Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Arch Environ Contam Toxicol ; 79(1): 101-110, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32279094

RESUMO

Urban waste is a complex mixture of different substances, including microplastics and pharmaceuticals and personal care products. Microplastics have a high affinity for hydrophobic substances. One of these substances is triclosan, a bactericide used in a variety of hygiene products. Therefore, microplastics (MPs) may serve as a vector between triclosan and aquatic organisms. The current study sought to evaluate the effects of the interaction between microplastics and triclosan based on a mechanistic approach in which the oyster Crassostrea brasiliana was used as a model. The organisms were exposed to three conditions: the control, microplastic (MP), and microplastic contaminated with triclosan (MPT). The organisms were exposed for 3 or 7 days. After the exposure time, hemolymph was sampled for performing the neutral red retention time assay and, subsequently, the gills, digestive glands, and adductor muscles were dissected for measuring biomarkers responses (EROD, DBF, GST, GPx, GSH, lipid peroxidation, DNA strand breaks, and AChE). Our results demonstrate combined effects of MPs associated with triclosan on oyster physiology and biochemistry, as well as on lysosomal membrane stability. These results contribute to understanding the effects of contaminants of emerging concern and microplastics on aquatic organisms.


Assuntos
Crassostrea/efeitos dos fármacos , Biomarcadores Ambientais/efeitos dos fármacos , Microplásticos/toxicidade , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Brasil , Crassostrea/genética , Crassostrea/metabolismo , Dano ao DNA , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Microplásticos/metabolismo , Modelos Teóricos , Triclosan/metabolismo , Poluentes Químicos da Água/metabolismo
2.
Bull Environ Contam Toxicol ; 104(4): 418-422, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32128604

RESUMO

This short note aims to report in detail a preliminary assessment of the concentrations of Cd, Hg and Pb in tissues of blue crabs Callinectes danae collected from the Cananéia-Iguape-Peruíbe estuarine complex (CIP), in the South of São Paulo State coast, Brazil. In October 2014, blue crabs were collected from CIP. Tissues were removed by dissection and metal determination was performed by GF-AAS and CV-AAS. According to statistical analysis, Pb and Cd concentrations in gills were significantly higher than those found in muscles and hepatopancreas, respectively. There were no significant differences in Hg concentrations between samples. Cd, Hg and Pb concentrations in gills and hepatopancreas were lower than those reported in a previous study performed at CIP. However, Cd concentration in hepatopancreas was higher than the Brazilian limit for consumption and new efforts to monitor Cd concentrations in C. danae tissues must be performed.


Assuntos
Monitoramento Biológico/métodos , Braquiúros/química , Estuários , Metais Pesados/análise , Mineração , Poluentes Químicos da Água/análise , Animais , Brasil , Brânquias/química , Hepatopâncreas/química , Músculos/química
3.
Ecotoxicol Environ Saf ; 162: 415-422, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30015187

RESUMO

This study aimed to assess the bioaccumulation of Pb and induction of metallothionein-like proteins (MT) in Callinectes danae through single and combined dietary and waterborne exposures. Male C. danae individuals were collected in the south area of the Cananéia-Iguape-Peruíbe Protected Area (APA-CIP), in São Paulo State, Brazil. After an acclimatization period, exposure assays were performed during 7 and 14 days, at two Pb concentrations (0.5 e 2.0 µg/g) in 4 treatments: 1) control; 2) contaminated water only; 3) contaminated food only; 4) contaminated water and food. The results indicate that C. danae is highly tolerant to Pb exposure at the evaluated concentrations. In gills, Pb bioaccumulation is more dependent of water efflux and time of exposure (higher Pb values). However, pathways act simultaneously in the induction of MT expression in this tissue. The decreases in Pb accumulation in the combined treatments and MT increases after 14 days in gills suggests that these proteins play a detoxification function in the presence of Pb. In hepatopancreas, depending on the predominance of a certain pathway or combined pathways, accumulation occured at different times. For muscle tissue, bioaccumulation was observed due to contaminated water exposure, but not dietary exposure, probably because Pb concentrations were low.


Assuntos
Braquiúros/metabolismo , Chumbo/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Chumbo/toxicidade , Masculino , Metalotioneína/metabolismo , Músculos/metabolismo , Testes de Toxicidade , Poluentes Químicos da Água/análise
4.
Toxics ; 12(1)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38251000

RESUMO

Biocides used in antifouling (AF) paints, such as 4,5-dichlorine-2-n-octyl-4-isothiazole-3-one (DCOIT), can gradually leach into the environment. Some AF compounds can persist in the marine environment and cause harmful effects to non-target organisms. Nanoengineered materials, such as mesoporous silica nanocapsules (SiNCs) containing AF compounds, have been developed to control their release rate and reduce their toxicity to aquatic organisms. This study aimed to evaluate the acute toxicity of new nanoengineered materials, SiNC-DCOIT and a silver-coated form (SiNC-DCOIT-Ag), as well as the free form of DCOIT and empty nanocapsules (SiNCs), on the sun coral Tubastraea coccinea. T. coccinea is an invasive species and can be an alternative test organism for evaluating the risks to native species, as most native corals are currently threatened. The colonies were collected from the Alcatrazes Archipelago, SP, Brazil, and acclimatized to laboratory conditions. They were exposed for 96 h to different concentrations of the tested substances: 3.33, 10, 33, and 100 µg L-1 of free DCOIT; 500, 1000, 2000, and 4000 µg L-1 of SiNC; and 74.1, 222.2, 666.7, and 2000 µg L-1 of SiNC-DCOIT and SiNC-DCOIT-Ag. The test chambers consisted of 500 mL flasks containing the test solutions, and the tests were maintained under constant aeration, a constant temperature of 23 ± 2 °C, and photoperiod of 12 h:12 h (light/dark). At the end of the experiments, no lethal effect was observed; however, some sublethal effects were noticeable, such as the exposure of the skeleton in most of the concentrations and replicates, except for the controls, and embrittlement at higher concentrations. Adults of T. coccinea were considered slightly sensitive to the tested substances. This resistance may indicate a greater capacity for proliferation in the species, which is favored in substrates containing antifouling paints, to the detriment of the native species.

5.
Sci Total Environ ; 914: 169742, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163587

RESUMO

Marine Protected Areas (MPAs) are designed to conserve biodiversity and vulnerable ecosystems. This study aimed to assess the environmental quality of three Brazilian MPAs, based on the integrated analysis of biomarkers in pufferfish. The MPAs are differentiated by the degree of anthropogenic influences. The Barra do Una Estuary sustainable reserve (JUR) is a reference area due to its low levels of contamination and species diversity. The Cananéia Estuarine System (CAN) has been recognized as a biosphere reserve by UNESCO, as well as a Ramsar wetland. This MPA was influenced by upstream mining activities, resulting in the introduction of metals in the estuarine waters and the discharge of untreated urban sewage. The São Vicente estuary (SSV) lacks proper sanitation infrastructure. All collections were conducted during winter season, and, after collection, the animals were euthanized, their soft tissues were removed, and multiple biomarkers were analyzed in the gills and liver, as biometric, genotoxic, biochemical, and morphological. A one-factor multivariate analysis was applied to evaluate the differences between the data sets, and the matrices were analyzed using PERMANOVA to evaluate the "estuary" factor. The results were integrated using PCA with a 0.4 cut value and an Enhanced Integrated Biomarker Response (EIBR) was calculated. PCA was correlated with biochemical, genotoxic, and morphological biomarkers. In general, SVV differed from CAN and JUR as shown by both univariate and multivariate analyses. SVV also showed the highest EIBR, followed by CAN. Organisms from SSV showed greater gill pathology, elevated AChE activity and lipoperoxidation (LPO), and micronuclei frequency. CAN present intermediate EIBR, with severe pathologies in the liver. CAN seems to present an intermediate environmental quality between SSV and JUR indicating the importance of the existence of MPAs for environmental conservation and the need to monitor such areas, to maintain their suitable environmental quality.


Assuntos
Ecossistema , Tetraodontiformes , Animais , Brasil , Biomarcadores , Saúde Ambiental , Monitoramento Ambiental/métodos
6.
Toxics ; 12(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38787099

RESUMO

The synthetic hormone 17α ethinyl estradiol (EE2) is a molecule widely used in female contraceptives and recognized as a contaminant of attention (Watch List) in the European Union due to its high consumption, endocrine effects and occurrence in aquatic environments. Its main source of introduction is domestic sewage where it can be associated with other contaminants such as microplastics (MPs). Due to their characteristics, they can combine with each other and exacerbate their isolated effects on biota. This study evaluated the combined effects of microplastics (MPs) and 17α ethinylestradiol (EE2) on two tropical estuarine invertebrate species: Crassostrea gasar and Ucides cordatus. Polyethylene particles were spiked with EE2 and organisms were exposed to three treatments, categorized into three groups: control group (C), virgin microplastics (MPs), and spiked microplastics with EE2 (MPEs). All treatments were evaluated after 3 and 7 days of exposure. Oysters exhibited changes in phase 2 enzymes and the antioxidant system, oxidative stress in the gills, and reduced lysosomal membrane stability after exposure to MPs and MPEs. Crabs exposed to MPs and MPEs after seven days showed changes in phase 1 enzymes in the gills and changes in phases 1 and 2 enzymes in the hepatopancreas, such as disturbed cellular health. The combined effects of microplastics and EE2 increased the toxicity experienced by organisms, which may trigger effects at higher levels of biological organization, leading to ecological disturbances in tropical coastal ecosystems.

8.
Environ Sci Pollut Res Int ; 30(22): 61888-61903, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934191

RESUMO

Organotin-based (OTs: TBT and TPT) antifouling paints have been banned worldwide, but recent inputs have been detected in tropical coastal areas. However, there is a lack of studies evaluating the toxicity of both legacy and their substitute antifouling booster biocides (e.g., Irgarol and diuron) on neotropical species. Therefore, the acute toxicity of four antifouling biocides (TBT, TPT, Irgarol, and diuron) was investigated using the marine planktonic organisms Acartia tonsa and Mysidopsis juniae, the estuarine tanaid Monokalliapseudes schubarti (water exposure), and the burrowing amphipod Tiburonella viscana (spiked sediment exposure). Results confirmed the high toxicity of the OTs, especially to planktonic species, being about two orders of magnitude higher than Irgarol and diuron. Toxic effects of antifouling compounds were observed at levels currently found in tropical coastal zones, representing a threat to planktonic and benthic invertebrates. Furthermore, deterministic PNECmarine sediment values suggest that environmental hazards in tropical regions may be higher due to the higher sensitivity of tropical organisms. Since regulations on antifouling biocides are still restricted to a few countries, more ecotoxicological studies are needed to derivate environmental quality standards based on realistic scenarios. The present study brings essential contributions regarding the ecological risks of these substances in tropical and subtropical zones.


Assuntos
Anfípodes , Incrustação Biológica , Desinfetantes , Poluentes Químicos da Água , Animais , Diurona/toxicidade , Diurona/análise , Plâncton , Desinfetantes/toxicidade , Desinfetantes/análise , Incrustação Biológica/prevenção & controle , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Organismos Aquáticos , Monitoramento Ambiental , Triazinas/análise
9.
Toxics ; 11(7)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37505582

RESUMO

Glitter particles are considered a model of microplastics, which are used in a wide range of products. In this study, we evaluated the toxicity of two types of glitter (green and white, with distinct chemical compositions) dispersions on the embryonic development of the sea urchins Echinometra lucunte, Arbacia lixula, and the mussel Perna perna. The Toxicity Identification and Evaluation (TIE) approach was used to identify possible chemicals related to toxicity. Glitter dispersions were prepared using 0.05% ethanol. The tested dispersions ranged from 50 to 500 mg/L. The white glitter was composed of a vinyl chloride-methyl acrylate copolymer. The effective concentrations of green glitter to 50% embryos (EC50) were 246.1 (235.8-256.4) mg/L to A. lixula, 23.0 (20.2-25.8) mg/L to P. perna and 105.9 (61.2-150.2) mg/L, whereas the EC50 of white glitter to E. lucunter was 272.2 (261.5-282.9) mg/L. The EC50 for P. perna could not be calculated; however, the lowest effect concentration was 10 mg/L-that was the lowest concentration tested. The filtered suspension of green glitter had Ag levels exceeding the legal standards for marine waters. TIE showed that metals, volatiles, and oxidant compounds contribute to toxicity. The results showed that glitter may adversely affect marine organisms; however, further studies are necessary to determine its environmental risks.

10.
J Environ Monit ; 14(10): 2608-15, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22972440

RESUMO

A battery of biomarkers of exposure (EROD, DBF, GST and GPx) and effect (lipid peroxidation and DNA damage - strand breaks) were analyzed in gill tissues from caged and native oysters Crassostrea rhizophorae exposed to two tropical estuarine systems in SW Brazil: Santos (S1, S2, S3, S4) and Paranaguá (P1 - control, P2, P3, P4). The exposure lasted 28 days. Native oysters were sampled in the same areas where caged systems were exposed. Significant induction of biomarkers of exposure to organic compounds and oxidative stress (p < 0.05) were observed in all transplanted individuals from Santos resulting in DNA damage and lipid peroxidation. Biological adverse effects were more evident in oysters transplanted in the Santos Estuarine System, a recognized contaminated area, than in the Paranaguá Estuarine System, surrounded by urban areas and Environmental Protected Areas. Native specimens from both estuaries showed adaption to the impacts of several contamination sources affecting the ecosystem. The use of transplanted C. rhizophorae proved to be a suitable tool for assessing and monitoring the environmental quality in mangrove ecosystems. This integrated approach employing multi-biomarker responses under field conditions could be incorporated as a descriptor of health status in tropical estuarine systems.


Assuntos
Monitoramento Ambiental/métodos , Estuários , Animais , Biomarcadores/metabolismo , Brasil , Crassostrea/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Ecossistema , Fluoresceínas/metabolismo , Brânquias/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
11.
Environ Sci Pollut Res Int ; 29(18): 27534-27547, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981374

RESUMO

Recent advances in nanotechnology have allowed the encapsulation of hazardous antifouling (AF) biocides in silica mesoporous nanocapsules (SiNC) reducing their short-term toxicity. However, the chronic effects of such novel nanoadditives remain understudied. The present study aimed to assess short- and long-term sub-lethal effects of soluble forms (DCOIT and Ag) and nanostructured forms (SiNC-DCOIT and SiNC-DCOIT-Ag) of two AF biocides and the "empty" nanocapsule (SiNC) on juveniles of Crassostrea gigas after 96 h and 14 days of exposure. Juvenile oysters exposed for a short period to free DCOIT and AgNO3 presented worse physiological status comparing with those exposed to the nanostructured forms. The long-term exposure to DCOIT and Ag+ caused an extensive biochemical impairment comparing with the tested nanomaterials, which included oxidative damage, activation of the antioxidant defense system, and neurotransmission impairment. Despite the negative effects mostly observed on the health condition index and AChE, the encapsulation of the abovementioned AF biocides into SiNC seems to be a technological advantage towards the development of AF nanoadditives with lower long-term toxicity comparing with the soluble forms of such biocides.


Assuntos
Incrustação Biológica , Crassostrea , Desinfetantes , Nanoestruturas , Poluentes Químicos da Água , Animais , Incrustação Biológica/prevenção & controle , Desinfetantes/toxicidade , Nanoestruturas/toxicidade , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-34601085

RESUMO

Cocaine (COC) is a powerful illicit drug frequently detected in the aquatic environment. COC acts by inhibiting the reuptake of dopamine (DOPA) and 5-hydroxytryptamine (5-HT - serotonin) and causes endocrine disturbances in mammals. This study investigated similar effects from cocaine exposure in the marine mussel Perna perna, as well as neurotoxicity and energy imbalances. Mussels were exposed to COC (0.2 µg.L-1 and 2 µg.L-1) for periods of 48, 96, and 168 h. Acetylcholinesterase (AChE) was measured in adductor muscle tissue to determine neurotoxicity, and neurotransmitter levels (DOPA and 5-HT), monoamine oxidase (MAO) and cyclooxygenase (COX) activity, and energy status (mitrochondrial electron transport, MET, and total lipids, TLP) were evaluated in the mussels' gonads. COC decreased AChE activity in the mussels exposed to 0.2 µg.L-1 and 2 µg.L -1 after 168 h, and all concentrations of COC increased neurotransmitter levels. Increases in MET (0.2 µg.L -1, for all exposure periods) and TLP (0.2 µg.L 1 after 48 h, and 2 µg.L -1 after 96 h and 168 h) were also observed. No significant change was detected in MAO activity. COC also decreased COX activity in the mussels exposed to 0.2 µg.L -1 (48 h and 96 h) and 2 µg.L -1 (96 h). These results suggest that COC may compromise neurotransmitter levels and COX activity. Furthermore, the changes in MET and LPT suggest that COC affects the energy balance of the mussels, and could negatively affect physiological processes such as metabolism, hormone production, and embryonic development.


Assuntos
Cocaína/toxicidade , Monitoramento Ambiental/métodos , Perna (Organismo)/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Metabolismo Energético/efeitos dos fármacos
13.
Mar Pollut Bull ; 174: 113241, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923405

RESUMO

This study investigated the sublethal effects of environmentally relevant concentrations of DCOIT on the neotropical oyster Crassostrea brasiliana. Gills and digestive glands of animals exposed to increasing concentrations of DCOIT were analyzed for biochemical, cellular, and histopathological responses. Exposure to DCOIT (0.2 to 151 µg L-1) for 120 h triggered oxidative stress in both tissues (through the modulation of GPX, GST, GSH and GR), which led to damage of membrane lipids (increase of LPO and reduction of the NRRT). DCOIT increased histopathological pathologies in gills, such as necrosis, lymphocyte infiltration and epithelial desquamation. This study showed that short term exposure to environmental concentrations of DCOIT causes negative effects on C. brasiliana at biochemical, physiological, and histological levels. Therefore, the use of DCOIT as a booster biocide in antifouling paints should be further assessed, as it may cause environmental hazards to marine organisms.


Assuntos
Incrustação Biológica , Crassostrea , Desinfetantes , Poluentes Químicos da Água , Animais , Incrustação Biológica/prevenção & controle , Biomarcadores , Desinfetantes/toxicidade , Brânquias , Poluentes Químicos da Água/toxicidade
14.
Chemosphere ; 304: 135169, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35671813

RESUMO

Domestic sewage is an important source of pollutants in aquatic ecosystems and includes both microplastics (MPs) and pharmaceuticals and personal care products (PPCPs). This study sought to assess the biological effects of the interaction between plastic particles and the antibacterial agent triclosan (TCS). The study relied on the swamp ghost crab Ucides cordatus as a model. Herein polyethylene particles were contaminated with triclosan solution. Triclosan concentrations in the particles were then chemically analyzed. Swamp ghost crab specimens were exposed to experimental compounds (a control, microplastics, and microplastics with triclosan) for 7 days. Samplings were performed on days 3 (T3) and 7 (T7). Gill, hepatopancreas, muscle and hemolymph tissue samples were collected from the animals to evaluate the biomarkers ethoxyresorufin O-deethylase (EROD), dibenzylfluorescein dealkylase (DBF), glutathione S-transferase (GST), glutathione peroxidase (GPx), reduced glutathione (GSH), lipid peroxidation (LPO), DNA strands break (DNA damage), cholinesterase (ChE) through protein levels and neutral red retention time (NRRT). Water, organism, and microplastic samples were collected at the end of the assay for post-exposure chemical analyses. Triclosan was detected in the water and crab tissue samples, results which indicate that microplastics serve as triclosan carriers. Effects on the gills of organisms exposed to triclosan-spiked microplastics were observed as altered biomarker results (EROD, GST, GPx, GSH, LPO, DNA damage and NRRT). The effects were more closely associated with microplastic contaminated with triclosan exposure than with microplastic exposure, since animals exposed only to microplastics did not experience significant effects. Our results show that microplastics may be important carriers of substances of emerging interest in marine environments in that they contaminate environmental matrices and have adverse effects on organisms exposed to these stressors.


Assuntos
Anti-Infecciosos , Braquiúros , Triclosan , Poluentes Químicos da Água , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biomarcadores/metabolismo , Braquiúros/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Ecossistema , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Microplásticos/toxicidade , Plásticos/metabolismo , Polietileno/metabolismo , Triclosan/metabolismo , Água/metabolismo , Poluentes Químicos da Água/metabolismo , Áreas Alagadas
15.
Mar Pollut Bull ; 185(Pt A): 114325, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36347194

RESUMO

Microplastics, including plastic pellets, get stranded on sandy beaches. They persist in the oceans for long periods and frequently carry contaminants. Acute and chronic toxicity has been observed when marine organisms are exposed to high densities of plastic pellets in laboratory assays. We investigated the toxicity of beach-stranded plastic pellets on macrobenthic populations (Excirolana armata; Crustacea; Isopoda) under natural conditions (in situ). We simulated different pellets densities on a beach not contaminated by pellets, exposing isopods for 6 h and testing possible behavioral responses (i.e., vertical displacement) and mortality effects. No effect was observed on vertical displacement, but higher mortality was reported for organisms exposed to plastic pellets. The lowest pellet density tested commonly found in coastal areas was sufficient to trigger mortality. We also observed that lethargic individuals (near-death) were preyed on by the healthy individuals remaining in the test chambers.


Assuntos
Isópodes , Plásticos , Humanos , Animais , Plásticos/toxicidade , Monitoramento Ambiental , Ecotoxicologia , Organismos Aquáticos , Praias
16.
Ecotoxicol Environ Saf ; 74(5): 1257-64, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21439640

RESUMO

São Paulo state (Brazil) has one of the most overpopulated coastal zones in South America, where previous studies have already detected sediment and water contamination. However, biological-based monitoring considering signals of xenobiotic exposure and effects are scarce. The present study employed a battery of biomarkers under field conditions to assess the environmental quality of this coastal zone. For this purpose, the activity of CYP 450, antioxidant enzymes, DNA damage, lipid peroxidation and lysosomal membrane were analysed in caged mussels and integrated using Factorial Analysis. A representation of estimated factor scores was performed in order to confirm the factor descriptions characterizing the studied areas. Biomarker responses indicated signals of mussels' impaired health during the monitoring, which pointed to the impact of different sources of contaminants in the water quality and identified critical areas. This integrated approach produced a rapid, sensitive and cost-effective assessment, which could be incorporated as a descriptor of environmental status in future coastal zones biomonitoring.


Assuntos
Bivalves/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Bivalves/metabolismo , Brasil , Catalase/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Dano ao DNA , Monitoramento Ambiental/economia , Fluoresceínas/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas de Membrana Lisossomal/metabolismo , Estações do Ano , Água do Mar/química , Poluentes Químicos da Água/análise
17.
Ecotoxicology ; 20(8): 1870-80, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21710306

RESUMO

In the present study, embryotoxicity experiments using the sea urchin Lytechinus variegatus were carried out to better clarify the ecotoxicological effects of tributyltin (TBT) and triphenyltin (TPT) (the recently banned antifouling agents), and Irgarol and Diuron (two of the new commonly used booster biocides). Organisms were individually examined to evaluate the intensity and type of effects on embryo-larval development, this procedure has not been commonly used, however it showed to be a potentially suitable approach for toxicity assessment. NOEC and LOEC were similar for compounds of same chemical class, and IC10 values were very close and showed overlapping of confidence intervals between TBT and TPT, and between Diuron and Irgarol. In addition, IC10 were similar to NOEC values. Regardless of this, the observed effects were different. Embryo development was interrupted at the gastrula and blastula stages at 1.25 and 2.5 µg l(-1) of TBT, respectively, whereas pluteus stage was reached with the corresponding concentrations of TPT. Furthermore, embryos reached the prism and morula stages at 5 µg l(-1) of TPT and TBT, respectively. The effects induced by Irgarol were also more pronounced than those caused by Diuron. Pluteus stage was always reached at any tested Diuron concentration, while embryogenesis was interrupted at blastula/gastrula stages at the highest concentrations of Irgarol. Therefore, this study proposes a complementary approach for interpreting embryo-larval responses that may be employed together with the traditional way of analysis. Consequently, this application leads to a more powerful ecotoxicological assessment tool focused on embryotoxicity.


Assuntos
Diurona/toxicidade , Compostos Orgânicos de Estanho/toxicidade , Ouriços-do-Mar/efeitos dos fármacos , Ouriços-do-Mar/embriologia , Compostos de Trialquitina/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Blástula/efeitos dos fármacos , Relação Dose-Resposta a Droga , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Gástrula/efeitos dos fármacos , Larva/efeitos dos fármacos , Testes de Toxicidade , Triazinas/toxicidade
18.
Chemosphere ; 251: 126394, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32155497

RESUMO

Lead is a priority pollutant introduced in the aquatic environment by different sources commonly located in estuarine regions, such as ports, marinas and industries. Environmental agencies around the world set the maximum allowable concentration of lead in effluents, surface water and sediment, but few studies reported its accumulation and chronic toxicity in mangrove benthic invertebrates using concentrations believed to be safe. In the case of Brazilian mangrove environments, Ucides cordatus is a crab species of choice to be used in bioaccumulation studies. We have assessed biomarkers' responses (DNA strand breaks, micronucleated cells, metallothioneins, enzymatic activity of aminolevulinic acid dehydratase and neutral red retention time) and the total bioaccumulation in six tissues of U. cordatus crabs resident to mangrove areas under different conservation status during a 28-day period bioassay. We also investigated Pb subcellular partition and biomarkers' responses using a supposedly safe concentration (10 µg L-1). During the Pb exposure, the highest concentration of Pb was observed in crab gills. Crabs also showed a high ability to allocate Pb in detoxified forms. Multivariate analysis pointed out that bioaccumulation (total, active and detoxified) is linked to biomarkers. Even in supposedly safe dosage, U. cordatus triggered its defense mechanisms expressing more metallothioneins and presented relevant cyto-genotoxic damage. Our data suggest the development of biological tolerance to Pb in crabs from polluted areas. Our results provided a new insight about lead toxicity even at concentrations considered environmentally safe, which could support new strategies to manage estuarine areas considering their respective conservation status.


Assuntos
Braquiúros/fisiologia , Monitoramento Ambiental , Chumbo/toxicidade , Espécies Sentinelas , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/análise , Brasil , Brânquias/química , Chumbo/análise , Metalotioneína , Poluentes Químicos da Água/análise , Áreas Alagadas
19.
Sci Total Environ ; 709: 136088, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31887530

RESUMO

Currently, several concerns have been raised over metal contamination in the upper Amazon basin. Rivers that flow from the high Andes to the lowland Amazon are threatened by anthropogenic activities, which may, in turn, lead to increased metal concentrations in both water and sediments. In the present study, the impacts of multiple metal contamination sources in these ecosystems were identified. The degree of metal contamination was assessed in water and sediment and seed phytotoxicity analyses were carried out in samples taken from 14 sites located in upper Napo River tributaries, combining geochemical and ecotoxicological techniques. These tributaries were chosen based on their degree of anthropogenic contamination and proximity to known sources of relevant pollution, such as small-scale gold mining (MI), urban pollution (UP), fish farming (FF) and non-functional municipal landfill areas (LF). Our results suggest that anthropogenic activities are introducing metals to the aquatic ecosystem, as some metals were up to 500 times above the maximum permissible limits for the preservation of aquatic life established by Ecuadorian and North American guidelines. Sites located close to small-scale gold mining and sanitary landfills presented 100 to 1000 times higher concentrations than sites classified as "few threats". In water, Cd, Pb, Cu, Zn and Hg were mostly above the maximum permissible limits in the samples, while Cd in sediment reached concentrations 5-fold above the probable effect level (PEL). Phytotoxicity was associated through the diffuse contamination present in urban and landfill areas. Overall, metal concentrations and phytotoxicity assessments suggest anthropogenic effects to environmental contamination, even though natural sources cannot be disregarded. Anthropogenic effects in the eastern Andean Rivers need to be constantly monitored in order to build a complete picture on how pollution sources may affect this strategic Amazon basin area.

20.
Artigo em Inglês | MEDLINE | ID: mdl-30453081

RESUMO

The mudflat fiddler crab Minuca rapax, typical of mangroves and intertidal zones in the Western Atlantic Ocean, responds to fluctuations in environmental parameters by biochemical and physiological adjustments. Such biochemical effects are commonly employed in environmental studies as biomarkers of estuarine contamination. This study evaluates biochemical responses in the gills and hepatopancreas of M. rapax in situ from localities exhibiting different types and levels of contamination, against a backdrop of fluctuations in environmental parameters like salinity and temperature common to estuarine regions. The biochemical biomarkers metallothionein (MT)-like protein titers and glutathione S-transferase (GST), glutathione peroxidase (GPx) and acetylcholinesterase (AChE) activities were used to evaluate responses to environmental contamination and seasonal changes in environmental parameters. Crabs were collected during two seasons, the austral winter and summer, at three sites along the coast of the state of São Paulo, Brazil that present decreasing degrees of environmental contamination: Ilha Diana, Santos (ID) > Rio Itapanhaú, Bertioga (RI) > Picinguaba, Ubatuba (P), a pristine control site. Our findings show that MT were induced in crabs from the contaminated sites (ID and RI) mainly during winter, revealing the activation of detoxification mechanisms; however MT were also induced in P crabs during the summer rainy season. GPX, GST and AChE activities were altered in P crabs during summer and in ID and RI crabs in winter. While enzyme activities in summer crabs may reflect seasonal changes in precipitation and salinity, in winter these altered activities appear to reflect contamination, although an effect of environmental parameters cannot be excluded. These findings reveal a strong seasonal influence on biochemical biomarker responses in Minuca rapax, a relevant factor to consider when interpreting the impact of environmental contamination in estuaries.


Assuntos
Braquiúros/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Acetilcolinesterase/metabolismo , Animais , Braquiúros/metabolismo , Feminino , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Masculino , Metalotioneína/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA