Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 17(9)2016 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-27618893

RESUMO

Benzyl α-l-rhamnopyranoside 4, obtained by both conventional and microwave assisted glycosidation techniques, was subjected to 2,3-O-isopropylidene protection to yield compound 5 which on benzoylation and subsequent deprotection of isopropylidene group gave the desired 4-O-benzoylrhamnopyranoside 7 in reasonable yield. Di-O-acetyl derivative of benzoate 7 was prepared to get newer rhamnopyranoside. The structure activity relationship (SAR) of the designed compounds was performed along with the prediction of activity spectra for substances (PASS) training set. Experimental studies based on antimicrobial activities verified the predictions obtained by the PASS software. Protected rhamnopyranosides 5 and 6 exhibited slight distortion from regular ¹C4 conformation, probably due to the fusion of pyranose and isopropylidene ring. Synthesized rhamnopyranosides 4-8 were employed as test chemicals for in vitro antimicrobial evaluation against eight human pathogenic bacteria and two fungi. Antimicrobial and SAR study showed that the rhamnopyranosides were prone against fungal organisms as compared to that of the bacterial pathogens. Interestingly, PASS prediction of the rhamnopyranoside derivatives 4-8 were 0.49 < Pa < 0.60 (where Pa is probability 'to be active') as antibacterial and 0.65 < Pa < 0.73 as antifungal activities, which showed significant agreement with experimental data, suggesting rhamnopyranoside derivatives 4-8 were more active against pathogenic fungi as compared to human pathogenic bacteria thus, there is a more than 50% chance that the rhamnopyranoside derivative structures 4-8 have not been reported with antimicrobial activity, making it a possible valuable lead compound.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Oligossacarídeos/química , Ramnose/química , Bactérias/efeitos dos fármacos , Sequência de Carboidratos , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Software , Relação Estrutura-Atividade
2.
Molecules ; 21(7)2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27367658

RESUMO

A new series of multipotent antioxidants (MPAOs), namely Schiff base-1,2,4-triazoles attached to the oxygen-derived free radical scavenging moiety butylated hydroxytoluene (BHT) were designed and subsequently synthesized. The structure-activity relationship (SAR) of the designed antioxidants was established alongside the prediction of activity spectra for substances (PASS). The antioxidant activities of the synthesized compounds 4-10 were tested by the DPPH bioassay. The synthesized compounds 4-10 inhibited stable DPPH free radicals at a level that is 10(-4) M more than the well-known standard antioxidant BHT. Compounds 8-10 with para-substituents were less active than compounds 4 and 5 with trimethoxy substituents compared to those with a second BHT moiety (compounds 6 and 7). With an IC50 of 46.13 ± 0.31 µM, compound 6 exhibited the most promising in vitro inhibition at 89%. Therefore, novel MPAOs containing active triazole rings, thioethers, Schiff bases, and BHT moieties are suggested as potential antioxidants for inhibiting oxidative stress processes and scavenging free radicals, hence, this combination of functions is anticipated to play a vital role in repairing cellular damage, preventing various human diseases and in medical therapeutic applications.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Hidroxitolueno Butilado/química , Desenho de Fármacos , Bases de Schiff/química , Triazóis/química , Triazóis/farmacologia , Antioxidantes/síntese química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Radicais Livres/antagonistas & inibidores , Radicais Livres/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espécies Reativas de Oxigênio/química , Triazóis/síntese química
3.
Carbohydr Polym ; 157: 1511-1524, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987863

RESUMO

Cellulose in nanostructures was successfully isolated from empty fruit bunch biomass via a novel one-pot oxidative-hydrolysis technique. The physicochemical properties of nanocellulose prepared via one-pot process have shown comparable characteristics as products isolated via conventional multistep purification approach (namely dewaxing, chlorite bleaching process, alkalization, and acid hydrolysis). The chemical composition study indicated that the one-pot oxidative-hydrolysis process successfully extracted cellulose (91.0%), with the remaining minority being hemicellulose and lignin (∼6%) in the final product. Crystallinity profile of one-pot treated product (80.3%) was higher than that of multistep isolated nanocellulose (75.4%), which indicated that the disorder region (amorphous) in cellulose fibers was successfully removed. In additional to that, the morphology study demonstrated that nanocellulose prepared by one-pot process rendered spider-web-like network nanostructure, with an average diameter of fibers at a range of 51.6±15.4nm. The nanocellulose product showed high thermal stability (320°C), which was ready for nanocomposite application. One-pot oxidative-hydrolysis technique is a simple and versatile route for the preparation of nanocellulose from complex biomass within 90°C and 6h period, with minimum wastewater as compared to the multistep process.


Assuntos
Arecaceae/química , Celulose/síntese química , Frutas/química , Celulose/metabolismo , Hidrólise , Lignina , Oxirredução
4.
Carbohydr Polym ; 178: 57-68, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29050615

RESUMO

For the first time, a highly efficient Cr(NO3)3 catalysis system was proposed for optimization the yield and crystallinity of nanocellulose end product. A five-level three-factor central composite design coupled with response surface methodology was employed to elucidate parameters interactions between three design factors, namely reaction temperature (x1), reaction time (x2) and concentration of Cr(NO3)3 (x3) over a broad range of process conditions and determine the effect on crystallinity index and product yield. The developed models predicted the maximum nanocellulose yield of 87% at optimum process conditions of 70.6°C, 1.48h, and 0.48M Cr(NO3)3. At these conditions, the obtained nanocellulose presented high crystallinity index (75.3%), spider-web-like interconnected network morphology with the average width of 31.2±14.3nm. In addition, the yielded nanocellulose rendered a higher thermal stability than that of original cellulosic source and expected to be widely used as reinforcement agent in bio-nanocomposites materials.


Assuntos
Celulose/química , Compostos de Cromo/química , Nanopartículas/química , Hidrólise , Temperatura
5.
Materials (Basel) ; 10(1)2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28772403

RESUMO

This study reported on the feasibility and practicability of Cr(NO3)3 hydrolysis to isolate cellulose nanocrystals (CNCCr(NO3)3) from native cellulosic feedstock. The physicochemical properties of CNCCr(NO3)3 were compared with nanocellulose isolated using sulfuric acid hydrolysis (CNCH2SO4). In optimum hydrolysis conditions, 80 °C, 1.5 h, 0.8 M Cr(NO3)3 metal salt and solid-liquid ratio of 1:30, the CNCCr(NO3)3 exhibited a network-like long fibrous structure with the aspect ratio of 15.7, while the CNCH2SO4 showed rice-shape structure with an aspect ratio of 3.5. Additionally, Cr(NO3)3-treated CNC rendered a higher crystallinity (86.5% ± 0.3%) with high yield (83.6% ± 0.6%) as compared to the H2SO4-treated CNC (81.4% ± 0.1% and 54.7% ± 0.3%, respectively). Furthermore, better thermal stability of CNCCr(NO3)3 (344 °C) compared to CNCH2SO4 (273 °C) rendered a high potential for nanocomposite application. This comparable effectiveness of Cr(NO3)3 metal salt provides milder hydrolysis conditions for highly selective depolymerization of cellulosic fiber into value-added cellulose nanomaterial, or useful chemicals and fuels in the future.

7.
Materials (Basel) ; 9(2)2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28787869

RESUMO

A controllable electrochemical synthesis to convert reduced graphene oxide (rGO) from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs). Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211%) attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3) to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO) glasses.

8.
Materials (Basel) ; 9(11)2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-28774068

RESUMO

Efficient solar driven photoelectrochemical (PEC) response by enhancing charge separation has attracted great interest in the hydrogen generation application. The formation of one-dimensional ZnO nanorod structure without bundling is essential for high efficiency in PEC response. In this present research work, ZnO nanorod with an average 500 nm in length and average diameter of about 75 nm was successfully formed via electrodeposition method in 0.05 mM ZnCl2 and 0.1 M KCl electrolyte at 1 V for 60 min under 70 °C condition. Continuous efforts have been exerted to further improve the solar driven PEC response by incorporating an optimum content of TiO2 into ZnO nanorod using dip-coating technique. It was found that 0.25 at % of TiO2 loaded on ZnO nanorod film demonstrated a maximum photocurrent density of 19.78 mA/cm² (with V vs. Ag/AgCl) under UV illumination and 14.75 mA/cm² (with V vs. Ag/AgCl) under solar illumination with photoconversion efficiency ~2.9% (UV illumination) and ~4.3% (solar illumination). This performance was approximately 3-4 times higher than ZnO film itself. An enhancement of photocurrent density and photoconversion efficiency occurred due to the sufficient Ti element within TiO2-ZnO nanorod film, which acted as an effective mediator to trap the photo-induced electrons and minimize the recombination of charge carriers. Besides, phenomenon of charge-separation effect at type-II band alignment of Zn and Ti could further enhance the charge carrier transportation during illumination.

9.
Nanoscale Res Lett ; 11(1): 510, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27864819

RESUMO

Although many methods have been documented for carbon nanotube (CNT) synthesis, still, we notice many arguments, criticisms, and appeals for its optimization and process control. Industrial grade CNT production is urgent such that invention of novel methods and engineering principles for large-scale synthesis are needed. Here, we comprehensively review arc discharge (AD) and laser ablation (LA) methods with highlighted features for CNT production. We also display the growth mechanisms of CNT with reasonable grassroots knowledge to make the synthesis more efficient. We postulate the latest developments in engineering carbon feedstock, catalysts, and temperature cum other minor reaction parameters to optimize the CNT yield with desired diameter and chirality. The rate limiting steps of AD and LA are highlighted because of their direct role in tuning the growth process. Future roadmap towards the exploration of CNT synthesis methods is also outlined.

10.
J Agric Food Chem ; 64(32): 6343-54, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27501408

RESUMO

Beef, buffalo, and pork adulteration in the food chain is an emerging and sensitive issue. Current molecular techniques to authenticate these species depend on polymerase chain reaction (PCR) assays involving long and single targets which break down under natural decomposition and/or processing treatments. This novel multiplex polymerase chain reaction-restriction fragment length polymorphism assay targeted two different gene sites for each of the bovine, buffalo, and porcine materials. This authentication ensured better security, first through a complementation approach because it is highly unlikely that both sites will be missing under compromised states, and second through molecular fingerprints. Mitochondrial cytochrome b and ND5 genes were targeted, and all targets (73, 90, 106, 120, 138, and 146 bp) were stable under extreme boiling and autoclaving treatments. Target specificity and authenticity were ensured through cross-amplification reaction and restriction digestion of PCR products with AluI, EciI, FatI, and CviKI-1 enzymes. A survey of Malaysian frankfurter products revealed rampant substitution of beef with buffalo but purity in porcine materials.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Búfalos/genética , Bovinos/genética , Contaminação de Alimentos/análise , Produtos da Carne/análise , Reação em Cadeia da Polimerase Multiplex/métodos , Suínos/genética , Animais , Análise Discriminante , Polimorfismo de Fragmento de Restrição
11.
PLoS One ; 11(10): e0163436, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27716792

RESUMO

The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected turtle species, but it is a lucrative item in the illegal wildlife trade because of its great appeal as an exotic food item and in traditional medicine. Although several polymerase chain reaction (PCR) assays to identify MBT by various routes have been documented, their applicability for forensic authentication remains inconclusive due to the long length of the amplicon targets, which are easily broken down by natural decomposition, environmental stresses or physiochemical treatments during food processing. To address this research gap, we developed, for the first time, a species-specific PCR-restriction fragment length polymorphism (RFLP) assay with a very short target length (120 bp) to detect MBT in the food chain; this authentication ensured better security and reliability through molecular fingerprints. The PCR-amplified product was digested with Bfa1 endonuclease, and distinctive restriction fingerprints (72, 43 and 5 bp) for MBT were found upon separation in a microfluidic chip-based automated electrophoresis system, which enhances the resolution of short oligos. The chances of any false negative identifications were eliminated through the use of a universal endogenous control for eukaryotes, and the limit of detection was 0.0001 ng DNA or 0.01% of the meat under admixed states. Finally, the optimized PCR-RFLP assay was validated for the screening of raw and processed commercial meatballs, burgers and frankfurters, which are very popular in most countries. The optimized PCR-RFLP assay was further used to screen MBT materials in 153 traditional Chinese medicines of 17 different brands and 62 of them were found MBT positive; wherein the ingredients were not declared in product labels. Overall, the novel assay demonstrated sufficient merit for use in any forensic and/or archaeological authentication of MBT, even under a state of decomposition.


Assuntos
Produtos da Carne/análise , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição/genética , Tartarugas/genética , Animais , Bioensaio/métodos , DNA/genética , Cadeia Alimentar , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Dispositivos Lab-On-A-Chip , Medicina Tradicional Chinesa/métodos , Reprodutibilidade dos Testes , Especificidade da Espécie
12.
Colloids Surf B Biointerfaces ; 133: 388-411, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26073507

RESUMO

Magnetic iron oxide nanoparticles (MNPs) have emerged as highly desirable nanomaterials in the context of many research works, due to their extensive industrial applications. However, they are prone to agglomerate on account of the anisotropic dipolar attraction, and therefore misled the particular properties related to single-domain magnetic nanostructures. The surface modification of MNPs is quite challenging for many applications, as it involves surfactant-coating for steric stability, or surface modifications that results in repulsive electrostatic force. Hereby, we focus on the dispersion of MNPs and colloidal stability.


Assuntos
Coloides , Magnetismo , Propriedades de Superfície
13.
J Nanosci Nanotechnol ; 15(9): 6769-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26716241

RESUMO

Graphene is a promising candidate for making next-generation nanotechnology devices due to its outstanding properties in terms of physical, chemical, mechanical aspects. Based on the theoretical point of view, graphene is a two-dimensional (2D) crystal structure with sp2 hybridized carbon atoms arrangement and has attracted extensive attention in a considerable number of applications such as solar energy, sensor and energy storage, naming a few. Herein, graphene oxide (GO) is synthesized from graphite flakes using the Improved Hummer's method. The results demonstrated the comparison of synthesized GO samples based on stirred duration of 6 h and 72 h. The FTIR results proved that the 72 h GO sample was well-bonded with the C-O functional group, signifying the successful synthesis of GO under an extended stirred duration. The FESEM images showed that the synthesized GO was well-arranged in crystal lattice of graphene sheets whereas the EDX result showed that higher atomic % of Oxygen, O2 was obtained with a longer stirred duration due to the high opportunity for oxygenated bonded to occur on the C-C functional group.

14.
Eur J Med Chem ; 101: 295-312, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26150290

RESUMO

Hindered phenols find a wide variety of applications across many different industry sectors. Butylated hydroxytoluene (BHT) is a most commonly used antioxidant recognized as safe for use in foods containing fats, pharmaceuticals, petroleum products, rubber and oil industries. In the past two decades, there has been growing interest in finding novel antioxidants to meet the requirements of these industries. To accelerate the antioxidant discovery process, researchers have designed and synthesized a series of BHT derivatives targeting to improve its antioxidant properties to be having a wide range of antioxidant activities markedly enhanced radical scavenging ability and other physical properties. Accordingly, some structure-activity relationships and rational design strategies for antioxidants based on BHT structure have been suggested and applied in practice. We have identified 14 very sensitive parameters, which may play a major role on the antioxidant performance of BHT. In this review, we attempt to summarize the current knowledge on this topic, which is of significance in selecting and designing novel antioxidants using a well-known antioxidant BHT as a building-block molecule. Our strategy involved investigation on understanding the chemistry behind the antioxidant activities of BHT, whether through hydrogen or electron transfer mechanism to enable promising anti-oxidant candidates to be synthesized.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Hidroxitolueno Butilado/química , Hidroxitolueno Butilado/farmacologia , Animais , Antioxidantes/síntese química , Hidroxitolueno Butilado/síntese química , Desenho de Fármacos , Humanos , Estrutura Molecular
15.
Angew Chem Int Ed Engl ; 43(13): 1628-37, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15038028

RESUMO

"Nanomania" has reached the area of heterogeneous catalysis. Nanosized catalyst constituents are important for functions that require structural control over several scales of dimension. Nanocatalysis may be understood as a redefinition of catalyst synthesis: multidimensional structural control is exerted by considering catalysts as inorganic polymers rather than as close-packed crystals. Primary, secondary, and tertiary structural hierarchies translate into molecular building blocks and linkers, the defect structure of crystals, and particle morphology. High-throughput techniques and in situ synthetic analysis are the tools required to arrive at better defined catalytic materials that can fulfil the high expectations created by the incorporation of catalysts into the "nano" research field.


Assuntos
Nanotecnologia , Ciência , Catálise , Cristalização , Modelos Moleculares , Nanotecnologia/tendências , Oxirredução , Tamanho da Partícula , Temperatura
16.
Biomed Res Int ; 2014: 205636, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25126547

RESUMO

Anatase titanium dioxide nanoparticles (TiO2-NPs) were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), ultraviolet visible spectra (UV-Vis), and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis.


Assuntos
Nanopartículas Metálicas/química , Resíduos Sólidos , Titânio/química , Lignina/síntese química , Lignina/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Oryza/química , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
17.
Chem Cent J ; 7: 67, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23575312

RESUMO

BACKGROUND: For decades, copper sulphide has been renowned as the superior optical and semiconductor materials. Its potential applications can be ranged from solar cells, lithium-ion batteries, sensors, and catalyst systems. The synthesis methodologies of copper sulphide with different controlled morphology have been widely explored in the literature. Nevertheless, the understanding on the formation chemistry of CuS is still limited. The ultimate approach undertaking in this article is to investigate the formation of CuS hexagonal plates via the optimization of reaction parameters in hydrothermal reaction between copper (II) nitrate and sodium thiosulphate without appending any assistant agent. RESULTS: COVELLITE (CUS) HEXAGONAL PLATES WERE FORMED AT COPPER ION: thiosulphate ion ([Formula: see text]) mole ratio of 1:2 under hydrothermal treatment of 155°C for 12 hours. For synthesis conducted at reaction temperature lower than 155°C, copper sulphate (CuSO4), krohnite (NaCu2(SO4)(H2O)2] and cyclooctasulphur (S8) were present as main impurities with covellite (CuS). When [Formula: see text] mole ratio was varied to 1: 1 and 1: 1.5, phase pure plate-like natrochalcite [NaCu2(SO4)(H2O)] and digenite (Cu9S5) were produced respectively. Meanwhile, mixed phases of covellite (CuS) and cyclooctasulphur (S8) were both identified when [Formula: see text] mole ratio was varied to 1: 2.5, 1: 3 and 1: 5 as well as when reaction time was shortened to 1 hour. CONCLUSIONS: CuS hexagonal plates with a mean edge length of 1 µm, thickness of 100 nm and average crystallite size of approximately (45 ± 2) nm (Scherrer estimation) were successfully synthesized via assisting agent- free hydrothermal method. Under a suitable [Formula: see text] mole ratio, we evidenced that the formation of covellite (CuS) is feasible regardless of the reaction temperature applied. However, a series of impurities were attested with CuS if reaction temperature was not elevated high enough for the additional crystallite phase decomposition. It was also identified that [Formula: see text] mole ratio plays a vital role in controlling the amount of cyclooctasulphur (S8) in the final powder obtained. Finally, reaction time was recognized as an important parameter in impurity decomposition as well as increasing the crystallite size and crystallinity of the CuS hexagonal plates formed.

19.
ChemSusChem ; 3(2): 254-60, 2010 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-20112335

RESUMO

Oxidative purification with mild diluted HNO3 followed by NaOH washing lowers the amount of amorphous carbon attached to multiwalled carbon nanotubes (CNTs). The graphitic structure improves remarkably by further annealing in argon at elevated temperatures, that is, 1173, 1573, and 1973 K. The influence of the purification treatment on the catalytic activity of the CNTs is investigated for the oxidative dehydrogenation (ODH) of ethylbenzene and propane as probe reactions. All samples tend to approach an appropriately ordered structure and Raman analysis of the used samples displays a D/G band ratio of 0.95-1.42. Oxygen functionalities are partly removed by the annealing treatment and can be rebuilt to some extent by oxygen molecules in the ODH reactant flow. The presence of amorphous carbon is detrimental to the catalytic performance as it allows for unwanted functional groups occurring in parallel with the formation of the selective (di)ketonic active sites.


Assuntos
Carbono/química , Carbono/isolamento & purificação , Nanotubos de Carbono/química , Derivados de Benzeno/química , Catálise , Grafite/química , Hidrogenação , Microscopia Eletrônica de Transmissão , Oxirredução , Propano/química , Análise Espectral Raman , Propriedades de Superfície , Temperatura , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA