Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37405373

RESUMO

With the growing demand for functional foods having better nutraceutical properties, lactic acid bacteria (LAB) has become an important industrial microorganism. LAB play a significant role in the functional food industry by exhibiting probiotic properties and has the ability to produce various biologically active metabolites such as γ-aminobutyric acid (GABA), exopolysaccharides (EPSs), conjugated linoleic acid (CLA), bacteriocins, reuterin and reutericyclin, which provides enhanced nutraceutical properties to the final food products. LAB are also known to produce several specific enzymes essential for producing substrate-derived bioactive compounds, such as polyphenols, bioactive peptides, inulin-type fructans and ß-glucans, fatty acids, and polyols. These compounds exhibit many health benefits, including better mineral absorption, oxidative stress protection, blood glucose and cholesterol-lowering properties, prevention of gastrointestinal tract infections and improved cardiovascular function. Further, metabolically engineered LAB have been widely used for the nutritive enhancement of different food products and the application of CRISPR-Cas9 holds tremendous potential for the engineering of food cultures. This review provides an overview of the use of LAB as probiotics, its application in producing fermented foods and nutraceutical products, and its health benefits on the host.

2.
Curr Genet ; 68(3-4): 375-391, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35532798

RESUMO

The genomic analysis of industrially important bacteria can help in understanding their capability to withstand extreme environments and shed light on their metabolic capabilities. The whole genome of a previously reported broad temperature active lipase-producing Pseudomonas sp. HS6, isolated from snow-covered soil of the Sikkim Himalayan Region, was analyzed to understand the capability of the bacterium to withstand cold temperatures and study its lipolytic nature. Pseudomonas sp. HS6 was found to be psychrotolerant with an optimal growth temperature ranging between 25 and 30 °C, with the ability to grow at 5 °C. The genome harbours various cold-adaptation genes, such as cold-shock proteins, fatty acid alteration, and cold stress-tolerance genes, supporting the psychrotolerant nature of the organism. The comparative analysis of Pseudomonas sp. HS6 genome showed the presence of amino acid substitutions in genes that favor efficient functioning and flexibility at cold temperatures. Genome mining revealed the presence of four triacylglycerol lipases, among which the putative lipase 3 was highly similar to the broad temperature-active lipase purified and characterized in our previous study. In silico studies of putative lipase 3 revealed broad substrate specificity with partial and no inhibition of the enzyme activity in the presence of PMSF and orlistat. The presence of genes associated with cold adaptations and true lipases with activity at broad temperature and substrate specificity in the genome of Pseudomonas sp. HS6 makes this bacterium a suitable candidate for industrial applications.


Assuntos
Lipase , Pseudomonas , Temperatura Baixa , Genômica , Lipase/química , Lipase/genética , Lipase/metabolismo , Pseudomonas/genética , Siquim , Neve , Solo , Especificidade por Substrato
3.
Compr Rev Food Sci Food Saf ; 20(1): 960-979, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325160

RESUMO

Cheese is a product of ancient biotechnological practices, which has been revolutionized as a functional food product in many parts of the world. Bioactive compounds, such as peptides, polysaccharides, and fatty acids, have been identified in traditional cheese products, which demonstrate functional properties such as antihypertensive, antioxidant, immunomodulation, antidiabetic, and anticancer activities. Besides, cheese-making probiotic lactic acid bacteria (LAB) exert a positive impact on gut health, aiding in digestion, and improved nutrient absorption. Advancement in biotechnological research revealed the potential of metabolite production with prebiotics and bioactive functions in several strains of LAB, yeast, and filamentous fungi. The application of specific biocatalyst producing microbial strains enhances nutraceutical value, resulting in designer cheese products with multifarious health beneficial effects. This review summarizes the biotechnological approaches applied in designing cheese products with improved functional properties.


Assuntos
Queijo , Lactobacillales , Probióticos , Ácidos Graxos , Alimento Funcional
4.
BMC Microbiol ; 20(1): 246, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778049

RESUMO

BACKGROUND: Himalaya is an ecologically pristine environment. The geo-tectonic activities have shaped various environmental niches with diverse microbial populations throughout the Himalayan biosphere region. Albeit, limited information is available in terms of molecular insights into the microbiome, including the uncultured microbes, of the Himalayan habitat. Hence, a vast majority of genomic resources are still under-explored from this region. Metagenome analysis has simplified the extensive in-depth exploration of diverse habitats. In the present study, the culture-independent whole metagenome sequencing methodology was employed for microbial diversity exploration and identification of genes involved in various metabolic pathways in two geothermal springs located at different altitudes in the Sikkim Himalaya. RESULTS: The two hot springs, Polok and Reshi, have distinct abiotic conditions. The average temperature of Polok and Reshi was recorded to be 62 °C and 43 °C, respectively. Both the aquatic habitats have alkaline geochemistry with pH in the range of 7-8. Community profile analysis revealed genomic evidence of plentiful bacteria, with a minute fraction of the archaeal population in hot water reservoirs of Polok and Reshi hot spring. Mesophilic microbes belonging to Proteobacteria and Firmicutes phyla were predominant at both the sites. Polok exhibited an extravagant representation of Chloroflexi, Deinococcus-Thermus, Aquificae, and Thermotogae. Metabolic potential analysis depicted orthologous genes associated with sulfur, nitrogen, and methane metabolism, contributed by the microflora in the hydrothermal system. The genomic information of many novel carbohydrate-transforming enzymes was deciphered in the metagenomic description. Further, the genomic capacity of antimicrobial biomolecules and antibiotic resistance were discerned. CONCLUSION: The study provided comprehensive molecular information about the microbial treasury as well as the metabolic features of the two geothermal sites. The thermal aquatic niches were found a potential bioresource of biocatalyst systems for biomass-processing. Overall, this study provides the whole metagenome based insights into the taxonomic and functional profiles of Polok and Reshi hot springs of the Sikkim Himalaya. The study generated a wealth of genomic data that can be explored for the discovery and characterization of novel genes encoding proteins of industrial importance.


Assuntos
Bactérias/classificação , Fontes Termais/microbiologia , Redes e Vias Metabólicas , Metagenômica/métodos , Altitude , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNA
5.
Food Funct ; 15(11): 5987-5999, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38742436

RESUMO

The considerable value of whey is evident from its significant potential applications and contributions to the functional food and nutraceutical market. The by-products were individually obtained during functional chhurpi and novel soy chhurpi cheese production using defined lactic acid bacterial strains of Sikkim Himalaya's traditional chhurpi. Hydrolysis of substrate proteins by starter proteinases resulted in a comparable peptide content in whey and soy whey which was associated with antioxidant and ACE inhibition potential. Peptidome analysis of Lactobacillus delbrueckii WS4 whey and soy whey revealed the presence of several bioactive peptides including the multifunctional peptides PVVVPPFLQPE and YQEPVLGPVRGPFPIIV. In silico analyses predicted the antihypertensive potential of whey and soy whey peptides with strong binding affinity for ACE active sites. QSAR models predicted the highest ACE inhibition potential (IC50) for the ß-casein-derived decapeptide PVRGPFPIIV (0.95 µM) and the Kunitz trypsin inhibitor protein-derived nonapeptide KNKPLVVQF (16.64 µM). Chhurpi whey and soy whey can be explored as a valuable source of diverse and novel bioactive peptides for applications in designer functional foods development.


Assuntos
Lactobacillus delbrueckii , Peptídeos , Lactobacillus delbrueckii/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Queijo/microbiologia , Queijo/análise , Soro do Leite/química , Alimento Funcional , Antioxidantes/farmacologia , Antioxidantes/química , Proteínas do Soro do Leite/química
6.
Food Chem X ; 13: 100231, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35499015

RESUMO

In this study, simulated in vitro GI digestion of the Himalayan hard chhurpi cheese resulted in the increase of hydrolyzed protein content, antioxidant and ACE-inhibitory activities. LC-MS/MS-based peptidomics revealed a total of 1473 peptides in the samples originating from different milk proteins, including α-S1-casein, α-S2-casein, ß-casein, κ-casein, α-lactalbumin, and ß-lactoglobulin, out of which 60 peptides have been reported for different functional properties. A total of 101 peptides were predicted to be antihypertensive using the bioactivity prediction web servers, AHTpin and mAHTPred. In silico molecular docking studies predicted 20 antihypertensive peptides, exhibiting non-bond interactions between hard chhurpi peptides and ACE catalytic residues. A peptide, SLVYPFPGPI, identified in GI digested cow hard chhurpi and undigested, and GI digested samples of yak hard chhurpi, showed a stronger binding affinity towards ACE. Identifying antioxidant and ACE inhibitory peptides in hard cheese products adds value to them as functional foods of the Himalayan region.

7.
Bioengineered ; 13(4): 9435-9454, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35387556

RESUMO

Betacoronaviruses (ß-CoVs) have caused major viral outbreaks in the last two decades in the world. The mutation and recombination abilities in ß-CoVs resulted in zoonotic diseases in humans. Proteins responsible for viral attachment and replication are highly conserved in ß-CoVs. These conserved proteins have been extensively studied as targets for preventing infection and the spread of ß-CoVs. Peptides are among the most promising candidates for developing vaccines and therapeutics against viral pathogens. The immunostimulatory and viral inhibitory potential of natural and synthetic peptides has been extensively studied since the SARS-CoV outbreak. Food-derived peptides demonstrating high antiviral activity can be used to develop effective therapeutics against ß-CoVs. Specificity, tolerability, and customizability of peptides can be explored to develop potent drugs against ß-CoVs. However, the proteolytic susceptibility and low bioavailability of peptides pose challenges for the development of therapeutics. This review illustrates the potential role of peptides in eliciting an adaptive immune response and inhibiting different stages of the ß-CoV life cycle. Further, the challenges and future directions associated with developing peptide-based therapeutics and vaccines against existing and future ß-CoV pathogens have been discussed.


Assuntos
Infecções por Coronavirus , Vacinas , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Humanos , Mutação , Peptídeos/genética , Peptídeos/uso terapêutico , Vacinas/uso terapêutico
8.
Front Mol Biosci ; 7: 601753, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363209

RESUMO

The COVID-19 pandemic caused by novel SARS-CoV-2 has resulted in an unprecedented loss of lives and economy around the world. In this study, search for potential inhibitors against two of the best characterized SARS-CoV-2 drug targets: S1 glycoprotein receptor-binding domain (RBD) and main protease (3CLPro), was carried out using the soy cheese peptides. A total of 1,420 peptides identified from the cheese peptidome produced using Lactobacillus delbrueckii WS4 were screened for antiviral activity by employing the web tools, AVPpred, and meta-iAVP. Molecular docking studies of the selected peptides revealed one potential peptide "KFVPKQPNMIL" that demonstrated strong affinity toward significant amino acid residues responsible for the host cell entry (RBD) and multiplication (3CLpro) of SARS-CoV-2. The peptide was also assessed for its ability to interact with the critical residues of S1 RBD and 3CLpro of other ß-coronaviruses. High binding affinity was observed toward critical amino acids of both the targeted proteins in SARS-CoV, MERS-CoV, and HCoV-HKU1. The binding energy of KFVPKQPNMIL against RBD and 3CLpro of the four viruses ranged from -8.45 to -26.8 kcal/mol and -15.22 to -22.85 kcal/mol, respectively. The findings conclude that cheese, produced by using Lb. delbrueckii WS4, could be explored as a prophylactic food for SARS-CoV-2 and related viruses. In addition, the multi-target inhibitor peptide, which effectively inhibited both the viral proteins, could further be used as a terminus a quo for the in vitro and in vivo function against SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA