E-cadherin expression. The molecular mechanism of green tea extract and EGCG for TGF-ß-induced EMT inhibition interfered with ROS generation and Smad signaling. Green tea extract and EGCG could significantly decrease ROS levels, the phosphorylation of Smad2/3, the translocation, DNA binding, and activity of Smads in cervical cancer cell lines treated with TGF-ß1 (p < 0.01). CONCLUSION: EGCG and green tea extract suppressed TGF-ß-induced EMT in Hela and SiHa cells, and the underlying molecular mechanism may be related to the ROS generation and Smad signaling pathway.


Assuntos
Catequina/análogos & derivados , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Chá/química , Fator de Crescimento Transformador beta/farmacologia , Neoplasias do Colo do Útero/metabolismo , Catequina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/genética , Proteínas Smad/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico
20.
Iran J Allergy Asthma Immunol ; 19(1): 84-93, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32245324

RESUMO

Transforming growth factor-ß (TGF-ß) induces pro-inflammatory cytokines expression including interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) and these cytokines are associated with the development of atherosclerosis. Curcumin has anti-atherogenic effects and anti-inflammatory properties in the vascular wall, but the relative mechanisms are almost unknown. In the present study, we investigate the effect of curcumin on modulating the pro-inflammatory action of TGF-ß in human vascular smooth muscle cells (VSMCs) and its molecular mechanisms. Cultured VSMCs were seeded into several groups: a control group (untreated group), a group treated with TGF-ß, and several groups treated with TGF-ß plus inhibitors. The cells were pre-treated with diphenyleneiodonium chloride, DPI, (20 µM), curcumin (5, 10 and 20 µM) and N-Acetyl-L-Cysteine, NAC, (10 mM) and then TGF-ß (5 ng/mL) was added to the culture medium. The mRNA levels of IL-6 and TNF-α were detected by quantitative Real-Time Polymerase Chain Reaction. For monitoring the Smad2 linker region phosphorylation (pSmad2L), the western-blotting technique was applied and reactive oxygen species (ROS) generation was measured by utilizing 2',7'-dichlorofluorescein diacetate-based assay. TGF-ß increased the mRNA expression of IL-6 (p=0.02 and p=0.001) and TNF-α (p =0.014 and p = 0.001) in a time-dependent manner, ROS production (p=0.03) and Smad2L phosphorylation (p=0.015). Pre-treatment with curcumin, DPI and NAC inhibited TGF-ß-induced IL-6 (p=0.04) and TNF-α (p=0.001) mRNA expression, Smad2L phosphorylation (p=0.02) and ROS production (0.03). Pharmacological inhibition by Curcumin blocks TGF-ß-induced ROS production, Smad2L phosphorylation, and IL-6 and TNF-α mRNA expression in human VSMCs.


Assuntos
Curcumina/farmacologia , Citocinas/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fator de Crescimento Transformador beta/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Células Cultivadas , Citocinas/biossíntese , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA