Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791450

RESUMO

Multiple sclerosis is a chronic immune-mediated disorder of the central nervous system with a high heterogeneity among patients. In the clinical setting, one of the main challenges is a proper and early diagnosis for the prediction of disease activity. Current diagnosis is based on the integration of clinical, imaging, and laboratory results, with the latter based on the presence of intrathecal IgG oligoclonal bands in the cerebrospinal fluid whose detection via isoelectric focusing followed by immunoblotting represents the gold standard. Intrathecal synthesis can also be evidenced by the measurement of kappa free light chains in the cerebrospinal fluid, which has reached similar diagnostic accuracy compared to that of oligoclonal bands in the identification of patients with multiple sclerosis; moreover, recent studies have also highlighted its value for early disease activity prediction. This strategy has significant advantages as compared to using oligoclonal band detection, even though some issues remain open. Here, we discuss the current methods applied for cerebrospinal fluid analysis to achieve the most accurate diagnosis and for follow-up and prognosis evaluation. In addition, we describe new promising biomarkers, currently under investigation, that could contribute both to a better diagnosis of multiple sclerosis and to its monitoring of the therapeutic treatment response.


Assuntos
Biomarcadores , Esclerose Múltipla , Bandas Oligoclonais , Humanos , Bandas Oligoclonais/líquido cefalorraquidiano , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/imunologia , Biomarcadores/líquido cefalorraquidiano , Prognóstico , Focalização Isoelétrica
2.
J Transl Med ; 21(1): 217, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964555

RESUMO

BACKGROUND: T cell activation and programming from their naïve/resting state, characterized by widespread modifications in chromatin accessibility triggering extensive changes in transcriptional programs, is orchestrated by several cytokines and transcription regulators. PRDM1 and PRDM2 encode for proteins with PR/SET and zinc finger domains that control several biological processes, including cell differentiation, through epigenetic regulation of gene expression. Different transcripts leading to main protein isoforms with (PR +) or without (PR-) the PR/SET domain have been described. Although many studies have established the critical PRDM1 role in hematopoietic cell differentiation, maintenance and/or function, the single transcript contribution has not been investigated before. Otherwise, very few evidence is currently available on PRDM2. Here, we aimed to analyze the role of PRDM1 and PRDM2 different transcripts as mediators of T lymphocyte activation. METHODS: We analyzed the transcription signature of the main variants from PRDM1 (BLIMP1a and BLIMP1b) and PRDM2 (RIZ1 and RIZ2) genes, in human T lymphocytes and Jurkat cells overexpressing PRDM2 cDNAs following activation through different signals. RESULTS: T lymphocyte activation induced an early increase of RIZ2 and RIZ1 followed by BLIMP1b increase and finally by BLIMP1a increase. The "first" and the "second" signals shifted the balance towards the PR- forms for both genes. Interestingly, the PI3K signaling pathway modulated the RIZ1/RIZ2 ratio in favor of RIZ1 while the balance versus RIZ2 was promoted by MAPK pathway. Cytokines mediating different Jak/Stat signaling pathways (third signal) early modulated the expression of PRDM1 and PRDM2 and the relationship of their different transcripts confirming the early increase of the PR- transcripts. Different responses of T cell subpopulations were also observed. Jurkat cells showed that the acute transient RIZ2 increase promoted the balancing of PRDM1 forms towards BLIMP1b. The stable forced expression of RIZ1 or RIZ2 induced a significant variation in the expression of key transcription factors involved in T lymphocyte differentiation. The BLIMP1a/b balance shifted in favor of BLIMP1a in RIZ1-overexpressing cells and of BLIMP1b in RIZ2-overexpressing cells. CONCLUSIONS: This study provides the first characterization of PRDM2 in T-lymphocyte activation/differentiation and novel insights on PRDM1 and PRDM2 transcription regulation during initial activation phases.


Assuntos
Epigênese Genética , Ativação Linfocitária , Humanos , Fosfatidilinositol 3-Quinases/genética , Fatores de Transcrição/genética , Citocinas/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Histona-Lisina N-Metiltransferase/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética
3.
J Transl Med ; 21(1): 736, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853459

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most deadly and fourth most diagnosed cancer worldwide. Despite the progress in early diagnosis and advanced therapeutic options, CRC shows a poor prognosis with a 5 year survival rate of ~ 45%. PRDM2/RIZ, a member of PR/SET domain family (PRDM), expresses two main molecular variants, the PR-plus isoform (RIZ1) and the PR-minus (RIZ2). The imbalance in their expression levels in favor of RIZ2 is observed in many cancer types. The full length RIZ1 has been extensively investigated in several cancers where it acts as a tumor suppressor, whereas few studies have explored the RIZ2 oncogenic properties. PRDM2 is often target of frameshift mutations and aberrant DNA methylation in CRC. However, little is known about its role in CRC. METHODS: We combined in-silico investigation of The Cancer Genome Atlas (TCGA) CRC datasets, cellular and molecular assays, transcriptome sequencing and functional annotation analysis to assess the role of RIZ2 in human CRC. RESULTS: Our in-silico analysis on TCGA datasets confirmed that PRDM2 gene is frequently mutated and transcriptionally deregulated in CRC and revealed that a RIZ2 increase is highly correlated with a significant RIZ1 downregulation. Then, we assayed several CRC cell lines by qRT-PCR analysis for the main PRDM2 transcripts and selected DLD1 cell line, which showed the lowest RIZ2 levels. Therefore, we overexpressed RIZ2 in these cells to mimic TCGA datasets analysis results and consequently to assess the PRDM2/RIZ2 role in CRC. Data from RNA-seq disclosed that RIZ2 overexpression induced profound changes in CRC cell transcriptome via EGF pathway deregulation, suggesting that RIZ2 is involved in the EGF autocrine regulation of DLD1 cell behavior. Noteworthy, the forced RIZ2 expression increased cell viability, growth, colony formation, migration and organoid formation. These effects could be mediated by the release of high EGF levels by RIZ2 overexpressing DLD1 cells. CONCLUSIONS: Our findings add novel insights on the putative RIZ2 tumor-promoting functions in CRC, although additional efforts are warranted to define the underlying molecular mechanism.


Assuntos
Neoplasias Colorretais , Fator de Crescimento Epidérmico , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Receptores ErbB , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Células Tumorais Cultivadas
4.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055128

RESUMO

RNA-binding proteins are crucial to the function of coding and non-coding RNAs. The disruption of RNA-protein interactions is involved in many different pathological states. Several computational and experimental strategies have been developed to identify protein binders of selected RNA molecules. Amongst these, 'in cell' hybridization methods represent the gold standard in the field because they are designed to reveal the proteins bound to specific RNAs in a cellular context. Here, we compare the technical features of different 'in cell' hybridization approaches with a focus on their advantages, limitations, and current and potential future applications.


Assuntos
Proteínas de Ligação a RNA/isolamento & purificação , RNA/metabolismo , Animais , Humanos , Ligação Proteica , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo
5.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769459

RESUMO

PRDM12 is a member of the PRDI-BF1 (positive regulatory domain I-binding factor 1) homologous domain (PRDM)-containing protein family, a subfamily of Kruppel-like zinc finger proteins, controlling key processes in the development of cancer. PRDM12 is expressed in a spatio-temporal manner in neuronal systems where it exerts multiple functions. PRDM12 is essential for the neurogenesis initiation and activation of a cascade of downstream pro-neuronal transcription factors in the nociceptive lineage. PRDM12 inactivation, indeed, results in a complete absence of the nociceptive lineage, which is essential for pain perception. Additionally, PRDM12 contributes to the early establishment of anorexigenic neuron identity and the maintenance of high expression levels of pro-opiomelanocortin, which impacts on the program bodyweight homeostasis. PRDMs are commonly involved in cancer, where they act as oncogenes/tumor suppressors in a "Yin and Yang" manner. PRDM12 is not usually expressed in adult normal tissues but its expression is re-activated in several cancer types. However, little information is currently available on PRDM12 expression in cancers and its mechanism of action has not been thoroughly described. In this review, we summarize the recent findings regarding PRDM12 by focusing on four main biological processes: neurogenesis, pain perception, oncogenesis and cell metabolism. Moreover, we wish to highlight the importance of future studies focusing on the PRDM12 signaling pathway(s) and its role in cancer onset and progression.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Dor/metabolismo , Animais , Humanos , Neoplasias/patologia , Neurogênese/fisiologia , Dor/patologia
6.
Int J Mol Sci ; 21(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290321

RESUMO

The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.


Assuntos
Proteínas de Ligação a DNA/genética , Histona-Lisina N-Metiltransferase/genética , Neoplasias/etiologia , Neoplasias/metabolismo , Proteínas Nucleares/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fatores de Transcrição/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Família Multigênica , Neoplasias/mortalidade , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Prognóstico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Fatores de Transcrição/metabolismo
7.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347759

RESUMO

The PR/SET domain gene family (PRDM) encodes 19 different transcription factors that share a subtype of the SET domain [Su(var)3-9, enhancer-of-zeste and trithorax] known as the PRDF1-RIZ (PR) homology domain. This domain, with its potential methyltransferase activity, is followed by a variable number of zinc-finger motifs, which likely mediate protein⁻protein, protein⁻RNA, or protein⁻DNA interactions. Intriguingly, almost all PRDM family members express different isoforms, which likely play opposite roles in oncogenesis. Remarkably, several studies have described alterations in most of the family members in malignancies. Here, to obtain a pan-cancer overview of the genomic and transcriptomic alterations of PRDM genes, we reanalyzed the Exome- and RNA-Seq public datasets available at The Cancer Genome Atlas portal. Overall, PRDM2, PRDM3/MECOM, PRDM9, PRDM16 and ZFPM2/FOG2 were the most mutated genes with pan-cancer frequencies of protein-affecting mutations higher than 1%. Moreover, we observed heterogeneity in the mutation frequencies of these genes across tumors, with cancer types also reaching a value of about 20% of mutated samples for a specific PRDM gene. Of note, ZFPM1/FOG1 mutations occurred in 50% of adrenocortical carcinoma patients and were localized in a hotspot region. These findings, together with OncodriveCLUST results, suggest it could be putatively considered a cancer driver gene in this malignancy. Finally, transcriptome analysis from RNA-Seq data of paired samples revealed that transcription of PRDMs was significantly altered in several tumors. Specifically, PRDM12 and PRDM13 were largely overexpressed in many cancers whereas PRDM16 and ZFPM2/FOG2 were often downregulated. Some of these findings were also confirmed by real-time-PCR on primary tumors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Domínios PR-SET , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Transcriptoma , Bases de Dados Genéticas , Humanos , Taxa de Mutação , Fator 1 de Ligação ao Domínio I Regulador Positivo/química , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo
8.
Int J Mol Sci ; 18(5)2017 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-28468258

RESUMO

The integrator complex has been recently identified as a key regulator of RNA Polymerase II-mediated transcription, with many functions including the processing of small nuclear RNAs, the pause-release and elongation of polymerase during the transcription of protein coding genes, and the biogenesis of enhancer derived transcripts. Moreover, some of its components also play a role in genome maintenance. Thus, it is reasonable to hypothesize that their functional impairment or altered expression can contribute to malignancies. Indeed, several studies have described the mutations or transcriptional alteration of some Integrator genes in different cancers. Here, to draw a comprehensive pan-cancer picture of the genomic and transcriptomic alterations for the members of the complex, we reanalyzed public data from The Cancer Genome Atlas. Somatic mutations affecting Integrator subunit genes and their transcriptional profiles have been investigated in about 11,000 patients and 31 tumor types. A general heterogeneity in the mutation frequencies was observed, mostly depending on tumor type. Despite the fact that we could not establish them as cancer drivers, INTS7 and INTS8 genes were highly mutated in specific cancers. A transcriptome analysis of paired (normal and tumor) samples revealed that the transcription of INTS7, INTS8, and INTS13 is significantly altered in several cancers. Experimental validation performed on primary tumors confirmed these findings.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Subunidades Proteicas/genética , Perfilação da Expressão Gênica , Genoma Humano , Genômica , Humanos , Mutação , Transcrição Gênica , Transcriptoma
9.
Ann Hepatol ; 14(3): 420-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25864225

RESUMO

The HCV protease inhibitor telaprevir associated with peginterferon-alpha and ribavirin, was widely used in the recent past as standard treatment in HCV genotype-1 infected patients. Telaprevir improves the sustained virology response rates, but at the same time increases the frequency of adverse cutaneous reactions. However, mechanisms through which telaprevir induces cutaneous lesions are not yet defined. A 50-year-old woman, affected by HCV genotype 1b, was admitted to our Department for a telaprevir-related severe cutaneous eruptions, eight weeks after starting a triple therapy (telaprevir associated with Peginterferon-alpha and ribavirin). Mechanisms of cutaneous reactions were investigated by skin tests with non-irritating concentrations of telaprevir and by activating in vitro T lymphocyte with different concentrations. Immediate and delayed responses to skin testing were negative, but the drug-induced lymphocytes activation was significantly higher as compared to patient's baseline values and to parallel results obtained in three healthy subjects (p < 0.05). In conclusion, adverse cutaneous reactions of our patient were caused by a telaprevir-induced T-cell dependent immune mechanism.


Assuntos
Toxidermias/etiologia , Hepatite C Crônica/tratamento farmacológico , Imunidade Celular/efeitos dos fármacos , Oligopeptídeos/efeitos adversos , Linfócitos T/imunologia , DNA Viral/genética , Toxidermias/diagnóstico , Toxidermias/imunologia , Feminino , Genótipo , Hepacivirus/genética , Hepatite C Crônica/virologia , Humanos , Pessoa de Meia-Idade , Oligopeptídeos/uso terapêutico , Linfócitos T/efeitos dos fármacos
10.
Biochim Biophys Acta ; 1829(5): 480-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23507259

RESUMO

More than 70% of breast cancers in women require estrogens for cell proliferation and survival. 17ß-estradiol (E2) effect on mammary target cells is almost exclusively mediated by its binding to the estrogen receptor-α (ERα) that joins chromatin where it assembles active transcription complexes. The proliferative and pro-survival action of estrogens is antagonized in most cases by retinoic acid (RA), even though the cognate retinoic acid receptor-α (RARα) cooperates with ERα on promoters of estrogen-responsive genes. We have examined at the molecular level the crosstalk between these nuclear receptors from the point of view of their control of cell growth and show here that RA reverts estrogen-stimulated transcription of the pivotal anti-apoptotic bcl-2 gene by preventing demethylation of dimethyl lysine 9 in histone H3 (HeK9me2). As we previously reported, this is obtained by means of E2-triggered activation of the lysine-specific demethylase 1 (LSD1), an enzyme that manages chromatin plasticity in order to allow specific movements of chromosomal regions within the nucleus. We find that E2 fuels LSD1 by inducing migration of the catalytic subunit of protein kinase A (PKA) into the nucleus, where it targets estrogen-responsive loci. RA rescues LSD1-dependent disappearance of H3K9me2 at bcl-2 regulatory regions upon the prevention of PKA assembly to the same sites.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estrogênios/metabolismo , Histona Desmetilases/metabolismo , Tretinoína/farmacologia , Neoplasias da Mama/metabolismo , Domínio Catalítico , Cromatina/metabolismo , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/química , Feminino , Flavonoides/farmacologia , Histonas/metabolismo , Humanos , Isoquinolinas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Metilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno , Sulfonamidas/farmacologia , Transcrição Gênica/efeitos dos fármacos
11.
J Cell Physiol ; 227(3): 964-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21503890

RESUMO

The retinoblastoma protein-interacting zinc-finger (RIZ) gene, also known as PRDM2, encodes two protein products, RIZ1 and RIZ2, differing for the presence of a 202 aa domain, called PR domain, at the N-terminus of the RIZ1 molecule. While the histone H3 K9 methyltransferase activity of RIZ1 is associated with the negative control of cell proliferation, no information is currently available on either expression regulation of the RIZ2 form or on its biological activity. RIZ proteins act as ER co-activators and promote optimal estrogen response in female reproductive tissues. In estrogen-responsive cells, 17-ß estradiol modulates RIZ gene expression producing a shift in the balanced expression of the two forms. Here, we demonstrate that an estrogen-responsive element (ERE) within the RIZ promoter 2 is regulated in a ligand-specific manner by ERα, through both the AF1 and AF2 domains. The pattern of ERα binding, histone H4 acetylation, and histone H3 cyclical methylation of lysine 9 was comparable to other estrogen-regulated promoters. Association of topoisomerase IIß with the RIZ promoter 2 confirmed the transcriptional activation induced by estrogen. We hypothesize that RIZ2, acting as a negative regulator of RIZ1 function, mediates the proliferative effect of estrogen through regulation of survival and differentiation gene expression.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Elementos Facilitadores Genéticos/fisiologia , Estradiol/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Animais , Sequência de Bases , Neoplasias da Mama/patologia , Células COS , Diferenciação Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Chlorocebus aethiops , Estradiol/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/fisiologia
12.
Clin Endocrinol (Oxf) ; 76(1): 142-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21781145

RESUMO

OBJECTIVE: Vascular endothelial growth factor-D (VEGF-D) has been identified as one of the lymphangiogenic growth factors involved in metastatic diffusion. The aim of this study is to evaluate the serum VEGF-D levels in patients with differentiated thyroid cancer at different conditions of disease. DESIGN AND PATIENTS: We studied prospectively the VEGF-D plasma levels in 96 subjects affected by differentiated thyroid cancer. The patients were divided into three groups according to the clinical and biochemical findings: patients with no evidence of disease (Cured), patients with pathological (>1 ng/ml) stimulated thyroglobulin (Tg) (Path-Tg/rhTSH) levels only after rhTSH and patients with elevated basal Tg levels (Path-Tg/LT4). RESULTS: The serum VEGF-D concentrations in patients of group Cured were not different from the controls, while group Path-Tg/rhTSH showed baseline serum VEGF-D levels significantly lower than group Cured and controls (P < 0·001 and P < 0·01, respectively). Moreover, the patients of group Path-Tg/LT4 showed median serum cytokine concentrations at baseline not significantly different from the patients of group Path-Tg/rhTSH. The rhTSH stimulation did not modify the difference in serum VEGF-D levels in patients of group Cured and group Path-Tg/rhTSH. CONCLUSIONS: Our data demonstrate that the VEGF-D serum levels are reduced in patients with metastases of differentiated thyroid cancer, regardless of the degree of metastatic spread. It is possible that some other molecule produced by the tumoral tissue could affect the VEGF-D physiologically produced of from different tissues, thus conducting to a decrease in the VEGF-D found in blood of patients with evidence of metastatic differentiated thyroid cancer.


Assuntos
Neoplasias da Glândula Tireoide/sangue , Neoplasias da Glândula Tireoide/patologia , Fator D de Crescimento do Endotélio Vascular/sangue , Adulto , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Tireoglobulina/sangue , Neoplasias da Glândula Tireoide/cirurgia , Tireoidectomia , Tireotropina/farmacologia , Fator D de Crescimento do Endotélio Vascular/genética , Fator D de Crescimento do Endotélio Vascular/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-35362389

RESUMO

Breast cancer, even today, can cause death. Therefore, prevention and early detection are fundamental factors. The mechanisms that favour it are genetic and epigenetic, and seem to play a significant role; also, the microbiota can change estrogen levels and can induce chronic inflammation in the neoplastic site, alternating the balance between proliferation and cell death. Activated steroid hormone receptors induce transcription of genes that encode for proteins involved in cell proliferation and activate another transduction pathway, inducing cell cycle progression and cell migration. These important studies have allowed to develop therapies with selective modulators of estrogen receptors (SERMs), able to block their proliferative and pro-tumorigenic action. Of fundamental importance is also the role played by the microbiota in regulating the metabolism of estrogens and their levels in the blood. There are microbial populations that are able to promote the development of breast cancer, through the production of enzymes responsible for the deconjugation of estrogens, the increase of these in the intestine, subsequent circulation and migration to other locations, such as the udder. Other microbial populations are, instead, able to synthesize estrogen compounds or mimic estrogenic action, and interfere with the metabolism of drugs, affecting the outcome of therapies. The microbial composition of the intestine and hormonal metabolism depend largely on eating habits; the consumption of fats and proteins favours the increase of estrogen in the blood, unlike a diet rich in fiber. Therefore, in-depth knowledge of the microbiota present in the intestine-breast axis could, in the future, encourage the development of new diagnostic and therapeutic approaches to breast cancers.


Assuntos
Neoplasias da Mama , Microbioma Gastrointestinal , Animais , Neoplasias da Mama/metabolismo , Estrogênios/uso terapêutico , Feminino , Humanos , Receptores de Estrogênio/fisiologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Esteroides/uso terapêutico
14.
Proc Natl Acad Sci U S A ; 105(27): 9427-32, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18595894

RESUMO

The recruitment of circulating endothelial progenitor cells (EPCs) might have a beneficial effect on the clinical course of several diseases. Endothelial damage and detachment of endothelial cells are known to occur in infection, tissue ischemia, and sepsis. These detrimental effects in EPCs are unknown. Here we elucidated whether human EPCs internalize Bartonella henselae constituting a circulating niche of the pathogen. B. henselae invades EPCs as shown by gentamicin protection assays and transmission electron microscopy (TEM). Dil-Ac-LDL/lectin double immunostaining and fluorescence-activated cell sorting (FACS) analysis of EPCs revealed EPC bioactivity after infection with B. henselae. Nitric oxide (NO) and its precursor l-arginine (l-arg) exert a plethora of beneficial effects on vascular function and modulation of immune response. Therefore, we tested also the hypothesis that l-arg (1-30 mM) would affect the infection of B. henselae or tumor necrosis factor (TNF) in EPCs. Our data provide evidence that l-arg counteracts detrimental effects induced by TNF or Bartonella infections via NO (confirmed by DETA-NO and L-NMMA experiments) and by modulation of p38 kinase phosphorylation. Microarray analysis indicated several genes involved in immune response were differentially expressed in Bartonella-infected EPCs, whereas these genes returned in steady state when cells were exposed to sustained doses of l-arg. This mechanism may have broad therapeutic applications in tissue ischemia, angiogenesis, immune response, and sepsis.


Assuntos
Arginina/farmacologia , Bartonella henselae/efeitos dos fármacos , Células Endoteliais/microbiologia , Óxido Nítrico/farmacologia , Células-Tronco/microbiologia , Aderência Bacteriana/efeitos dos fármacos , Bartonella henselae/citologia , Bartonella henselae/ultraestrutura , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Células Endoteliais/ultraestrutura , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco/citologia , Células-Tronco/enzimologia , Células-Tronco/ultraestrutura , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Front Oncol ; 10: 583533, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585202

RESUMO

Positive Regulatory Domain (PRDM) gene family members commonly express two main molecular variants, the PR-plus isoform usually acting as tumor suppressor and the PR-minus one functioning as oncogene. Accordingly, PRDM2/RIZ encodes for RIZ1 (PR-plus) and RIZ2 (PR-minus). In human cancers, genetic or epigenetic modifications induce RIZ1 silencing with an expression level imbalance in favor of RIZ2 that could be relevant for tumorigenesis. Additionally, in estrogen target cells and tissues, estradiol increases RIZ2 expression level with concurrent increase of cell proliferation and survival. Several attempts to study RIZ2 function in HeLa or MCF-7 cells by its over-expression were unsuccessful. Thus, we over-expressed RIZ2 in HEK-293 cells, which are both RIZ1 and RIZ2 positive but unresponsive to estrogens. The forced RIZ2 expression increased cell viability and growth, prompted the G2-to-M phase transition and organoids formation. Accordingly, microarray analysis revealed that RIZ2 regulates several genes involved in mitosis. Consistently, RIZ silencing in both estrogen-responsive MCF-7 and -unresponsive MDA-MB-231 cells induced a reduction of cell proliferation and an increase of apoptosis rate. Our findings add novel insights on the putative RIZ2 tumor-promoting functions, although additional attempts are warranted to depict the underlying molecular mechanism.

16.
J Cell Physiol ; 221(3): 771-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19746436

RESUMO

The nuclear protein methyl-transferase Retinoblastoma-interacting zinc-finger protein 1 (RIZ1) is considered to be a downstream effector of estrogen action in target tissues. Silencing of RIZ1 expression is common in many tumors. We analyzed RIZ1 expression in normal and malignant prostate tissue and evaluated whether estradiol (E2) or dihydrotestosterone (DHT) treatment modulated RIZ1 in cultured prostate epithelial cells (PEC). Moreover, we studied the possible involvement of RIZ1 in estrogen action on the EPN prostate cell line, constitutively expressing both estrogen receptor (ER)-alpha and beta. RIZ1 protein, found in the nucleus of normal PECs by immunohistochemistry, was progressively lost in cancer tissues as the Gleason score increased and was only detected in the cytoplasmic compartment. RIZ1 transcript levels, as assayed by semi-quantitative RT-PCR in primary PEC cultures, were significantly reduced in cancer cells (P < 0.05). In EPN DHT treatment significantly increased RIZ1 transcript and protein levels (P < 0.05); E2 induced a reduction of S phase without significant changes of RIZ1 expression. In E2-treated EPN cell extracts RIZ co-immunoprecipitated with ERbeta and ERalpha. Our data demonstrate that RIZ1 is expressed in normal PECs and down-regulated in cancer cells, with a switch of its sub-cellular localization from the nucleus to the cytoplasm upon cancer grade progression. RIZ1 expression levels in the PECs were modulated by DHT or E2 treatment in vitro. Furthermore, the E2 effects on ER-expressing prostate cells involve RIZ1, which confirms a possible role for ER-mediated pathways in a non-classic E(2)-target tissue.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Di-Hidrotestosterona/farmacologia , Células Epiteliais/metabolismo , Estradiol/farmacologia , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Transcrição/metabolismo , Adulto , Idoso , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Proteínas de Ligação a DNA/genética , Células Epiteliais/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Histona-Lisina N-Metiltransferase , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Próstata/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína do Retinoblastoma/metabolismo , Fatores de Transcrição/genética , Células Tumorais Cultivadas
17.
Wound Repair Regen ; 17(5): 750-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19769727

RESUMO

Hypertrophic scar (HS) and keloid (KL) are two forms of an abnormal cutaneous scarring process, mainly characterized by excessive extracellular matrix deposition and fibroblast proliferation. Despite the increased understanding of the molecular and cellular events leading to HS and KL, the pathogenesis of these lesions remains poorly understood. A pivotal role in the formation of abnormal scars has been ascribed to transforming growth factor-beta, whose activity appears to be mediated through a link with pathways acting via cyclooxygenases (COX-1 and COX-2). To date, there is no report on the in vivo expression of COX-1 and COX-2 in human HS and KL tissues. Therefore, using immunohistochemistry and Western blot analysis, we investigated 36 cases of KL, 32 cases of HS, and 25 cases of normal skin in order to define the localization and distribution of COX-1 and COX-2 in the tissues of these scar lesions and the overlying epidermis. The results mainly show the following: (a) a significant overexpression of COX-1 in HS tissues and the overlying epidermis as compared with normal skin and KL tissues and (b) a significant overexpression of COX-2 in KL tissue and the overlying epidermis in contrast to normal skin and HS tissues. Our data support the hypothesis that both COXs are involved in the pathogenesis of scar lesions in different ways and, particularly, COX-1 in the formation of HS and COX-2 in the formation of KL. In addition, the overexpression of COX-1 and COX-2 in the epidermis overlying HS and KL tissues, respectively, underlines the importance of epithelial-mesenchymal interactions in the pathogenesis of scar lesions.


Assuntos
Cicatriz Hipertrófica/metabolismo , Ciclo-Oxigenase 1/biossíntese , Ciclo-Oxigenase 2/biossíntese , Epiderme/metabolismo , Queloide/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Cicatriz Hipertrófica/patologia , Feminino , Humanos , Imuno-Histoquímica , Queloide/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Front Pharmacol ; 10: 28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828298

RESUMO

Prostate cancer (PC) is one of the most frequently diagnosed cancers and a leading cause of cancer-related deaths in Western society. Current PC therapies prevalently target the functions of androgen receptor (AR) and may only be effective within short time periods, beyond which the majority of PC patients progress to castration-resistant PC (CRPC) and metastatic disease. The role of estradiol/estradiol receptor (ER) axis in prostate transformation and PC progression is well established. Further, considerable efforts have been made to investigate the mechanism by which somatostatin (SST) and somatostatin receptors (SSTRs) influence PC growth and progression. A number of therapeutic strategies, such as the combination of SST analogs with other drugs, show, indeed, strong promise. However, the effect of the combined treatment of SST analogs and estradiol on proliferation, epithelial mesenchyme transition (EMT) and migration of normal- and cancer-derived prostate cells has not been investigated so far. We now report that estradiol plays anti-proliferative and pro-apoptotic effect in non-transformed EPN prostate cells, which express both ERα and ERß. A weak apoptotic effect is observed in transformed CPEC cells that only express low levels of ERß. Estradiol increases, mainly through ERα activation, the expression of SSTRs in EPN, but not CPEC cells. As such, the hormone enhances the anti-proliferative effect of the SST analog, pasireotide in EPN, but not CPEC cells. Estradiol does not induce EMT and the motility of EPN cells, while it promotes EMT and migration of CPEC cells. Addition of pasireotide does not significantly modify these responses. Altogether, our results suggest that pasireotide may be used, alone or in combination with other drugs, to limit the growth of prostate proliferative diseases, provided that both ER isoforms (α and ß) are present. Further investigations are needed to better define the cross talk between estrogens and SSTRs as well as its role in PC.

19.
Oncol Res ; 17(1): 33-41, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18488713

RESUMO

RIZ1 isoform, but not RIZ2, is commonly silenced in many types of tumors. In osteosarcoma cells, RIZ1 protein is very abundant. The silencing of YY1 protein, a recent target gene in osteosarcoma cells, reduced the expression of RIZ1 protein. Here we show that RIZ1 overexpression is a transcriptional event documented by Western blot, RT-PCR, and promoter assays. YY1 protein binds and cooperates to positive regulation of the RIZ1 promoter and its presence reduced the dimethyl lysine 9 histone 3 by chromatin immunoprecipitation assays. These results indicate that overexpression of YY1 in osteosarcoma cells plays a key role in positive regulation of RIZ1. The coexpression of RIZ1/YY1 proteins suggests a tandem regulatory mechanism in human osteosarcoma cells and tissues.


Assuntos
Neoplasias Ósseas/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Osteossarcoma/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fator de Transcrição YY1/fisiologia , Sequência de Bases , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Regulação para Baixo , Inativação Gênica , Histona-Lisina N-Metiltransferase , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Fator de Transcrição YY1/genética
20.
Clin Cancer Res ; 23(10): 2542-2555, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27358484

RESUMO

Purpose: Histone deacetylase inhibitors (HDACi) are promising anticancer drugs. Although some HDACi have entered the clinic, the mechanism(s) underlying their tumor selectivity are poorly understood.Experimental Design and Results: Using gene expression analysis, we define a core set of six genes commonly regulated in acute myeloid leukemia (AML) blasts and cell lines. MYC, the most prominently modulated, is preferentially altered in leukemia. Upon HDACi treatment, c-Myc is acetylated at lysine 323 and its expression decreases, leading to TRAIL activation and apoptosis. c-Myc binds to the TRAIL promoter on the proximal GC box through SP1 or MIZ1, impairing TRAIL activation. HDACi exposure triggers TRAIL expression, altering c-Myc-TRAIL binding. These events do not occur in normal cells. Excitingly, this inverse correlation between TRAIL and c-Myc is supported by HDACi treatment ex vivo of AML blasts and primary human breast cancer cells. The predictive value of c-Myc to HDACi responsiveness is confirmed in vivo in AML patients undergoing HDACi-based clinical trials.Conclusions: Collectively, our findings identify a key role for c-Myc in TRAIL deregulation and as a biomarker of the anticancer action of HDACi in AML. The potential improved patient stratification could pave the way toward personalized therapies. Clin Cancer Res; 23(10); 2542-55. ©2016 AACR.


Assuntos
Histona Desacetilase 1/genética , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Acetilação , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Fatores de Transcrição Kruppel-Like/genética , Neoplasias/patologia , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA