Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(41): 20280-20285, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548383

RESUMO

Using X-ray emission spectroscopy, we find appreciable local magnetic moments until 30 GPa to 40 GPa in the high-pressure phase of iron; however, no magnetic order is detected with neutron powder diffraction down to 1.8 K, contrary to previous predictions. Our first-principles calculations reveal a "spin-smectic" state lower in energy than previous results. This state forms antiferromagnetic bilayers separated by null spin bilayers, which allows a complete relaxation of the inherent frustration of antiferromagnetism on a hexagonal close-packed lattice. The magnetic bilayers are likely orientationally disordered, owing to the soft interlayer excitations and the near-degeneracy with other smectic phases. This possible lack of long-range correlation agrees with the null results from neutron powder diffraction. An orientationally disordered, spin-smectic state resolves previously perceived contradictions in high-pressure iron and could be integral to explaining its puzzling superconductivity.

2.
Inorg Chem ; 60(2): 798-806, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33401906

RESUMO

A multiedge study of the local structure of lithium borate glasses and melts has been carried out using X-ray Raman scattering (XRS) as a function of temperature. Thanks to a wide range of compositions, from pure B2O3 up to the metaborate composition, we are able to finely interpret the modifications of the local environment of both the boron and oxygen atoms in terms of boron coordination number, formation of nonbridging oxygens (NBOs), and polymerization degree of the borate framework as a function of temperature and composition. A temperature-induced [4]B to [3]B conversion is observed above the glass transition temperature (Tg) from the glass to the melt from the triborate composition up to the metaborate composition. Two distinct melt structures are reported: a well-polymerized borate network-with few NBOs-below the triborate composition and a depolymerized borate network above the diborate composition with a rapid increase of the number of NBOs when Li2O is added. These two structurally distinct melts allow explaining the two dynamic regimes observed for lithium ion diffusion.

3.
Nano Lett ; 19(12): 8920-8927, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702928

RESUMO

Separating electrons from their source atoms in La-doped BaSnO3, the first perovskite oxide semiconductor to be discovered with high room-temperature electron mobility, remains a subject of great interest for achieving high-mobility electron gas in two dimensions. So far, the vast majority of work in perovskite oxides has focused on heterostructures involving SrTiO3 as an active layer. Here we report the demonstration of modulation doping in BaSnO3 as the high room-temperature mobility host without the use of SrTiO3. Significantly, we show the use of angle-resolved hard X-ray photoelectron spectroscopy (HAXPES) as a nondestructive approach to not only determine the location of electrons at the buried interface but also to quantify the width of electron distribution in BaSnO3. The transport results are in good agreement with the results of self-consistent solution to one-dimensional Poisson and Schrödinger equations. Finally, we discuss viable routes to engineer two-dimensional electron gas density through band-offset engineering.

4.
Angew Chem Int Ed Engl ; 59(23): 9113-9119, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32134154

RESUMO

The first colour photographs were created by a process introduced by Edmond Becquerel in 1848. The nature of these photochromatic images colours motivated a debate between scientists during the XIXth century, which is still not settled. We present the results of chemical analysis (EDX, HAXPES and EXAFS) and morphology studies (SEM, STEM) aiming at explaining the optical properties of the photochromatic images (UV-visible spectroscopy and low loss EELS). We rule out the two hypotheses (pigment and interferences) that have prevailed since 1848, respectively based on variations in the oxidation degree of the compound forming the sensitized layer and periodically spaced photolytic silver planes. A study of the silver nanoparticles dispersions contained in the coloured layers showed specific localizations and sizes distributions of the nanoparticles for each colour. These results allow us to formulate a plasmonic hypothesis on the origin of the photochromatic images colours.

5.
Inorg Chem ; 53(20): 10903-8, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25275633

RESUMO

Probing the local environment of low-Z elements, such as oxygen, is of great interest for understanding the atomic-scale behavior in materials, but it requires experimental techniques allowing it to work with versatile sample environments. In this paper, the local environment of lithium borate crystals is investigated using non-resonant inelastic X-ray scattering (NRIXS) at energy losses corresponding to the oxygen K-edge. Large variations of the spectral features are observed close to the edge onset in the 535-540 eV energy range when varying the Li2O content. Calculations allow identification of contributions associated with bridging oxygen (BO) and non-bridging oxygen (NBO) atoms. The main result resides in the observed core-level shift of about 1.7 eV in the spectral signatures of the BO and NBO. The clear signature at 535 eV in the O K-edge NRXIS spectrum is thus an original way to probe the presence of NBOs in borates, with the great advantage of making possible the use of complex environments such as a high-pressure cell or high-temperature device for in situ measurements.

6.
Sci Rep ; 5: 17937, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658647

RESUMO

Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu4Sn6 is a strongly correlated material with non-trivial topology.

7.
Opt Express ; 11(8): 919-26, 2003 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19461807

RESUMO

Using micro-fabrication techniques, we have manufactured a single element kinoform lens in single-crystal silicon with an elliptical profile for 12.398 keV (1A) x-rays. By fabricating a lens that is optimized at fixed wavelengths, absorption in the lens material can be significantly reduced by removing 2_ phase-shifting regions. This permits short focal length devices to be fabricated with small radii of curvatures at the lens apex. This feature allows one to obtain a high demagnification of a finite synchrotron electron source size. The reduced absorption loss also enables optics with a larger aperture, and hence improved resolution for focusing and imaging applications. Our first trial of these lenses has resulted in a one micron line focus (fwhm) at the National Synchrotron Light Source X13B beamline.

8.
Nat Commun ; 5: 4069, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24906107

RESUMO

Studies of photoemission processes induced by hard X-rays including production of energetic electrons have become feasible due to recent substantial improvement of instrumentation. Novel dynamical phenomena have become possible to investigate in this new regime. Here we show a significant change in Auger emission following 1s photoionization of neon, which we attribute to the recoil of the Ne ion induced by the emission of a fast photoelectron. Because of the preferential motion of the ionized Ne atoms along two opposite directions, an Auger Doppler shift is revealed, which manifests itself as a gradual broadening and doubling of the Auger spectral features. This Auger Doppler effect should be a general phenomenon in high-energy photoemission of both isolated atoms and molecules, which will have to be taken into account in studies of other recoil effects such as vibrational or rotational recoil in molecules, and may also have consequences in measurements in solids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA