Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(1-2): 318-330.e18, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328919

RESUMO

Color vision extracts spectral information by comparing signals from photoreceptors with different visual pigments. Such comparisons are encoded by color-opponent neurons that are excited at one wavelength and inhibited at another. Here, we examine the circuit implementation of color-opponent processing in the Drosophila visual system by combining two-photon calcium imaging with genetic dissection of visual circuits. We report that color-opponent processing of UVshort/blue and UVlong/green is already implemented in R7/R8 inner photoreceptor terminals of "pale" and "yellow" ommatidia, respectively. R7 and R8 photoreceptors of the same type of ommatidia mutually inhibit each other directly via HisCl1 histamine receptors and receive additional feedback inhibition that requires the second histamine receptor Ort. Color-opponent processing at the first visual synapse represents an unexpected commonality between Drosophila and vertebrates; however, the differences in the molecular and cellular implementation suggest that the same principles evolved independently.


Assuntos
Percepção de Cores , Visão de Cores , Proteínas de Drosophila/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Receptores Histamínicos/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Retroalimentação Fisiológica , Células Fotorreceptoras de Invertebrados/fisiologia , Receptores Histamínicos/genética
2.
Life (Basel) ; 13(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36983979

RESUMO

How crop biodiversity adapts to drought conditions and enhances grain yield became the most important issue facing agronomists and plant breeders at the turn of the century. Variations in genetic response, inadequacy of nutrients in the soil, and insufficient access to nutrients are factors that aggravate drought stressors. The development of screening tools for identifying drought tolerance is important in the deployment of durum wheat varieties suited to drought-prone environments. An experiment was conducted to evaluate durum wheat varieties under a range of nutrient supplies in naturally imposed drought conditions. The treatments consisting of two nitrogen regimes (i.e., control and 60 kg ha-1), four durum wheat varieties, and three types of nutrients (control, sulfur, and zinc) that were arranged in a split-split plot design with three replications. Both foliar-based sulfur and zinc fertilization were employed at the flag leaf stage, at a rate of 4 and 3-L ha-1, respectively. The results showed a significant (p < 0.05) genetic variation in chlorophyll concentration, grain protein content, tillering potential, and leaf area index. Varieties that contained better leaf chlorophyll content had improved grain yield by about 8.33% under 60 kg/ha nitrogen. A combined application of nitrogen and zinc at flag leaf stage significantly improved grain yield of Duragold by about 21.3%. Leaf chlorophyll content was found to be a more important trait than spikes per m2 to discriminate durum wheat varieties. Foliar application of sulfur increased the grain yield of drought-stressed plants by about 12.23%. Grain yield and protein content were strongly correlated with late-season SPAD readings. Significant (p < 0.05) correlation coefficients were obtained between normalized difference vegetation index, leaf area index, grain yield, and protein content with late-season chlorophyll content, revealing the importance of chlorophyll content in studying and identifying drought-tolerant varieties.

3.
Front Plant Sci ; 14: 1232675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701803

RESUMO

The increasing human population and the changing climate, which have given rise to frequent drought spells, pose a serious threat to global food security, while identification of high-yielding drought-tolerant genotypes coupled with nutrient management remains a proficient approach to cope with these challenges. An increase in seasonal temperature, recurring drought stress, and elevated atmospheric CO2 are alarmingly affecting durum wheat production, productivity, grain quality, and the human systems it supports. An increase in atmospheric carbon dioxide can improve wheat grain yield in a certain amount, but the right amount of nutrients, water, and other required conditions should be met to realize this benefit. Nutrients including nitrogen, silicon, and sulfur supply could alleviate the adverse effects of abiotic stress by enhancing antioxidant defense and improving nitrogen assimilation, although the effects on plant tolerance to drought stress varied with nitrogen ionic forms. The application of sewage sludge to durum wheat also positively impacts its drought stress tolerance by triggering high accumulation of osmoregulators, improving water retention capacity in the soil, and promoting root growth. These beneficial effect of nutrients contribute to durum wheat ability to withstand and recover from abiotic stress conditions, ultimately enhance its productivity and resilience. While these nutrients can provide benefits when applied in appropriate amounts, their excessive use can lead to adverse environmental consequences. Advanced technologies such as precision nutrient management, unmanned aerial vehicle-based spraying, and anaerobic digestion play significant roles in reducing the negative effects associated with nutrients like sewage sludge, zinc, nanoparticles and silicon fertilizers. Hence, nutrient management practices offer significant potential to enhance the caryopsis quality and yield potential of durum wheat. Through implementing tailored nutrient management strategies, farmers, breeders, and agronomists can contribute to sustainable durum wheat production, ensuring food security and maintaining the economic viability of the crop under the changing climatic conditions.

4.
Heliyon ; 9(1): e12978, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36711305

RESUMO

Indigenous knowledge, developed over generations and owned by communities or individuals within a community, offers alternative strategies and perspectives on resource management and use. However, as emphasized in the contemporary agricultural history of Ethiopia, the most effective indigenous agricultural knowledge has not been well documented and some of them are replaced by modern techniques. This study was therefore conducted to assess and document community-based techniques to control pests and diseases and the practical implications of indigenous farming techniques. A focus group discussion, key informant interviews and semi-structured questionnaires were conducted with 150 farmers. The result showed that a substantial number (92%) of the farming community uses indigenous based plant protection measures. Indigenous farmers (92%) splash liquids made of cow urine to control the adverse effect of fungi. Farmers are also using different seed selection methods for next season planting. About 29% of the farmers do single head-based seed selection prior to mass harvesting, 34% are collected as "Qerm" and 45% select their seeds during threshing. Indigenous farming knowledge varies with the natural feature of the growing location and cropping system, including the rainfall pattern, soil fertility status, crop, and weed type. The observed positive effect of indigenous agricultural practices on crop production substantiates the need to include these essential approaches in the cultivation system along with the modern agronomic techniques. This might reduce the dependency on expensive and pollutant agricultural inputs. However, sociodemographic factors such as educational level, marital status and farming experience have been found as a determinant factor that influences utilization of indigenous farming knowledge. It can be therefore inferred that documenting indigenous knowledge and proving its applicability scientifically could contribute to organically oriented agricultural production and consequently reduce agriculture's contribution to environmental pollution.

5.
Heliyon ; 8(5): e09542, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35663752

RESUMO

The current trends in population growth and consumption pattern remain to increase the demand for durum wheat grain. However, multiple biotic and abiotic challenges due to climate change coupled with crop management practices possess major concern to improve durum wheat production and storage proteins. Efforts on developing innovative agronomic and breeding strategies are essential to enhance productivity, and nutritional quality under the changing climate. Nitrogen is an important structural component of protein, and potentially reduce the adverse effect of drought stress through maintaining metabolic activities. Optimum nitrogen fertilization allows durum wheat producing farmers to attain high quality yield, brings economic benefit, and reduces environmental pollution. However, defining an optimum nitrogen fertilizer rate for specific location requires considering yield achievement and quality of the end products. If the producers interest is, geared towards production of high protein content, high nitrogen dose is required. If the interest gears towards grain yield improvement optimization of nitrogen fertilizer rate is important. This indicates that defining product-specific nitrogen application is required for sustainable durum wheat production. Therefore, future challenges of increasing production, productivity, and end-use functional properties of durum wheat will only be achieved through cooperation of multidisciplinary teams who are able to incorporate new technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA