Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Circ Res ; 114(11): 1690-9, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24727028

RESUMO

RATIONALE: Cardiovascular health depends on proper development and integrity of blood vessels. Ets variant 2 (Etv2), a member of the E26 transforming-specific family of transcription factors, is essential to initiate a transcriptional program leading to vascular morphogenesis in early mouse embryos. However, endothelial expression of the Etv2 gene ceases at midgestation; therefore, vascular development past this stage must continue independent of Etv2. OBJECTIVE: To identify molecular mechanisms underlying transcriptional regulation of vascular morphogenesis and homeostasis in the absence of Etv2. METHODS AND RESULTS: Using loss- and gain-of-function strategies and a series of molecular techniques, we identify Friend leukemia integration 1 (Fli1), another E26 transforming-specific family transcription factor, as a downstream target of Etv2. We demonstrate that Etv2 binds to conserved Ets-binding sites within the promoter region of the Fli1 gene and governs Fli1 expression. Importantly, in the absence of Etv2 at midgestation, binding of Etv2 at Ets-binding sites in the Fli1 promoter is replaced by Fli1 protein itself, sustaining expression of Fli1 as well as selective Etv2-regulated endothelial genes to promote endothelial cell survival and vascular integrity. Consistent with this, we report that Fli1 binds to the conserved Ets-binding sites within promoter and enhancer regions of other Etv2-regulated endothelial genes, including Tie2, to control their expression at and beyond midgestation. CONCLUSIONS: We have identified a novel positive feed-forward regulatory loop in which Etv2 activates expression of genes involved in vasculogenesis, including Fli1. Once the program is activated in early embryos, Fli1 then takes over to sustain the process in the absence of Etv2.


Assuntos
Endotélio Vascular/citologia , Homeostase/fisiologia , Neovascularização Fisiológica/fisiologia , Proteína Proto-Oncogênica c-fli-1/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sobrevivência Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Endotélio Vascular/fisiologia , Feminino , Hemorragia/etiologia , Hemorragia/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Animais , Morfogênese/fisiologia , Proteína Proto-Oncogênica c-fli-1/deficiência , Proteína Proto-Oncogênica c-fli-1/genética
3.
Breast Cancer Res ; 17: 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25837326

RESUMO

INTRODUCTION: Targeted therapies for aggressive breast cancers like triple negative breast cancer (TNBC) are needed. The use of small interfering RNAs (siRNAs) to disable expression of survival genes provides a tool for killing these cancer cells. Cyclin dependent kinase 11 (CDK11) is a survival protein kinase that regulates RNA transcription, splicing and mitosis. Casein kinase 2 (CK2) is a survival protein kinase that suppresses cancer cell death. Eliminating the expression of these genes has potential therapeutic utility for breast cancer. METHODS: Expression levels of CDK11 and CK2 mRNAs and associated proteins were examined in breast cancer cell lines and tissue arrays. RNA expression levels of CDC2L1, CDC2L2, CCNL1, CCNL2, CSNK2A1, CSNK2A2, and CSNK2B genes in breast cancer subtypes were analyzed. Effects following transfection of siRNAs against CDK11 and CK2 in cultured cells were examined by viability and clonal survival assays and by RNA and protein measures. Uptake of tenfibgen (TBG) nanocapsules by TNBC cells was analyzed by fluorescence-activated cell sorting. TBG nanocapsules delivered siRNAs targeting CDK11 or CK2 in mice carrying TNBC xenograft tumors. Transcript cleavage and response parameters were evaluated. RESULTS: We found strong CDK11 and CK2 mRNA and protein expression in most human breast cancer cells. Immunohistochemical analysis of TNBC patient tissues showed 100% of tumors stained positive for CDK11 with high nuclear intensity compared to normal tissue. The Cancer Genome Atlas analysis comparing basal to other breast cancer subtypes and to normal breast revealed statistically significant differences. Down-regulation of CDK11 and/or CK2 in breast cancer cells caused significant loss of cell viability and clonal survival, reduced relevant mRNA and protein expression, and induced cell death changes. TBG nanocapsules were taken up by TNBC cells both in culture and in xenograft tumors. Treatment with TBG- siRNA to CDK11 or TBG- siRNA to CK2αα' nanocapsules induced appropriate cleavage of CDK11 and CK2α transcripts in TNBC tumors, and caused MDA-MB-231 tumor reduction, loss of proliferation, and decreased expression of targeted genes. CONCLUSIONS: CDK11 and CK2 expression are individually essential for breast cancer cell survival, including TNBC. These genes serve as promising new targets for therapeutic development in breast cancer.


Assuntos
Caseína Quinase II/genética , Quinases Ciclina-Dependentes/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Terapia Genética , Humanos , Imuno-Histoquímica , Camundongos , Nanocápsulas , Ligação Proteica , RNA Mensageiro/genética , Complexo de Inativação Induzido por RNA , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Am J Physiol Renal Physiol ; 298(1): F209-15, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19828677

RESUMO

Episodes of acute renal failure (ARF) are not always fully reversible and may lead to chronic disease, due in part to an inadequate regenerative response. The Notch signaling pathway is involved in determining cell fate during development, and tissue maintenance and repair in adult organs. The purpose of this study was to examine the role of the Notch pathway in renal regeneration following ARF. Kidney injury, induced by ischemia-reperfusion, resulted in early activation of the Notch pathway, as evidenced by increased expression of Notch1 and Notch2 intracellular domain (cleaved Notch). The effect of exogenous administration of the Notch ligand Delta-like-4 (DLL4) on recovery from ARF was then studied. Rats were pretreated by intraperitoneal injection of DLL4 or vehicle control. Two days following the last DLL4 dose, ARF was induced by bilateral renal artery clamping for 45 min followed by reperfusion. The severity of renal injury was similar in DLL4 and control rats. Renal recovery was facilitated by DLL4 treatment, as evidenced by faster return of serum creatinine to baseline by 48 h in DLL4-treated rats as against 5 days in vehicle-treated control rats. Cell proliferation was higher in the DLL4-treated group. In conclusion, activation of the Notch pathway occurs following ARF. Pretreatment with the Notch ligand DLL4 enhanced recovery from ARF and represents a potential novel therapeutic option for regenerating the injured kidney.


Assuntos
Injúria Renal Aguda/fisiopatologia , Rim/fisiologia , Receptor Notch1/fisiologia , Receptor Notch2/fisiologia , Regeneração/fisiologia , Injúria Renal Aguda/etiologia , Animais , Proliferação de Células , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular , Rim/patologia , Masculino , Proteínas de Membrana/farmacologia , Ratos , Ratos Sprague-Dawley , Regeneração/efeitos dos fármacos , Traumatismo por Reperfusão/complicações , Transdução de Sinais/fisiologia
5.
Pharmaceuticals (Basel) ; 12(2)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31197122

RESUMO

The prosurvival protein kinase CK2, androgen receptor (AR), and nuclear factor kappa B (NFκB) interact in the function of prostate cells, and there is evidence of crosstalk between these signals in the pathobiology of prostate cancer (PCa). As CK2 is elevated in PCa, and AR and NFκB are involved in the development and progression of prostate cancer, we investigated their interaction in benign and malignant prostate cells in the presence of altered CK2 expression. Our results show that elevation of CK2 levels caused increased levels of AR and NFκB p65 in prostate cells of different phenotypes. Analysis of TCGA PCa data indicated that AR and CK2α RNA expression are strongly correlated. Small molecule inhibition or molecular down-regulation of CK2 caused reduction in AR mRNA expression and protein levels in PCa cells and in orthotopic xenograft tumors by various pathways. Among these, regulation of AR protein stability plays a unifying role in CK2 maintenance of AR protein levels. Our results show induction of various endoplasmic reticulum stress signals after CK2 inhibition, which may play a role in the PCa cell death response. Of note, CK2 inhibition caused loss of cell viability in both parental and enzalutamide-resistant castrate-resistant PCa cells. The present work elucidates the specific link of CK2 to the pathogenesis of PCa in association with AR and NFκB expression; further, the observation that inhibition of CK2 can exert a growth inhibitory effect on therapy-resistant PCa cells emphasizes the potential utility of CK2 inhibition in patients who are on enzalutamide treatment for advanced cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA