Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dalton Trans ; 52(44): 16159-16166, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37877892

RESUMO

The formation of dimer [(µ-Cl)Rh-(κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)(o-C6H4CH2SiiPrnPr))]2 (Rh-3) with an n-propyl group on one of the silicon atoms as a minor product was affected by the reaction of [RhCl(COD)]2 with proligand PhP(o-C6H4CH2SiHiPr2)2, L1. The major product of the reaction was monomeric 14-electron Rh(III) complex [ClRh(κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)2)] (Rh-1). Computations revealed that the monomer-dimer equilibrium is shifted toward the monomer with four isopropyl substituents on the two Si atoms of the ligand as in Rh-1; conversely, the dimer is favored with only one n-propyl as in Rh-3, and with less bulky alkyl substituents such as in [ClRh(κ3(P,Si,Si)PhP(o-C6H4CH2SiMe2)2]2 (Rh-2). Computations on the mechanism of formation of Rh-3 directly from [RhCl(COD)]2 are in agreement with the experimental findings and it is found to be less energetic than if stemming from Rh-1. Additionally, a Si-O-Si complex, [µ-Cl-Rh{κ3(P,Si,C)PPh(o-C6H4CH2SiiPrO SiiPr2CH-o-C6H4)}]2, Rh-4, is generated from the reaction of Rh-1 with adventitious water as a result of intramolecular C-H activation.

2.
Dalton Trans ; 52(26): 8883-8892, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37358389

RESUMO

The MOF material NU-1000 was employed to host Ni tripodal complexes prepared from new organometallic precursors [HNi(κ4(E,P,P,P)-E(o-C6H4CH2PPh2)3], E = Si (Ni-1), Ge (Ni-2). The new heterogeneous catalytic materials, Ni-1@NU-1000 and Ni-2@NU-1000, show the advantages of both homogeneous and heterogeneous catalysts. They catalyze the hydroboration of aldehydes and ketones more efficiently than the homogeneous Ni-1 and Ni-2, under aerobic conditions and show recyclability.

3.
Dalton Trans ; 50(34): 11783-11792, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34368827

RESUMO

Herein we report an experimental and computational study of a family of four coordinated 14-electron complexes of Rh(iii) devoid of agostic interactions. The complexes [X-Rh(κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)2], where X = Cl (Rh-1), Br (Rh-2), I (Rh-3), OTf (Rh-4), Cl·GaCl3 (Rh-5); derive from a bis(silyl)-o-tolylphosphine with isopropyl substituents on the Si atoms. All five complexes display a sawhorse geometry around Rh and exhibit similar spectroscopic and structural properties. The catalytic activity of these complexes and [Cl-Ir(κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)2], Ir-1, in styrene and aliphatic alkene functionalizations with hydrosilanes is disclosed. We show that Rh-1 catalyzes effectively the dehydrogenative silylation of styrene with Et3SiH in toluene while it leads to hydrosilylation products in acetonitrile. Rh-1 is an excellent catalyst in the sequential isomerization/hydrosilylation of terminal and remote aliphatic alkenes with Et3SiH including hexene isomers, leading efficiently and selectively to the terminal anti-Markonikov hydrosilylation product in all cases. With aliphatic alkenes, no hydrogenation products are observed. Conversely, catalysis of the same hexene isomers by Ir-1 renders allyl silanes, the tandem isomerization/dehydrogenative silylation products. A mechanistic proposal is made to explain the catalysis with these M(iii) complexes.

4.
ACS Appl Mater Interfaces ; 12(37): 41758-41764, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32808761

RESUMO

A new material, MOF-type [Ir]@NU-1000, was accessed from the incorporation of the iridium organometallic fragment [Ir{κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)2}] into NU-1000. The new material incorporates less than 1 wt % of Ir(III) (molar ratio Ir to NU-1000, 1:11), but the heat of adsorption for SO2 is significantly enhanced with respect to that of NU-1000. Being a highly promising adsorbent for SO2 capture, [Ir]@NU-1000 combines exceptional SO2 uptake at room temperature and outstanding cyclability. Additionally, it is stable and can be regenerated after SO2 desorption at low temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA