Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Immun Ageing ; 20(1): 31, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400834

RESUMO

BACKGROUND: Human aging is characterized by a state of chronic inflammation, termed inflammaging, for which the causes are incompletely understood. It is known, however, that macrophages play a driving role in establishing inflammaging by promoting pro-inflammatory rather than anti-inflammatory responses. Numerous genetic and environmental risk factors have been implicated with inflammaging, most of which are directly linked to pro-inflammatory mediators IL-6, IL1Ra, and TNFα. Genes involved in the signaling and production of those molecules have also been highlighted as essential contributors. TAOK3 is a serine/threonine kinase of the STE-20 kinase family that has been associated with an increased risk of developing auto-immune conditions in several genome-wide association studies (GWAS). Yet, the functional role of TAOK3 in inflammation has remained unexplored. RESULTS: We found that mice deficient in the serine/Threonine kinase Taok3 developed severe inflammatory disorders with age, which was more pronounced in female animals. Further analyses revealed a drastic shift from lymphoid to myeloid cells in the spleens of those aged mice. This shift was accompanied by hematopoietic progenitor cells skewing in Taok3-/- mice that favored myeloid lineage commitment. Finally, we identified that the kinase activity of the enzyme plays a vital role in limiting the establishment of proinflammatory responses in macrophages. CONCLUSIONS: Essentially, Taok3 deficiency promotes the accumulation of monocytes in the periphery and their adoption of a pro-inflammatory phenotype. These findings illustrate the role of Taok3 in age-related inflammation and highlight the importance of genetic risk factors in this condition.

2.
Stem Cells ; 39(9): 1207-1220, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33882146

RESUMO

Although intracellular Wnt signaling pathways need to be tightly regulated to promote hematopoietic stem cell self-renewal, the source and identity of important Wnt ligands in the bone marrow is still largely unknown. The noncanonical ligand Wnt4 is expressed in the bone marrow as well as in the stroma, and its overexpression in fetal liver cells facilitates thymic recovery; however, its impact on adult hematopoietic stem cell function remains unclear. Here, we report that the deletion of Wnt4 from hematopoietic cells in mice (Wnt4Δ/Δ ) resulted in decreased lymphopoiesis at steady state. This was likely at least in part due to the increased proinflammatory environment present in the bone marrow of Wnt4Δ/Δ mice. Wnt4Δ/Δ hematopoietic stem cells displayed reduced reconstitution capacity in serial transplants, thus demonstrating defective self-renewal, and they expanded poorly in response to lipopolysaccharide stimulation. This appeared to be the result of the absence of Wnt4 in stem/progenitor cells, as myeloid-restricted Wnt4 deletion had no notable effect. Finally, we observed that Wnt4Δ/Δ stem/progenitor cells were more quiescent, presenting enhanced levels of stress-associated JNK phosphorylation and p16INK4a expression, likely contributing to the reduced expansion observed in transplants. In conclusion, our results identify a new, largely autocrine role for Wnt4 in hematopoietic stem cell self-renewal, suggesting that regulation of Wnt signaling in hematopoiesis may not need Wnt secretion and could be independent of morphogen gradients.


Assuntos
Hematopoese , Transplante de Células-Tronco Hematopoéticas , Animais , Diferenciação Celular , Autorrenovação Celular , Células-Tronco Hematopoéticas/metabolismo , Linfopoese , Camundongos , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
3.
PLoS Pathog ; 13(8): e1006422, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28787450

RESUMO

Cells of the immune system are derived from hematopoietic stem cells (HSCs) residing in the bone marrow. HSCs become activated in response to stress, such as acute infections, which adapt the bone marrow output to the needs of the immune response. However, the impact of infection-adapted HSC activation and differentiation on the persistence of chronic infections is poorly understood. We have examined here the bone marrow outcome of chronic visceral leishmaniasis and show that the parasite Leishmania donovani induces HSC expansion and skews their differentiation towards non-classical myeloid progenitors with a regulatory phenotype. Our results further suggest that emergency hematopoiesis contributes to the pathogenesis of visceral leishmaniasis, as decreased HSC expansion results in a lower parasite burden. Conversely, monocytes derived in the presence of soluble factors from the infected bone marrow environment are more permissive to infection by Leishmania. Our results demonstrate that L. donovani is able to subvert host bone marrow emergency responses to facilitate parasite persistence, and put forward hematopoiesis as a novel therapeutic target in chronic infections.


Assuntos
Diferenciação Celular/imunologia , Células-Tronco Hematopoéticas/imunologia , Leishmaniose Visceral/imunologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Hematopoese/imunologia , Células-Tronco Hematopoéticas/parasitologia , Camundongos , Camundongos Endogâmicos C57BL
4.
PLoS Pathog ; 13(9): e1006616, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28892492

RESUMO

Leishmania donovani is known to induce myelopoiesis and to dramatically increase extramedullary myelopoiesis. This results in splenomegaly, which is then accompanied by disruption of the splenic microarchitecture, a chronic inflammatory environment, and immunosuppression. Chronically inflamed tissues are typically hypoxic. The role of hypoxia on myeloid cell functions during visceral leishmaniasis has not yet been studied. Here we show that L. donovani promotes the output from the bone marrow of monocytes with a regulatory phenotype that function as safe targets for the parasite. We also demonstrate that splenic myeloid cells acquire MDSC-like function in a HIF-1α-dependent manner. HIF-1α is also involved in driving the polarization towards M2-like macrophages and rendering intermediate stage monocytes more susceptible to L. donovani infection. Our results suggest that HIF-1α is a major player in the establishment of chronic Leishmania infection and is crucial for enhancing immunosuppressive functions and lowering leishmanicidal capacity of myeloid cells.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Leishmaniose Visceral , Macrófagos/metabolismo , Células Mieloides/metabolismo , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Tolerância Imunológica/efeitos dos fármacos , Interferon gama/farmacologia , Macrófagos/parasitologia , Camundongos , Monócitos/metabolismo , Células Mieloides/parasitologia , Baço/parasitologia
5.
J Immunol ; 195(5): 2168-76, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26188064

RESUMO

Adult hematopoietic stem/progenitor cell (HSPC) numbers remain stable in the absence of external stressors. After bone marrow (BM) transplant, HSPCs need to expand substantially to repopulate the BM and replenish the peripheral blood cell pool. In this study, we show that a noncanonical Wnt receptor, Frizzled-6 (Fzd6), regulates HSPC expansion and survival in a hematopoietic cell-intrinsic manner. Fzd6 deficiency increased the ratio of Flt3(hi) multipotent progenitors to CD150(+) stem cells in the mouse BM, suggesting defective stem cell maintenance. Competitive transplantation experiments demonstrated that Fzd6(-) (/) (-) HSPCs were able to home to the BM but were severely impaired in their capacity to reconstitute a lethally irradiated host. Lack of Fzd6 resulted in a strong activation of caspase-3 and a gradual loss of donor HSPCs and peripheral blood granulocytes. Fzd6 was also necessary for the efficient HSPC expansion during emergency hematopoiesis. Mechanistically, Fzd6 is a negative regulator of Cdc42 clustering in polarized cells. Furthermore, ß-catenin-dependent signaling may be disinhibited in Fzd6(-) (/) (-) HSPCs. Collectively, our data reveal that Fzd6 has an essential role in HSPC maintenance and survival. Noncanonical Wnt-Fzd6 signaling pathway could thus present an interesting target for promoting HSPC expansion and multilineage hematopoietic recovery after transplant.


Assuntos
Proliferação de Células , Receptores Frizzled/imunologia , Hematopoese/imunologia , Células-Tronco Hematopoéticas/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células Cultivadas , Citometria de Fluxo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fatores de Tempo , beta Catenina/imunologia , beta Catenina/metabolismo , Proteína cdc42 de Ligação ao GTP/imunologia , Proteína cdc42 de Ligação ao GTP/metabolismo
6.
Front Med (Lausanne) ; 11: 1364778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707187

RESUMO

In the context of inflammation, T cell activation occurs by the concerted signals of the T cell receptor (TCR), co-stimulatory receptors ligation, and a pro-inflammatory cytokine microenvironment. Fine-tuning these signals is crucial to maintain T cell homeostasis and prevent self-reactivity while offering protection against infectious diseases and cancer. Recent developments in understanding the complex crosstalk between the molecular events controlling T cell activation and the balancing regulatory cues offer novel approaches for the development of T cell-based immunotherapies. Among the complex regulatory processes, the balance between protein tyrosine kinases (PTK) and the protein tyrosine phosphatases (PTPs) controls the transcriptional and metabolic programs that determine T cell function, fate decision, and activation. In those, PTPs are de facto regulators of signaling in T cells acting for the most part as negative regulators of the canonical TCR pathway, costimulatory molecules such as CD28, and cytokine signaling. In this review, we examine the function of two close PTP homologs, PTP1B (PTPN1) and T-cell PTP (TCPTP; PTPN2), which have been recently identified as promising candidates for novel T-cell immunotherapeutic approaches. Herein, we focus on recent studies that examine the known contributions of these PTPs to T-cell development, homeostasis, and T-cell-mediated immunity. Additionally, we describe the signaling networks that underscored the ability of TCPTP and PTP1B, either individually and notably in combination, to attenuate TCR and JAK/STAT signals affecting T cell responses. Thus, we anticipate that uncovering the role of these two PTPs in T-cell biology may lead to new treatment strategies in the field of cancer immunotherapy. This review concludes by exploring the impacts and risks that pharmacological inhibition of these PTP enzymes offers as a therapeutic approach in T-cell-based immunotherapies.

7.
Sci Signal ; 17(817): eadg4422, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166031

RESUMO

Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK. The loss of TAOK3 decreased the survival of naïve CD4+ T cells by dampening the transmission of tonic and ligand-dependent TCR signaling. In mouse T cells, Taok3 promoted the secretion of interleukin-2 (IL-2) in response to TCR activation in a manner that depended on Taok3 gene dosage and on Taok3 kinase activity. TCR desensitization in Taok3-/- T cells was caused by an increased abundance of Shp-1, and pharmacological inhibition of Shp-1 rescued the activation potential of these T cells. TAOK3 phosphorylated threonine-394 in the phosphatase domain of SHP-1, which promoted its ubiquitylation and proteasomal degradation. The loss of TAOK3 had no effect on the abundance of SHP-2, which lacks a residue corresponding to SHP-1 threonine-394. Modulation of SHP-1 abundance by TAOK3 thus serves as a rheostat for TCR signaling and determines the activation threshold of T lymphocytes.


Assuntos
Proteínas Serina-Treonina Quinases , Receptores de Antígenos de Linfócitos T , Linfócitos T , Animais , Humanos , Camundongos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Treonina/metabolismo
8.
Stem Cell Reports ; 17(10): 2303-2317, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084638

RESUMO

Emergency hematopoiesis involves the activation of bone marrow hematopoietic stem/progenitor cells (HSPCs) in response to systemic inflammation by a combination of cell-autonomous and stroma-dependent signals and leads to their release from bone marrow and migration to periphery. We have previously shown that FZD6 plays a pivotal role in regulating HSPC expansion and long-term maintenance. Now we sought to better understand the underlying mechanisms. Using lipopolysaccharide (LPS)-induced emergency granulopoiesis as a model, we show that failed expansion was intrinsic to FZD6-deficient HSPCs but also required a FZD6-deficient environment. FZD6-deficient HSPCs became more strongly activated, but their mobilization to peripheral blood was impaired and they were more susceptible to inflammatory cell death, leading to enhanced release of pro-inflammatory cytokines in the marrow. These studies indicate that FZD6 has a protective effect in the bone marrow to prevent an overactive inflammatory response and further suggest that mobilization improves HSPC survival during bone marrow inflammation.


Assuntos
Lipopolissacarídeos , Mielopoese , Citocinas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Inflamação/metabolismo
9.
Sci Rep ; 8(1): 3500, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472618

RESUMO

Inflammation, although responsible for controlling infection, is often associated with the pathogenesis of chronic diseases. Leishmania donovani, the causative agent of visceral leishmaniasis, induces a strong inflammatory response that leads to splenomegaly and ultimately immune suppression. Inflamed tissues are typically characterized by low levels of oxygen, a microenvironment that triggers the hypoxia-inducible transcription factor 1α (HIF-1α). Although HIF-1α plays an integral role in dendritic cell function, its involvement in the generation of protective Th1 responses against Leishmania has not yet been studied. Here we demonstrate that HIF-1α inhibits IL-12 production in dendritic cells, limiting therefore Th1 cell development. Indeed, depletion of HIF-1α in CD11c+ cells resulted in higher and sustained expression of IL-12 and complete abrogation of IL-10. Moreover, CD11c-specific HIF-1α-deficient mice showed higher frequencies of IFN-γ-producing CD4 T cells in the spleen and bone marrow and, consequently, a significantly reduced parasite burden in both organs. Taken together, our results suggest that HIF-1α expression in dendritic cells largely contributes to the establishment of persistent Leishmania infection and may therefore represent a possible therapeutic target.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/genética , Leishmania donovani/genética , Leishmaniose Visceral/genética , Animais , Antígenos CD11/genética , Antígenos CD11/imunologia , Linfócitos T CD4-Positivos/imunologia , Microambiente Celular/genética , Microambiente Celular/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Humanos , Inflamação/patologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Leishmania donovani/imunologia , Leishmania donovani/patogenicidade , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Baço/parasitologia , Esplenomegalia/genética , Esplenomegalia/imunologia , Esplenomegalia/parasitologia , Esplenomegalia/patologia , Células Th1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA