Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38921567

RESUMO

Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) offer diverse health benefits, such as supporting cardiovascular health, improving cognitive function, promoting joint and musculoskeletal health, and contributing to healthy aging. Despite their advantages, challenges like oxidation susceptibility, low bioavailability, and potential adverse effects at high doses persist. Nanoparticle encapsulation emerges as a promising avenue to address these limitations while preserving stability, enhanced bioavailability, and controlled release. This comprehensive review explores the therapeutic roles of omega-3 fatty acids, critically appraising their shortcomings and delving into modern encapsulation strategies. Furthermore, it explores the potential advantages of metal-organic framework nanoparticles (MOF NPs) compared to other commonly utilized nanoparticles in improving the therapeutic effectiveness of omega-3 fatty acids within drug delivery systems (DDSs). Additionally, it outlines future research directions to fully exploit the therapeutic benefits of these encapsulated omega-3 formulations for cardiovascular disease treatment.


Assuntos
Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Nanopartículas , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Nanopartículas/química , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Estruturas Metalorgânicas/química
2.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203365

RESUMO

The increasing popularity of electronic cigarettes (e-cigarettes) as an alternative to conventional tobacco products has raised concerns regarding their potential adverse effects. The cardiovascular system undergoes intricate processes forming the heart and blood vessels during fetal development. However, the precise impact of e-cigarette smoke and aerosols on these delicate developmental processes remains elusive. Previous studies have revealed changes in gene expression patterns, disruptions in cellular signaling pathways, and increased oxidative stress resulting from e-cigarette exposure. These findings indicate the potential for e-cigarettes to cause developmental and cardiovascular harm. This comprehensive review article discusses various aspects of electronic cigarette use, emphasizing the relevance of cardiovascular studies in Zebrafish for understanding the risks to human health. It also highlights novel experimental approaches and technologies while addressing their inherent challenges and limitations.


Assuntos
Sistema Cardiovascular , Sistemas Eletrônicos de Liberação de Nicotina , Perciformes , Humanos , Animais , Peixe-Zebra , Coração
3.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163328

RESUMO

Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality worldwide. However, despite the recent developments in the management of CVDs, the early and long outcomes vary considerably in patients, especially with the current challenges facing the detection and treatment of CVDs. This disparity is due to a lack of advanced diagnostic tools and targeted therapies, requiring innovative and alternative methods. Nanotechnology offers the opportunity to use nanomaterials in improving health and controlling diseases. Notably, nanotechnologies have recognized potential applicability in managing chronic diseases in the past few years, especially cancer and CVDs. Of particular interest is the use of nanoparticles as drug carriers to increase the pharmaco-efficacy and safety of conventional therapies. Different strategies have been proposed to use nanoparticles as drug carriers in CVDs; however, controversies regarding the selection of nanomaterials and nanoformulation are slowing their clinical translation. Therefore, this review focuses on nanotechnology for drug delivery and the application of nanomedicine in CVDs.


Assuntos
Doenças Cardiovasculares , Nanopartículas , Nanoestruturas , Doenças Cardiovasculares/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Nanoestruturas/uso terapêutico , Nanotecnologia
4.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546374

RESUMO

The high volume of information produced in the age of omics was and still is an important step to understanding several pathological processes, providing the enlightenment of complex molecular networks and the identification of molecular targets associated with many diseases. Despite these remarkable scientific advances, the majority of the results are disconnected and divergent, making their use limited. Skin diseases with alterations in the Notch signaling pathway were extensively studied during the omics era. In the GWAS Catalog, considering only studies on genomics association (GWAS), several works were deposited, some of which with divergent results. In addition, there are thousands of scientific articles available about these skin diseases. In our study, we focused our attention on skin diseases characterized by the impairment of Notch signaling, this pathway being of pivotal importance in the context of epithelial disorders. We considered the pathologies of five human skin diseases, Hidradenitis Suppurativa, Dowling Degos Disease, Adams-Oliver Syndrome, Psoriasis, and Atopic Dermatitis, in which the molecular alterations in the Notch signaling pathway have been reported. To this end, we started developing a new multiomics platform, PlatOMICs, to integrate and re-analyze omics information, searching for the molecular interactions involved in the pathogenesis of skin diseases with alterations in the Notch signaling pathway.


Assuntos
Suscetibilidade a Doenças , Genômica , Mutação , Receptores Notch/genética , Transdução de Sinais , Dermatopatias/etiologia , Dermatopatias/metabolismo , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Genômica/métodos , Humanos , Proteoma , Proteômica/métodos , Dermatopatias/patologia , Transcriptoma
5.
Molecules ; 23(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134642

RESUMO

The aim of this work is the evaluation of a green extraction technology to exploit winery waste byproducts. Specifically, a solid⁻liquid extraction technology (Naviglio Extractor®) was used to obtain polyphenolic antioxidants from the Cagnulari grape marc. The extract was then chemically characterized by spectrophotometric analysis, high-performance liquid chromatography, and mass spectrometry, revealing a total polyphenol content of 4.00 g/L ± 0.05, and the presence of anthocyanins, one of the most representative groups among the total polyphenols in grapes. To investigate potential biological activities of the extract, its ability to counteract hydrogen peroxide-induced oxidative stress and cell death was assessed in primary human endothelial cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, used to assess potential extract cytotoxicity, failed to show any deleterious effect on cultured cells. Fluorescence measurements, attained with the intracellular reactive oxygen species (ROS) probe 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA), revealed a strong antioxidant potential of the marc extract on the used cells, as indicated by the inhibition of the hydrogen peroxide-induced ROS generation and the counteraction of the oxidative-induced cell death. Our results indicate the Naviglio extraction, as a green technology process, can be used to exploit wine waste to obtain antioxidants which can be used to produce enriched foods and nutraceuticals high in antioxidants.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Vitis/química , Antioxidantes/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Espectrometria de Massas , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo
6.
J Transl Med ; 13: 142, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25948279

RESUMO

BACKGROUND: The role of endothelial progenitor cells (EPCs) in vascular repair is related to their recruitment at the sites of injury and their interaction with different components of the circulatory system. We have previously shown that EPCs bind and inhibit platelet function and impair thrombus formation via prostacyclin secretion, but the role of EPC binding to platelet P-selectin in this process has not been fully characterized. In the present study, we assessed the impact of EPCs on thrombus formation and we addressed the implication of P-selectin in this process. METHODS: EPCs were generated from human peripheral blood mononuclear cells cultured on fibronectin in conditioned media. The impact of EPCs on platelet aggregation and thrombus formation was investigated in P-selectin deficient (P-sel(-/-)) mice and their wild-type (WT) counterparts. RESULTS: EPCs significantly and dose-dependently impaired collagen-induced whole blood platelet aggregation in WT mice, whereas no effects were observed in P-sel(-/-) mice. Moreover, in a ferric chloride-induced arterial thrombosis model, infusion of EPCs significantly reduced thrombus formation in WT, but not in P-sel(-/-) mice. Furthermore, the relative mass of thrombi generated in EPC-treated P-sel(-/-) mice were significantly larger than those in EPC-treated WT mice, and the number of EPCs recruited within the thrombi and along the arterial wall was reduced in P-sel(-/-) mice as compared to WT mice. CONCLUSION: This study shows that EPCs impair platelet aggregation and reduce thrombus formation via a cellular mechanism involving binding to platelet P-selectin. These findings add new insights into the role of EPC-platelet interactions in the regulation of thrombotic events during vascular repair.


Assuntos
Plaquetas/metabolismo , Células Progenitoras Endoteliais/citologia , Regulação da Expressão Gênica , Selectina-P/genética , Adulto , Animais , Artérias Carótidas/patologia , Feminino , Humanos , Leucócitos Mononucleares/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Pessoa de Meia-Idade , Selectina-P/metabolismo , Fenótipo , Agregação Plaquetária , Ligação Proteica , Trombose/metabolismo , Trombose/patologia , Adulto Jovem
7.
J Transl Med ; 13: 353, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26552480

RESUMO

BACKGROUND: Endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis, endothelial repair and cell-based therapies for cardiovascular diseases. We have previously shown that the recruitment of EPCs to sites of vascular lesions is facilitated by platelets where EPCs, in turn, modulate platelet function and thrombosis. However, EPCs encompass a heterogeneous population of progenitor cells that may exert different effects on platelet function. Recent evidence suggests the existence of two EPC subtypes: early outgrowth cells (EOCs) and endothelial colony-forming cells (ECFCs). We aimed at characterizing these two EPC subtypes and at identifying their role in platelet aggregation. METHODS: EOCs and ECFCs were generated from human peripheral blood mononuclear cells (PBMCs) seeded in conditioned media on fibronectin and collagen, respectively. The morphological, phenotypical and functional characteristics of EOCs and ECFCs were assessed by optical and confocal laser scanning microscopes, cell surface markers expression, and Matrigel tube formation. The impact of EOCs and ECFCs on platelet aggregation was monitored in collagen-induced optical aggregometry and compared with PBMCs and human umbilical vein endothelial cells (HUVECs). The levels of the anti-platelet agents' nitric oxide (NO) and prostacyclin (PGI2) released from cultured cells as well as the expression of their respective producing enzymes NO synthases (NOS) and cyclooxygenases (COX) were also assessed. RESULTS: We showed that EOCs display a monocytic-like phenotype whereas ECFCs have an endothelial-like phenotype. We demonstrated that both EOCs and ECFCs and their supernatants inhibited platelet aggregation; however ECFCs were more efficient than EOCs. This could be related to the release of significantly higher amounts of NO and PGI2 from ECFCs, in comparison to EOCs. Indeed, ECFCs, like HUVECs, constitutively express the endothelial (eNOS)-and inducible (iNOS)-NOS isoforms, and COX-1 and weakly express COX-2, whereas EOCs do not constitutively express these NO and PGI2 producing enzymes. CONCLUSION: The different morphological, phenotypic and more importantly the release of the anti-aggregating agents PGI2 and NO in each EPC subtype are implicated in their respective roles in platelet function and thus, may be linked to the increased efficiency of ECFCs in inhibiting platelet aggregation as compared to EOCs.


Assuntos
Plaquetas/citologia , Células Endoteliais/citologia , Agregação Plaquetária , Células-Tronco/citologia , Adulto , Doenças Cardiovasculares/metabolismo , Células Cultivadas , Colágeno/química , Meios de Cultivo Condicionados/química , Epoprostenol/metabolismo , Fibronectinas/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucócitos Mononucleares/citologia , Microscopia Confocal , Pessoa de Meia-Idade , Óxido Nítrico/química , Óxido Nítrico Sintase/metabolismo , Fenótipo , Prostaglandina-Endoperóxido Sintases/metabolismo , Adulto Jovem
8.
J Biol Chem ; 288(46): 32941-51, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24097979

RESUMO

Resistance arteries show accentuated responsiveness to vasoconstrictor agonists in hypertension, and this abnormality relies partly on enhanced Ca(2+) signaling in vascular smooth muscle (VSM). Although inositol 1,4,5-triphosphate receptors (IP3Rs) are abundant in VSM, their role in the molecular remodeling of the Ca(2+) signaling machinery during hypertension has not been addressed. Therefore, we compared IP3R expression and function between mesenteric arteries of normotensive and hypertensive animals. Levels of IP3R transcript and protein were significantly increased in mesenteric arteries of hypertensive animals, and pharmacological inhibition of the IP3R revealed a higher contribution of IP3-dependent Ca(2+) release to vascular contraction in these arteries. Subsequently, we established cultured aortic VSM A7r5 cells as a cellular model that replicates IP3R up-regulation during hypertension by depolarizing the VSM cell membrane. IP3R up-regulation requires Ca(2+) influx through L-type Ca(2+) channels, followed by activation of the calcineurin-NFAT axis, resulting in IP3R transcription. Functionally, IP3R up-regulation in VSM is associated with enhancement and sensitization of IP3-dependent Ca(2+) release, resulting in increased VSM contraction in response to agonist stimulation.


Assuntos
Sinalização do Cálcio , Hipertensão/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/biossíntese , Contração Muscular , Proteínas Musculares/biossíntese , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Regulação para Cima , Animais , Calcineurina/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , Hipertensão/patologia , Potenciais da Membrana , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Camundongos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fatores de Transcrição NFATC/metabolismo , Ratos , Transcrição Gênica
9.
J Infect Public Health ; 16(11): 1729-1735, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734128

RESUMO

BACKGROUND: Evidence on the effectiveness of vaccination-induced immunity compared to SARS-CoV-2 natural immunity is warranted to inform vaccination recommendations. AIM: In this study, we aimed to conduct a comparative assessment of antibody responses between vaccinated naïve (VN) and unvaccinated naturally infected individuals (NI) over 10 Months. METHOD: The study comprised fully-vaccinated naïve individuals (VN; n = 596) who had no history of SARS-CoV-2 infection, and received two doses of either BNT162b2 or mRNA-1273, and naturally infected individuals who had a documented history of SARS-CoV-2 infection and no vaccination record (NI cohort; n = 218). We measured the levels of neutralizing total antibodies (NtAbs), anti-S-RBD IgG, and anti-S1 IgA titers among VN and NI up to ∼10 months from administration of the first dose, and up to ∼7 months from SARS-CoV-2 infection, respectively. To explore the relationship between the antibody responses and time, Spearman's correlation coefficient was computed. Furthermore, correlations between the levels of NtAbs/anti-S-RBD IgG and NtAbs/anti-S1 IgA were examined through pairwise correlation analysis. RESULTS: Up to six months, VN individuals had a significantly higher NtAb and anti-S-RBD IgG antibody responses compared to NI individuals. At the 7th month, there was a significant decline in antibody responses among VN individuals, but not NI individuals, with a minimum decrease of 3.7-fold (p < 0.001). Among VN individuals, anti-S1 IgA levels began to decrease significantly (1.4-fold; p = 0.007) after two months, and both NtAb and S-RBD IgG levels began to decline significantly (NtAb: 2.0-fold; p = 0.042, S-RBD IgG: 2.4-fold; p = 0.035) after three months. After 10 months, the most significant decline among VN individuals was observed for S-RBD-IgG (30.0-fold; P < 0.001), followed by NtAb (15.7-fold; P < 0.001) and S-IgA (3.7-fold; P < 0.001) (most stable). Moreover, after 5 months, there was no significant difference in the IgA response between the two groups. CONCLUSION: These findings have important implications for policymakers in the development of vaccination strategies, particularly in the consideration of booster doses to sustain long-lasting protection against COVID-19.

10.
Toxicol Rep ; 9: 951-960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875258

RESUMO

Metal-Organic Framework MIL-89 nanoparticles garnered remarkable attention for their widespread use in technological applications. However, the impact of these nanomaterials on human and environmental health is still limited, and concerns regarding the potential risk of exposure during manipulation is constantly rising. Therefore, the extensive use of nanomaterials in the medical field necessitates a comprehensive assessment of their safety and interaction with different tissues of the body system. In this study, we evaluated the systemic toxicity of nanoMIL-89 using Zebrafish embryos as a model system to determine the acute developmental effect. Zebrafish embryos were exposed to a range of nanoMIL-89 concentrations (1 - 300 µM) at 4 h post-fertilization (hpf) for up to 120 hpf. The viability and hatching rate were evaluated at 24-72 hpf, whereas the cardiac function was assessed at 72 and 96 hpf, and the neurodevelopment and hepatic steatosis at 120 hpf. Our study shows that nanoMIL-89 exerted no developmental toxicity on zebrafish embryos at low concentrations (1-10 µM). However, the hatching time and heart development were affected at high concentrations of nanoMIL-89 (> 30 µM). Our findings add novel information into the available data about the in vivo toxicity of nanoMIL-89 and demonstrate its innocuity and safe use in biological, environmental, and medical applications.

11.
Viruses ; 14(7)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35891532

RESUMO

There is no doubt that infectious diseases present global impact on the economy, society, health, mental state, and even political aspects, causing a long-lasting dent, and the situation will surely worsen if and when the viral spread becomes out of control, as seen during the still ongoing coronavirus disease 2019 (COVID-19) pandemic. Despite the considerable achievements made in viral prevention and treatment, there are still significant challenges that can be overcome through careful understanding of the viral mechanism of action to establish common ground for innovating new preventative and treatment strategies. Viruses can be regarded as devil nanomachines, and one innovative approach to face and stop the spread of viral infections is the development of nanoparticles that can act similar to them as drug/vaccine carriers. Moreover, we can use the properties that different viruses have in designing nanoparticles that reassemble the virus conformational structures but that do not present the detrimental threats to human health that native viruses possess. This review discusses the current preventative strategies (i.e., vaccination) used in facing viral infections and the associated limitations, highlighting the importance of innovating new approaches to face viral infectious diseases and discussing the current nanoapplications in vaccine development and the challenges that still face the nanovaccine field.


Assuntos
COVID-19 , Vacinas Virais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
12.
Cancers (Basel) ; 14(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36428714

RESUMO

Multiple myeloma (MM) is a hematological disorder characterized by the abnormal expansion of plasma cells in the bone marrow. Despite great advances over the past three decades in discovering the efficacious therapies for MM, the disease remains incurable for most patients owing to emergence of drug-resistant cancerous cells. Guggulsterone (GS), a phytosteroid, extracted from the gum resin of guggul plant, has displayed various anticancer activities in vitro and in vivo; however, the molecular mechanisms of its anticancer activity have not been evaluated in MM cells. Therefore, in this study, we investigated the anticancer activity of GS in various MM cell lines (U266, MM.1S, and RPMI 8226) and the mechanisms involved. GS treatment of MM cells caused inhibition of cell proliferation and induction of apoptotic cell death as indicated by increased Bax protein expression, activation of caspases, and cleavage of poly (ADP-ribose) polymerase. This was associated with the downregulation of various proliferative and antiapoptotic gene products, including cyclin D, Bcl-2, Bcl-xL, and X-linked inhibitor of apoptosis protein. GS also suppressed the constitutive and interleukin 6-induced activation of STAT3. Interestingly, the inhibition of Janus activated kinase or STAT3 activity by the specific inhibitors or by siRNA knockdown of STAT3 resulted in the downregulation of HMGB1, suggesting an association between GS, STAT3, and HMGB1. Finally, GS potentiated the anticancer effects of bortezomib (BTZ) in MM cells. Herein, we demonstrated that GS could be a potential therapeutic agent for the treatment of MM, possibly alone or in combination with BTZ.

13.
Vaccines (Basel) ; 10(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35214650

RESUMO

The currently authorized mRNA COVID-19 vaccines, Pfizer-BNT162b2 and Moderna-mRNA-1273, offer great promise for reducing the spread of the COVID-19 by generating protective immunity against SARS-CoV-2. Recently, it was shown that the magnitude of the neutralizing antibody (NAbs) response correlates with the degree of protection. However, the difference between the immune response in naïve mRNA-vaccinated and previously infected (PI) individuals is not well studied. We investigated the level of NAbs in naïve and PI individuals after 1 to 26 (median = 6) weeks of the second dose of BNT162b2 or mRNA-1273 vaccination. The naïve mRNA-1273 vaccinated group (n = 68) generated significantly higher (~2-fold, p ≤ 0.001) NAbs than the naïve BNT162b2 (n = 358) group. The P -vaccinated group (n = 42) generated significantly higher (~3-fold; p ≤ 0.001) NAbs levels than the naïve-BNT162b2 (n = 426). Additionally, the older age groups produced a significantly higher levels of antibodies than the young age group (<30) (p = 0.0007). Our results showed that mRNA-1273 generated a higher NAbs response than the BNT162b2 vaccine, and the PI group generated the highest level of NAbs response regardless of the type of vaccine.

14.
J Travel Med ; 29(8)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36342115

RESUMO

BACKGROUND: Waning protection against emerging SARS-CoV-2 variants by pre-existing antibodies elicited because of current vaccination or natural infection is a global concern. Whether this is due to the waning of immunity to SARS-COV-2 remains unclear. AIM: We aimed to investigate the dynamics of antibody isotype responses amongst vaccinated naïve (VN) and naturally infected (NI) individuals. METHODS: We followed up antibody levels in COVID-19 messenger RNA (mRNA)-vaccinated subjects without prior infection (VN, n = 100) in two phases: phase-I (P-I) at ~ 1.4 and phase-II (P-II) at ~ 5.3 months. Antibody levels were compared with those of unvaccinated and naturally infected subjects (NI, n = 40) at ~ 1.7 (P-1) and 5.2 (P-II) months post-infection. Neutralizing antibodies (NTAb), anti-S-RBD-IgG, -IgM and anti-S-IgA isotypes were measured. RESULTS: The VN group elicited significantly greater antibody responses (P < 0.001) than the NI group at P-I, except for IgM. In the VN group, a significant waning in antibody response was observed in all isotypes. There was about an ~ 4-fold decline in NTAb levels (P < 0.001), anti-S-RBD-IgG (~5-fold, P < 0.001), anti-S-RBD-IgM (~6-fold, P < 0.001) and anti-S1-IgA (2-fold, P < 0.001). In the NI group, a significant but less steady decline was notable in S-RBD-IgM (~2-fold, P < 0.001), and a much smaller but significant difference in NTAb (<2-fold, P < 0.001) anti-S-RBD IgG (<2-fold, P = 0.005). Unlike the VN group, the NI group mounted a lasting anti-S1-IgA response with no significant decline. Anti-S1-IgA, which were ~ 3-fold higher in VN subjects compared with NI in P-1 (P < 0.001), dropped to almost the same levels, with no significant difference observed between the two groups in P-II. CONCLUSION: Whereas double-dose mRNA vaccination boosted antibody levels, vaccinated individuals' 'boost' was relatively short-lived.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2 , RNA Mensageiro , Vacinação , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Anticorpos Antivirais
15.
Vaccines (Basel) ; 10(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36016206

RESUMO

Background: Limited commercial LFA assays are available to provide a reliable quantitative measurement of the total binding antibody units (BAU/mL) against the receptor-binding domain of the SARS-CoV-2 spike protein (S-RBD). Aim: This study aimed to evaluate the performance of the fluorescence LFA FinecareTM 2019-nCoV S-RBD test along with its reader (Model No.: FS-113) against the following reference methods: (i) the FDA-approved GenScript surrogate virus-neutralizing assay (sVNT); and (ii) three highly performing automated immunoassays: BioMérieux VIDAS®3, Ortho VITROS®, and Mindray CL-900i®. Methods: Plasma from 488 vaccinees was tested by all aforementioned assays. Fingerstick whole-blood samples from 156 vaccinees were also tested by FinecareTM. Results and conclusions: FinecareTM showed 100% specificity, as none of the pre-pandemic samples tested positive. Equivalent FinecareTM results were observed among the samples taken from fingerstick or plasma (Pearson correlation r = 0.9, p < 0.0001), suggesting that fingerstick samples are sufficient to quantitate the S-RBD BAU/mL. A moderate correlation was observed between FinecareTM and sVNT (r = 0.5, p < 0.0001), indicating that FinecareTM can be used for rapid prediction of the neutralizing antibody (nAb) post-vaccination. FinecareTM BAU results showed strong correlation with VIDAS®3 (r = 0.6, p < 0.0001) and moderate correlation with VITROS® (r = 0.5, p < 0.0001) and CL-900i® (r = 0.4, p < 0.0001), suggesting that FinecareTM can be used as a surrogate for the advanced automated assays to measure S-RBD BAU/mL.

16.
Sci Rep ; 11(1): 4336, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619326

RESUMO

Pulmonary arterial hypertension (PAH) is an incurable disease, although symptoms are treated with a range of dilator drugs. Despite their clinical benefits, these drugs are limited by systemic side-effects. It is, therefore, increasingly recognised that using controlled drug-release nanoformulation, with future modifications for targeted drug delivery, may overcome these limitations. This study presents the first evaluation of a promising nanoformulation (highly porous iron-based metal-organic framework (MOF); nanoMIL-89) as a carrier for the PAH-drug sildenafil, which we have previously shown to be relatively non-toxic in vitro and well-tolerated in vivo. In this study, nanoMIL-89 was prepared and charged with a payload of sildenafil (generating Sil@nanoMIL-89). Sildenafil release was measured by Enzyme-Linked Immunosorbent Assay (ELISA), and its effect on cell viability and dilator function in mouse aorta were assessed. Results showed that Sil@nanoMIL-89 released sildenafil over 6 h, followed by a more sustained release over 72 h. Sil@nanoMIL-89 showed no significant toxicity in human blood outgrowth endothelial cells for concentrations up to100µg/ml; however, it reduced the viability of the human pulmonary artery smooth muscle cells (HPASMCs) at concentrations > 3 µg/ml without inducing cellular cytotoxicity. Finally, Sil@nanoMIL-89 induced vasodilation of mouse aorta after a lag phase of 2-4 h. To our knowledge, this study represents the first demonstration of a novel nanoformulation displaying delayed drug release corresponding to vasodilator activity. Further pharmacological assessment of our nanoformulation, including in PAH models, is required and constitutes the subject of ongoing investigations.


Assuntos
Estruturas Metalorgânicas , Inibidores da Fosfodiesterase 5/administração & dosagem , Hipertensão Arterial Pulmonar/tratamento farmacológico , Citrato de Sildenafila/administração & dosagem , Nanomedicina Teranóstica , Animais , Aorta/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Cinética , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/ultraestrutura , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/farmacocinética , Hipertensão Arterial Pulmonar/etiologia , Citrato de Sildenafila/química , Citrato de Sildenafila/farmacocinética , Análise Espectral , Vasodilatadores/administração & dosagem , Vasodilatadores/química , Vasodilatadores/farmacocinética
17.
Circulation ; 120(22): 2230-9, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19917882

RESUMO

BACKGROUND: Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. METHODS AND RESULTS: Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. CONCLUSIONS: Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis.


Assuntos
Plaquetas/citologia , Plaquetas/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Trombose/fisiopatologia , Lesões das Artérias Carótidas/fisiopatologia , Células Cultivadas , Epoprostenol/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Hemostasia/fisiologia , Humanos , Leucócitos Mononucleares/citologia , Óxido Nítrico/metabolismo , Adesividade Plaquetária/fisiologia , Agregação Plaquetária/fisiologia , Fluxo Sanguíneo Regional
18.
Nanomaterials (Basel) ; 10(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471187

RESUMO

Abstract: Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Alteration of endothelial cells and the underlying vasculature plays a central role in the pathogenesis of various CVDs. The application of nanoscale materials such as nanoparticles in biomedicine has opened new horizons in the treatment of CVDs. We have previously shown that the iron metal-organic framework nanoparticle, Materials Institut Lavoisier-89 (nanoMIL-89) represents a viable vehicle for future drug delivery of pulmonary arterial hypertension. In this study, we have assessed the cellular uptake of nanoMIL-89 in pulmonary artery endothelial and smooth muscle cells using microscopy imaging techniques. We also tested the cellular responses to nanoMIL-89 using molecular and cellular assays. Microscopic images showed cellular internalization of nanoMIL-89, packaging into endocytic vesicles, and passing to daughter cells during mitosis. Moreover, nanoMIL-89 showed anti-inflammatory activity without any significant cytotoxicity. Our results indicate that nanoMIL-89 formulation may offer promising therapeutic opportunities and set forth a new prototype for drug delivery not only in CVDs, but also for other diseases yet incurable, such as diabetes and cancer.

19.
Nutrients ; 11(11)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717258

RESUMO

The preventive effect of high-dose (9%) regular-fish oil (FO) against bone loss during aging has been demonstrated, but the effects of a low-dose (1%-4%) of a highly purified concentrated FO (CFO) has not been elucidated. The aim of this study was to determine the dose-dependent effect of a CFO against bone loss in C57BL/6 female mice during aging. Twelve-month old mice were fed with 1% and 4% CFO and 4% safflower oil (SFO) diets, including a group with a 4% regular-FO diet and a group with a lab chow diet for 12 months. Bone mineral density (BMD) was analyzed by dual-energy x-ray absorptiometry (DXA) before and after the dietary intervention. At the end of dietary intervention, bone resorption markers in serum and inflammatory markers in bone marrow and splenocytes and inflammatory signaling pathways in the bone marrow were analyzed. As compared to the 4% SFO control, 4% CFO maintained higher BMD during aging, while 1% CFO offered only a mild benefit. However, the 1% CFO fed group exhibited slightly better BMD than the 4% regular-FO fed group. BMD loss protection by CFO was accompanied by reduced levels of the bone resorption marker, TRAP, and the osteoclast-stimulating-factor, RANKL, without affecting the decoy-receptor of RANKL, osteoprotegerin (OPG). Further, CFO supplementation was associated with an increase in the production of IL-10, IL-12, and IFN-γ and a decrease in the production of TNF-α and IL-6, and the activation of NF-κB, p38 MAPK, and JNK signaling pathways. In conclusion, the supplementation of 4% CFO is very efficient in maintaining BMD during aging, whereas 1% CFO is only mildly beneficial. CFO supplementation starting at middle age may maintain better bone health during aging.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Suplementos Nutricionais/análise , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Osteoporose/prevenção & controle , Fatores Etários , Animais , Conservadores da Densidade Óssea/análise , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Osso e Ossos/fisiopatologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/análise , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Endogâmicos C57BL , Osteoporose/diagnóstico por imagem , Osteoporose/metabolismo , Osteoporose/fisiopatologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Biomolecules ; 9(6)2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151226

RESUMO

BACKGROUND: Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic antioxidants. Paradoxically, we have previously demonstrated that high RES concentrations exert a pro-oxidant effect eventually elevating ROS levels leading to cell death. Here, we further elucidate the molecular determinants underpinning RES-induced oxidative cell death. METHODS: Using human umbilical vein endothelial cells (HUVECs), the effect of increasing concentrations of RES on DNA synthesis and apoptosis was studied. In addition, mRNA and protein levels of cell survival or apoptosis genes, as well as protein kinase C (PKC) activity were determined. RESULTS: While high concentrations of RES reduce PKC activity, inhibit DNA synthesis and induce apoptosis, low RES concentrations elicit an opposite effect. This biphasic concentration-dependent effect (BCDE) of RES on PKC activity is mirrored at the molecular level. Indeed, high RES concentrations upregulate the proapoptotic Bax, while downregulating the antiapoptotic Bcl-2, at both mRNA and protein levels. Similarly, high RES concentrations downregulate the cell cycle progression genes, c-myc, ornithine decarboxylase (ODC) and cyclin D1 protein levels, while low RES concentrations display an increasing trend. The BCDE of RES on PKC activity is abrogated by the ROS scavenger Tempol, indicating that this enzyme acts downstream of the RES-elicited ROS signaling. The RES-induced BCDE on HUVEC cell cycle machinery was also blunted by the flavin inhibitor diphenyleneiodonium (DPI), implicating flavin oxidase-generated ROS as the mechanistic link in the cellular response to different RES concentrations. Finally, PKC inhibition abrogates the BCDE elicited by RES on both cell cycle progression and pro-apoptotic gene expression in HUVECs, mechanistically implicating PKC in the cellular response to different RES concentrations. CONCLUSIONS: Our results provide new molecular insight into the impact of RES on endothelial function/dysfunction, further confirming that obtaining an optimal benefit of RES is concentration-dependent. Importantly, the BCDE of RES could explain why other studies failed to establish the cardio-protective effects mediated by natural antioxidants, thus providing a guide for future investigation looking at cardio-protection by natural antioxidants.


Assuntos
Dinitrocresóis/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Oxirredutases/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Oxirredução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA