Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Genet ; 37(5): 414-420, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33867017

RESUMO

The relationship between human genetic variation and disease has not been fully elucidated. According to the present view on infectious diseases pathogen resistance is linked to human leukocyte antigen (HLA) class I/II variants and their individual capacity to present pathogen-derived peptides. Yet, T cell education in the thymus occurs through negative and positive selection, and both processes are controlled by a combination of HLA class I/II variants and peptides from the self. Therefore, the capacity of given HLA class I/II variants to bind pathogen-derived peptides is only one part of the selective process to generate effective immune responses. We thus propose that peptidome variation contributes to shaping T cell receptor (TCR) repertoires and hence individual immune responses, and that this variation represents inherent modulator epitopes.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade/fisiologia , Peptídeos/genética , Peptídeos/imunologia , Suscetibilidade a Doenças , Epitopos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Peptídeos/metabolismo , Polimorfismo Genético , Receptores de Antígenos de Linfócitos T/imunologia
2.
J Immunol ; 208(1): 49-53, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34872977

RESUMO

The biological relevance of genes initially categorized as "pseudogenes" is slowly emerging, notably in innate immunity. In the HLA region on chromosome 6, HLA-H is one such pseudogene; yet, it is transcribed, and its variation is associated with immune properties. Furthermore, two HLA-H alleles, H*02:07 and H*02:14, putatively encode a complete, membrane-bound HLA protein. Here we thus hypothesized that HLA-H contributes to immune homeostasis similarly to tolerogenic molecules HLA-G, -E, and -F. We tested if HLA-H*02:07 encodes a membrane-bound protein that can inhibit the cytotoxicity of effector cells. We used an HLA-null human erythroblast cell line transduced with HLA-H*02:07 cDNA to demonstrate that HLA-H*02:07 encodes a membrane-bound protein. Additionally, using a cytotoxicity assay, our results support that K562 HLA-H*02:07 inhibits human effector IL-2-activated PBMCs and human IL-2-independent NK92-MI cell line activity. Finally, through in silico genotyping of the Denisovan genome and haplotypic association with Denisovan-derived HLA-A*11, we also show that H*02:07 is of archaic origin. Hence, admixture with archaic humans brought a functional HLA-H allele into modern European and Asian populations.


Assuntos
Membrana Celular/metabolismo , Genótipo , Proteína da Hemocromatose/genética , Células Matadoras Naturais/imunologia , Pseudogenes/genética , Alelos , Povo Asiático , Citotoxicidade Imunológica , Evolução Molecular , Frequência do Gene , Antígeno HLA-A11/genética , Haplótipos , Proteína da Hemocromatose/metabolismo , Homeostase , Humanos , Tolerância Imunológica , Células K562 , Ativação Linfocitária , População Branca
3.
Genome Res ; 27(5): 813-823, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28360230

RESUMO

The most polymorphic part of the human genome, the MHC, encodes over 160 proteins of diverse function. Half of them, including the HLA class I and II genes, are directly involved in immune responses. Consequently, the MHC region strongly associates with numerous diseases and clinical therapies. Notoriously, the MHC region has been intractable to high-throughput analysis at complete sequence resolution, and current reference haplotypes are inadequate for large-scale studies. To address these challenges, we developed a method that specifically captures and sequences the 4.8-Mbp MHC region from genomic DNA. For 95 MHC homozygous cell lines we assembled, de novo, a set of high-fidelity contigs and a sequence scaffold, representing a mean 98% of the target region. Included are six alternative MHC reference sequences of the human genome that we completed and refined. Characterization of the sequence and structural diversity of the MHC region shows the approach accurately determines the sequences of the highly polymorphic HLA class I and HLA class II genes and the complex structural diversity of complement factor C4A/C4B It has also uncovered extensive and unexpected diversity in other MHC genes; an example is MUC22, which encodes a lung mucin and exhibits more coding sequence alleles than any HLA class I or II gene studied here. More than 60% of the coding sequence alleles analyzed were previously uncharacterized. We have created a substantial database of robust reference MHC haplotype sequences that will enable future population scale studies of this complicated and clinically important region of the human genome.


Assuntos
Complemento C4/genética , Genes MHC da Classe II , Genes MHC Classe I , Haplótipos , Mucinas/genética , Polimorfismo Genético , Animais , Linhagem Celular , Mapeamento de Sequências Contíguas/métodos , Mapeamento de Sequências Contíguas/normas , Genoma Humano , Genômica/métodos , Genômica/normas , Humanos , Fases de Leitura Aberta , Pan troglodytes/genética , Padrões de Referência
4.
J Immunol ; 198(8): 3157-3169, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28264973

RESUMO

The immune and reproductive functions of human NK cells are regulated by interactions of the C1 and C2 epitopes of HLA-C with C1-specific and C2-specific lineage III killer cell Ig-like receptors (KIR). This rapidly evolving and diverse system of ligands and receptors is restricted to humans and great apes. In this context, the orangutan has particular relevance because it represents an evolutionary intermediate, one having the C1 epitope and corresponding KIR but lacking the C2 epitope. Through a combination of direct sequencing, KIR genotyping, and data mining from the Great Ape Genome Project, we characterized the KIR alleles and haplotypes for panels of 10 Bornean orangutans and 19 Sumatran orangutans. The orangutan KIR haplotypes have between 5 and 10 KIR genes. The seven orangutan lineage III KIR genes all locate to the centromeric region of the KIR locus, whereas their human counterparts also populate the telomeric region. One lineage III KIR gene is Bornean specific, one is Sumatran specific, and five are shared. Of 12 KIR gene-content haplotypes, 5 are Bornean specific, 5 are Sumatran specific, and 2 are shared. The haplotypes have different combinations of genes encoding activating and inhibitory C1 receptors that can be of higher or lower affinity. All haplotypes encode an inhibitory C1 receptor, but only some haplotypes encode an activating C1 receptor. Of 130 KIR alleles, 55 are Bornean specific, 65 are Sumatran specific, and 10 are shared.


Assuntos
Evolução Molecular , Pongo/genética , Pongo/imunologia , Receptores KIR/genética , Alelos , Animais , Cromossomos Artificiais Bacterianos , Haplótipos , Filogenia , Reação em Cadeia da Polimerase , Especificidade da Espécie
5.
Immunogenetics ; 70(9): 571-583, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29869002

RESUMO

The increasing number of Killer Immunoglobulin-like Receptor (KIR) sequences available for non-human primate species and cattle has prompted development of a centralized database, guidelines for a standardized nomenclature, and minimum requirements for database submission. The guidelines and nomenclature are based on those used for human KIR and incorporate modifications made for inclusion of non-human species in the companion IPD-NHKIR database. Included in this first release are the rhesus macaque (Macaca mulatta), chimpanzee (Pan troglodytes), orangutan (Pongo abelii and Pongo pygmaeus), and cattle (Bos taurus).


Assuntos
Receptores KIR , Terminologia como Assunto , Animais , Bovinos , Humanos , Macaca mulatta/genética , Pan troglodytes/genética , Pongo pygmaeus/genética
6.
Immunogenetics ; 69(6): 379-390, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28382515

RESUMO

The butyrophilin 3 (BTN3) receptors are implicated in the T lymphocytes regulation and present a wide plasticity in mammals. In order to understand how these genes have been diversified, we studied their evolution and show that the three human BTN3 are the result of two successive duplications in Primates and that the three genes are present in Hominoids and the Old World Monkey groups. A thorough phylogenetic analysis reveals a concerted evolution of BTN3 characterized by a strong and recurrent homogenization of the region encoding the signal peptide and the immunoglobulin variable (IgV) domain in Hominoids, where the sequences of BTN3A1 or BTN3A3 are replaced by BTN3A2 sequence. In human, the analysis of the diversity of these genes in 1683 individuals representing 26 worldwide populations shows that the three genes are polymorphic, with more than 46 alleles for each gene, and marked by extreme homogenization of the IgV sequences. The same analysis performed for the BTN2 genes shows also a concerted evolution; however, it is not as strong and recurrent as for BTN3. This study shows that BTN3 receptors are marked by extreme concerted evolution at the IgV domain and that BTN3A2 plays a central role in this evolution.


Assuntos
Butirofilinas/genética , Evolução Molecular , Família Multigênica , Polimorfismo Genético , Alelos , Sequência de Aminoácidos , Animais , Butirofilinas/química , Butirofilinas/metabolismo , Códon , Feminino , Genômica/métodos , Genótipo , Humanos , Filogenia , Primatas/genética , Domínios Proteicos/genética , Recombinação Genética
7.
PLoS Genet ; 9(10): e1003938, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204327

RESUMO

Interactions between HLA class I molecules and killer-cell immunoglobulin-like receptors (KIR) control natural killer cell (NK) functions in immunity and reproduction. Encoded by genes on different chromosomes, these polymorphic ligands and receptors correlate highly with disease resistance and susceptibility. Although studied at low-resolution in many populations, high-resolution analysis of combinatorial diversity of HLA class I and KIR is limited to Asian and Amerindian populations with low genetic diversity. At the other end of the spectrum is the West African population investigated here: we studied 235 individuals, including 104 mother-child pairs, from the Ga-Adangbe of Ghana. This population has a rich diversity of 175 KIR variants forming 208 KIR haplotypes, and 81 HLA-A, -B and -C variants forming 190 HLA class I haplotypes. Each individual we studied has a unique compound genotype of HLA class I and KIR, forming 1-14 functional ligand-receptor interactions. Maintaining this exceptionally high polymorphism is balancing selection. The centromeric region of the KIR locus, encoding HLA-C receptors, is highly diverse whereas the telomeric region encoding Bw4-specific KIR3DL1, lacks diversity in Africans. Present in the Ga-Adangbe are high frequencies of Bw4-bearing HLA-B*53:01 and Bw4-lacking HLA-B*35:01, which otherwise are identical. Balancing selection at key residues maintains numerous HLA-B allotypes having and lacking Bw4, and also those of stronger and weaker interaction with LILRB1, a KIR-related receptor. Correspondingly, there is a balance at key residues of KIR3DL1 that modulate its level of cell-surface expression. Thus, capacity to interact with NK cells synergizes with peptide binding diversity to drive HLA-B allele frequency distribution. These features of KIR and HLA are consistent with ongoing co-evolution and selection imposed by a pathogen endemic to West Africa. Because of the prevalence of malaria in the Ga-Adangbe and previous associations of cerebral malaria with HLA-B*53:01 and KIR, Plasmodium falciparum is a candidate pathogen.


Assuntos
Antígenos HLA/genética , Células Matadoras Naturais , Malária/genética , Receptores KIR/genética , Seleção Genética , África Subsaariana , População Negra , Criança , Evolução Molecular , Genética Populacional , Antígenos HLA/imunologia , Haplótipos , Humanos , Ligantes , Malária/imunologia , Malária/patologia , Dados de Sequência Molecular , Receptores KIR/imunologia
8.
Nat Genet ; 39(9): 1092-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17694054

RESUMO

Interactions of killer cell immunoglobulin-like receptors (KIRs) with major histocompatibility complex (MHC) class I ligands diversify natural killer cell responses to infection. By analyzing sequence variation in diverse human populations, we show that the KIR3DL1/S1 locus encodes two lineages of polymorphic inhibitory KIR3DL1 allotypes that recognize Bw4 epitopes of protein">HLA-A and HLA-B and one lineage of conserved activating KIR3DS1 allotypes, also implicated in Bw4 recognition. Balancing selection has maintained these three lineages for over 3 million years. Variation was selected at D1 and D2 domain residues that contact HLA class I and at two sites on D0, the domain that enhances the binding of KIR3D to HLA class I. HLA-B variants that gained Bw4 through interallelic microconversion are also products of selection. A worldwide comparison uncovers unusual KIR3DL1/S1 evolution in modern sub-Saharan Africans. Balancing selection is weak and confined to D0, KIR3DS1 is rare and KIR3DL1 allotypes with similar binding sites predominate. Natural killer cells express the dominant KIR3DL1 at a high frequency and with high surface density, providing strong responses to cells perturbed in Bw4 expression.


Assuntos
População Negra/genética , Receptores KIR3DL1/genética , Receptores KIR3DS1/genética , Seleção Genética , Alelos , Sequência de Aminoácidos , Sítios de Ligação/genética , Frequência do Gene , Genética Populacional , Antígenos HLA-B/química , Antígenos HLA-B/genética , Humanos , Desequilíbrio de Ligação , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Estrutura Terciária de Proteína , Receptores KIR3DL1/química , Receptores KIR3DS1/química , Homologia de Sequência de Aminoácidos
9.
Immunogenetics ; 67(10): 625-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26260270

RESUMO

Infection of humans and chimpanzees with Hepatitis C virus (HCV) results in either the resolution of the acute infection or its progression to a persistent infection associated with chronic liver disease. In cohorts of human patients, resolution of HCV infection has been associated with homozygosity for both C1(+)HLA-C and its cognate inhibitory receptor, KIR2DL3. Compared here are the killer cell immunoglobulin-like receptors (KIR) and major histocompatibility complex (MHC) class I factors of chimpanzees who resolve, or resist, HCV infection with those chimpanzees who progress to chronic infection. Analysis of Pt-KIR gene content diversity associated two of the 12 Pt-KIR with clinical outcome. Activating Pt-KIR3DS2 and inhibitory Pt-KIR2DL9 are strong receptors specific for the C2 epitope. They are encoded by neighboring genes within the Pt-KIR locus that are in strong linkage disequilibrium. HCV-infected chimpanzees with KIR genotypes containing Pt-KIR3DS2 and KIR2DL9 are significantly more likely to progress to chronic infection than infected chimpanzees lacking the genes (p = 0.0123 and p = 0.0045, respectively), whereas human HLA-B allotypes having the C1 epitope are unusual, such allotypes comprise about one quarter of the chimpanzee Patr-B allotypes. Homozygous C1 (+) Patr-B are enriched in chimpanzees with chronic HCV infection, and the compound genotype of homozygous C1 (+) Patr-B combined with either Pt-KIR3DS2 or Pt-KIR2DL9 is more strongly associated with disease progression than either factor alone (p = 0.0031 and p = 0.0013, respectively). Thus, despite similarities suggesting a common basis in disease resistance, there are substantial differences in the KIR and MHC class I correlations observed for HCV-infected humans and chimpanzees, consistent with the divergence of their KIR and MHC class I systems.


Assuntos
Predisposição Genética para Doença/genética , Hepatite C/genética , Antígenos de Histocompatibilidade Classe I/genética , Pan troglodytes/genética , Receptores KIR/genética , Animais , Progressão da Doença , Frequência do Gene , Variação Genética , Genótipo , Haplótipos , Hepacivirus/fisiologia , Hepatite C/virologia , Pan troglodytes/virologia , Receptores KIR3DL2/genética
10.
BMC Infect Dis ; 14: 370, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24996424

RESUMO

BACKGROUND: Classic Whipple's disease is caused by T. whipplei and likely involves genetic predispositions, such as the HLA alleles DRB1*13 and DQB1*06, that are more frequently observed in patients. T. whipplei carriage occurs in 2-4% of the general population in France. Subclinical hypothyroidism, characterized by high levels of TSH and normal free tetra-iodothyronine (fT4) dosage, has been rarely associated with specific HLA factors. METHODS: We retrospectively tested TSHus in 80 patients and 42 carriers. In cases of dysthyroidism, we tested the levels of free-T4 and anti-thyroid antibodies, and the HLA genotypes were also determined for seven to eight patients. RESULTS: In this study, 72-74% of patients and carriers were male, and among the 80 patients, 14 (17%) individuals had a high level of TSH, whereas none of the carriers did (p<0. 01). In the 14 patients with no clinical manifestations, the T4 levels were normal, and no specific antibodies were present. Four patients treated with antibiotics, without thyroxine supplementation, showed normal levels of TSHus after one or two years. One patient displayed a second episode of subclinical hypothyroidism during a Whipple's disease relapse five years later, but the subclinical hypothyroidism regressed after antibiotic treatment. HLA typing revealed nine alleles that appeared more frequently in patients than in the control cohort, but none of these differences reached significance due to the small size of the patient group. CONCLUSION: Regardless of the substratum, classic Whipple's disease could lead to subclinical hypothyroidism. We recommend systematically testing the TSH levels in patients with Whipple's disease.


Assuntos
Hipotireoidismo/microbiologia , Doença de Whipple/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Feminino , França/epidemiologia , Antígenos HLA-D/genética , Humanos , Hipotireoidismo/epidemiologia , Masculino , Pessoa de Meia-Idade , Doença de Whipple/epidemiologia , Doença de Whipple/genética , Adulto Jovem
11.
J Immunol ; 189(3): 1418-30, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22772445

RESUMO

Through recognition of HLA class I, killer cell Ig-like receptors (KIR) modulate NK cell functions in human immunity and reproduction. Although a minority of HLA-A and -B allotypes are KIR ligands, HLA-C allotypes dominate this regulation, because they all carry either the C1 epitope recognized by KIR2DL2/3 or the C2 epitope recognized by KIR2DL1. The C1 epitope and C1-specific KIR evolved first, followed several million years later by the C2 epitope and C2-specific KIR. Strong, varying selection pressure on NK cell functions drove the diversification and divergence of hominid KIR, with six positions in the HLA class I binding site of KIR being targets for positive diversifying selection. Introducing each naturally occurring residue at these positions into KIR2DL1 and KIR2DL3 produced 38 point mutants that were tested for binding to 95 HLA- A, -B, and -C allotypes. Modulating specificity for HLA-C is position 44, whereas positions 71 and 131 control cross-reactivity with HLA-A*11:02. Dominating avidity modulation is position 70, with lesser contributions from positions 68 and 182. KIR2DL3 has lower avidity and broader specificity than KIR2DL1. Mutation could increase the avidity and change the specificity of KIR2DL3, whereas KIR2DL1 specificity was resistant to mutation, and its avidity could only be lowered. The contrasting inflexibility of KIR2DL1 and adaptability of KIR2DL3 fit with C2-specific KIR having evolved from C1-specific KIR, and not vice versa. Substitutions restricted to activating KIR all reduced the avidity of KIR2DL1 and KIR2DL3, further evidence that activating KIR function often becomes subject to selective attenuation.


Assuntos
Antígenos HLA-C/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Mutação Puntual/imunologia , Receptores KIR2DL1/metabolismo , Receptores KIR2DL3/metabolismo , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/imunologia , Animais , Linhagem Celular , Variação Genética/genética , Variação Genética/imunologia , Antígenos HLA-C/genética , Humanos , Mutação Puntual/genética , Ligação Proteica/genética , Ligação Proteica/imunologia , Estrutura Terciária de Proteína/genética , Receptores KIR2DL1/antagonistas & inibidores , Receptores KIR2DL1/genética , Receptores KIR2DL3/antagonistas & inibidores , Receptores KIR2DL3/genética
12.
J Immunol ; 187(1): 11-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21690332

RESUMO

Variegated expression of variable NK cell receptors for polymorphic MHC class I broadens the range of an individual's NK cell response and the capacity for populations and species to survive disease epidemics and population bottlenecks. On evolutionary time scales, this component of immunity is exceptionally dynamic, unstable, and short-lived, being dependent on coevolution of ligands and receptors subject to varying, competing selection pressures. Consequently these systems of variable NK cell receptors are largely species specific and have recruited different classes of glycoprotein, even within the primate order of mammals. Such disparity helps to explain substantial differences in NK cell biology between humans and animal models, for which the population genetics is largely ignored. KIR3DL1/S1, which recognizes the Bw4 epitope of HLA-A and -B and is the most extensively studied of the variable NK cell receptors, exemplifies how variation in all possible parameters of function is recruited to diversify the human NK cell response.


Assuntos
Evolução Molecular , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores KIR3DL1/imunologia , Receptores KIR3DS1/imunologia , Alelos , Animais , Modelos Animais de Doenças , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígenos HLA-B/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Filogenia , Receptores KIR3DL1/genética , Receptores KIR3DL1/metabolismo , Receptores KIR3DS1/genética , Receptores KIR3DS1/metabolismo
13.
J Immunol ; 186(3): 1575-88, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21209280

RESUMO

Patr-AL is an expressed, non-polymorphic MHC class I gene carried by ∼50% of chimpanzee MHC haplotypes. Comparing Patr-AL(+) and Patr-AL(-) haplotypes showed Patr-AL defines a unique 125-kb genomic block flanked by blocks containing classical Patr-A and pseudogene Patr-H. Orthologous to Patr-AL are polymorphic orangutan Popy-A and the 5' part of human pseudogene HLA-Y, carried by ∼10% of HLA haplotypes. Thus, the AL gene alternatively evolved in these closely related species to become classical, nonclassical, and nonfunctional. Although differing by 30 aa substitutions in the peptide-binding α(1) and α(2) domains, Patr-AL and HLA-A*0201 bind overlapping repertoires of peptides; the overlap being comparable with that between the A*0201 and A*0207 subtypes differing by one substitution. Patr-AL thus has the A02 supertypic peptide-binding specificity. Patr-AL and HLA-A*0201 have similar three-dimensional structures, binding peptides in similar conformation. Although comparable in size and shape, the B and F specificity pockets of Patr-AL and HLA-A*0201 differ in both their constituent residues and contacts with peptide anchors. Uniquely shared by Patr-AL, HLA-A*0201, and other members of the A02 supertype are the absence of serine at position 9 in the B pocket and the presence of tyrosine at position 116 in the F pocket. Distinguishing Patr-AL from HLA-A*02 is an unusually electropositive upper face on the α(2) helix. Stimulating PBMCs from Patr-AL(-) chimpanzees with B cells expressing Patr-AL produced potent alloreactive CD8 T cells with specificity for Patr-AL and no cross-reactivity toward other MHC class I molecules, including HLA-A*02. In contrast, PBMCs from Patr-AL(+) chimpanzees are tolerant of Patr-AL.


Assuntos
Sequência Conservada/imunologia , Homologia de Genes/imunologia , Antígenos HLA-A/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/metabolismo , Polimorfismo Genético , Animais , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Clonagem Molecular , Sequência Conservada/genética , Antígenos HLA-A/química , Antígenos HLA-A/genética , Antígeno HLA-A2 , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Dados de Sequência Molecular , Pan troglodytes , Peptídeos/química , Peptídeos/genética , Ligação Proteica/genética , Ligação Proteica/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo
14.
PLoS Genet ; 6(11): e1001192, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21079681

RESUMO

Natural killer (NK) cells serve essential functions in immunity and reproduction. Diversifying these functions within individuals and populations are rapidly-evolving interactions between highly polymorphic major histocompatibility complex (MHC) class I ligands and variable NK cell receptors. Specific to simian primates is the family of Killer cell Immunoglobulin-like Receptors (KIR), which recognize MHC class I and associate with a range of human diseases. Because KIR have considerable species-specificity and are lacking from common animal models, we performed extensive comparison of the systems of KIR and MHC class I interaction in humans and chimpanzees. Although of similar complexity, they differ in genomic organization, gene content, and diversification mechanisms, mainly because of human-specific specialization in the KIR that recognizes the C1 and C2 epitopes of MHC-B and -C. Humans uniquely focused KIR recognition on MHC-C, while losing C1-bearing MHC-B. Reversing this trend, C1-bearing HLA-B46 was recently driven to unprecedented high frequency in Southeast Asia. Chimpanzees have a variety of ancient, avid, and predominantly inhibitory receptors, whereas human receptors are fewer, recently evolved, and combine avid inhibitory receptors with attenuated activating receptors. These differences accompany human-specific evolution of the A and B haplotypes that are under balancing selection and differentially function in defense and reproduction. Our study shows how the qualitative differences that distinguish the human and chimpanzee systems of KIR and MHC class I predominantly derive from adaptations on the human line in response to selective pressures placed on human NK cells by the competing needs of defense and reproduction.


Assuntos
Adaptação Fisiológica/imunologia , Evolução Biológica , Células Matadoras Naturais/imunologia , Pan troglodytes/imunologia , Receptores KIR/imunologia , Adaptação Fisiológica/genética , Animais , Sudeste Asiático , Epitopos/imunologia , Antígenos HLA-B/imunologia , Haplótipos/genética , Antígenos de Histocompatibilidade/imunologia , Humanos , Ligantes , Pan troglodytes/genética , Filogenia , Estrutura Terciária de Proteína , Receptores KIR/química , Receptores KIR/genética , Recombinação Genética/genética , Seleção Genética , Transdução de Sinais/genética , Especificidade da Espécie
15.
Nat Genet ; 31(1): 100-5, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11967531

RESUMO

It has been 30 years since it was first proposed that the vertebrate genome evolved through several rounds of genome-wide duplications (polyploidizations). Despite rapid advances in genetics, including sequencing of the complete genomes of several divergent species, this hypothesis has not been tested rigorously and is still a matter of debate. If polyploidizations occurred during chordate evolution, there should be a network of paralogous regions in the present-day jawed vertebrate (Gnathostomata) genomes. Here we present an investigation of the major histocompatibility complex (MHC) paralogous regions, which we accomplished by characterizing the corresponding region in amphioxus by identifying nine anchor genes and sequencing both the anchor genes and the regions that flank them (a total of 400 kb). Phylogenetic analysis of 31 genes (including the anchor genes) in these regions shows that duplications occurred after the divergence of cephalochordates and vertebrates but before the Gnathostomata radiation. The distribution of human and amphioxus orthologs in their respective genomes and the relationship between these distributions support the en bloc duplication events. Our analysis represents the first step towards demonstrating that the human ancestral genome has undergone polyploidization. Moreover, reconstruction of the pre-duplicated region indicates that one of the duplicated regions retains the ancestral organization.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma , Vertebrados/genética , Animais , Cordados não Vertebrados/genética , Cordados não Vertebrados/imunologia , Clonagem Molecular , Humanos , Complexo Principal de Histocompatibilidade , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Vertebrados/imunologia
16.
J Immunol ; 185(7): 4233-7, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20802150

RESUMO

Modulation of human NK cell function by killer cell Ig-like receptors (KIR) and MHC class I is dominated by the bipartite interactions of inhibitory lineage III KIR with the C1 and C2 epitopes of HLA-C. In comparison, the ligand specificities and functional contributions of the activating lineage III KIR remain poorly understood. Using a robust, sensitive assay of KIR binding and a representative panel of 95 HLA class I targets, we show that KIR2DS1 binds C2 with ~50% the avidity of KIR2DL1, whereas KIR2DS2, KIR2DS3, and KIR2DS5 have no detectable avidity for C1, C2, or any other HLA class I epitope. In contrast, the chimpanzee has activating C1- and C2-specific lineage III KIR with strong avidity, comparable to those of their paired inhibitory receptors. One variant of chimpanzee Pt-KIR3DS2, the activating C2-specific receptor, has the same avidity for C2 as does inhibitory Pt-KIR3DL4, and a second variant has ~73% the avidity. Chimpanzee Pt-KIR3DS6, the activating C1-specific receptor, has avidity for C1 that is ~70% that of inhibitory Pt-KIR2DL6. In both humans and chimpanzees we observe an evolutionary trend toward reducing the avidity of the activating C1- and C2-specific receptors through selective acquisition of attenuating substitutions. However, the extent of attenuation has been extreme in humans, as exemplified by KIR2DS2, an activating C1-specific receptor that has lost all detectable avidity for HLA class I. Supporting such elimination of activating C1-specific receptors as a uniquely human phenomenon is the presence of a high-avidity activating C1-specific receptor (Gg-KIR2DSa) in gorilla.


Assuntos
Antígenos HLA-C/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptores KIR/imunologia , Animais , Evolução Biológica , Epitopos/imunologia , Gorilla gorilla , Antígenos HLA-C/metabolismo , Humanos , Ativação Linfocitária/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Pan troglodytes , Receptores KIR/genética , Receptores KIR/metabolismo
17.
J Immunol ; 185(7): 4238-51, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20805421

RESUMO

Interactions between HLA class I and killer cell Ig-like receptors (KIRs) diversify human NK cell responses. Dominant KIR ligands are the C1 and C2 epitopes of MHC-C, a young locus restricted to humans and great apes. C1- and C1-specific KIRs evolved first, being present in orangutan and functionally like their human counterparts. Orangutans lack C2 and C2-specific KIRs, but have a unique C1+C2-specific KIR that binds equally to C1 and C2. A receptor with this specificity likely provided the mechanism by which C2-KIR interaction evolved from C1-KIR while avoiding a nonfunctional intermediate, that is, either orphan receptor or ligand. Orangutan inhibitory MHC-C-reactive KIRs pair with activating receptors of identical avidity and specificity, contrasting with the selective attenuation of human activating KIRs. The orangutan C1-specific KIR reacts or cross-reacts with all four polymorphic epitopes (C1, C2, Bw4, and A3/11) recognized by human KIRs, revealing their structural commonality. Saturation mutagenesis at specificity-determining position 44 demonstrates that KIRs are inherently restricted to binding just these four epitopes, either individually or in combination. This restriction frees most HLA-A and HLA-B variants to be dedicated TCR ligands, not subject to conflicting pressures from the NK cell and T cell arms of the immune response.


Assuntos
Evolução Biológica , Antígenos HLA-C/imunologia , Células Matadoras Naturais/imunologia , Receptores KIR/genética , Receptores KIR/imunologia , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Pongo
18.
J Immunol ; 184(3): 1379-91, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20026738

RESUMO

The killer cell Ig-like receptors (KIRs) of NK cells recognize MHC class I ligands and function in placental reproduction and immune defense against pathogens. During the evolution of monkeys, great apes, and humans, an ancestral KIR3DL gene expanded to become a diverse and rapidly evolving gene family of four KIR lineages. Characterizing the KIR locus are three framework regions, defining two intervals of variable gene content. By analysis of four KIR haplotypes from two species of gibbon, we find that the smaller apes do not conform to these rules. Although diverse and irregular in structure, the gibbon haplotypes are unusually small, containing only two to five functional genes. Comparison with the predicted ancestral hominoid KIR haplotype indicates that modern gibbon KIR haplotypes were formed by a series of deletion events, which created new hybrid genes as well as eliminating ancestral genes. Of the three framework regions, only KIR3DL3 (lineage V), defining the 5' end of the KIR locus, is present and intact on all gibbon KIR haplotypes. KIR2DL4 (lineage I) defining the central framework region has been a major target for elimination or inactivation, correlating with the absence of its putative ligand, MHC-G, in gibbons. Similarly, the MHC-C-driven expansion of lineage III KIR genes in great apes has not occurred in gibbons because they lack MHC-C. Our results indicate that the selective forces shaping the size and organization of the gibbon KIR locus differed from those acting upon the KIR of other hominoid species.


Assuntos
Variação Antigênica/genética , Loci Gênicos/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Hylobates/genética , Hylobates/imunologia , Região Variável de Imunoglobulina/genética , Receptores KIR/genética , Sequência de Aminoácidos , Animais , Variação Antigênica/imunologia , Sequência de Bases , Cromossomos Artificiais Bacterianos/imunologia , Evolução Molecular , Deleção de Genes , Haplótipos/imunologia , Humanos , Macaca mulatta , Dados de Sequência Molecular , Pan troglodytes , Pongo , Receptores KIR/metabolismo
19.
Proc Natl Acad Sci U S A ; 106(44): 18692-7, 2009 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-19837691

RESUMO

Natural killer (NK) cells contribute to immunity and reproduction. Guiding these functions, and NK cell education, are killer cell Ig-like receptors (KIR), NK cell receptors that recognize HLA class I. In most human populations, these highly polymorphic receptors and ligands combine with extraordinary diversity. To assess how much of this diversity is necessary, we studied KIR and HLA class I at high resolution in the Yucpa, a small South Amerindian population that survived an approximate 15,000-year history of population bottleneck and epidemic infection, including recent viral hepatitis. The Yucpa retain the three major HLA epitopes recognized by KIR. Through balancing selection on a few divergent haplotypes the Yucpa maintain much of the KIR variation found worldwide. HLA-C*07, the strongest educator of C1-specific NK cells, has reached unusually high frequency in the Yucpa. Concomitantly, weaker variants of the C1 receptor, KIR2DL3, were selected and have largely replaced the form of KIR2DL3 brought by the original migrants from Asia. HLA-C1 and KIR2DL3 homozygosity has previously been correlated with resistance to viral hepatitis. Selection of weaker forms of KIR2DL3 in the Yucpa can be seen as compensation for the high frequency of the potent HLA-C*07 ligand. This study provides an estimate of the minimal KIR-HLA system essential for long-term survival of a human population. That it contains all functional elements of KIR diversity worldwide, attests to the competitive advantage it provides, not only for surviving epidemic infections, but also for rebuilding populations once infection has passed.


Assuntos
Evolução Molecular , Variação Genética , Antígenos HLA-C/genética , Indígenas Sul-Americanos/genética , Receptores KIR2DL3/genética , Alelos , Epitopos/imunologia , Haplótipos , Humanos , Ligantes , Dados de Sequência Molecular , Mutação/genética , Seleção Genética
20.
PLoS Genet ; 5(10): e1000688, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19834558

RESUMO

There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in "higher" primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire.


Assuntos
Evolução Molecular , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , Polimorfismo Genético , Strepsirhini/genética , Strepsirhini/imunologia , Animais , Linhagem Celular , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Humanos , Camundongos , Modelos Moleculares , Subfamília D de Receptores Semelhantes a Lectina de Células NK/química , Filogenia , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA