RESUMO
Cardiovascular diseases represent the major cause of morbidity mainly due to chronic heart failure. Epicardial (EAT) and perivascular adipose tissues (PVAT) are considered major contributors to the pathogenesis of cardiometabolic pathologies. Monoamine oxidases (MAOs) are mitochondrial enzymes recognized as sources of reactive oxygen species (ROS) in cardiometabolic pathologies. Methylene blue (MB) is one of the oldest protective agents, yet no data are available about its effects on adipose tissue. The present pilot study was aimed at assessing the effects of MB: (i) on MAO expression and (ii) oxidative stress in EAT and PVAT harvested from patients with heart failure subjected to cardiac surgery (n = 25). Adipose tissue samples were incubated with MB (0.1 µM/24 h) and used for the assessment of MAO gene and protein expression (qPCS and immune fluorescence) and ROS production (confocal microscopy and spectrophotometry). The human cardiovascular adipose tissues contain both MAO isoforms, predominantly MAO-A. Incubation with MB reduced MAOs expression and oxidative stress; co-incubation with serotonin, the MAO-A substrate, further augmented ROS generation, an effect partially reversed by MB. In conclusion, MAO-A is the major isoform expressed in EAT and PVAT and contribute to local oxidative stress; both effects can be mitigated by methylene blue.
RESUMO
This study aimed to assess the utility of echocardiography-measured epicardial adipose tissue (EAT) thickness (EATT) as an independent predictor for coronary artery disease (CAD), examining its correlation with oxidative stress levels in epicardial tissue and the complexity of the disease in patients undergoing open-heart surgery. This study included a total of 25 patients referred for cardiac surgery with 14 in the CAD group and 11 in the non-CAD group. Epicardial fat was sampled from patients subjected to open-heart surgery. EATT was higher in the CAD group compared to the non-CAD group (8.15 ± 2.09 mm vs. 5.12 ± 1.8 mm, p = 0.001). The epicardial reactive oxygen species level was higher in the CAD group compared to the non-CAD group (21.4 ± 2.47 nmol H2O2/g tisssue/h vs. 15.7 ± 1.55 nmol H2O2/g tisssue/h, p < 0.001). EATT greater than 6.05 mm was associated with CAD, with a sensitivity of 86% and specificity of 73%. Echocardiographically measured EATT is a significant, independent predictor of CAD. Its relationship with increased EAT oxidative stress levels suggests a potential mechanistic link between EATT and CAD pathogenesis. These findings highlight the importance of EATT as a diagnostic tool in assessing the complexity of CAD in patients undergoing cardiac surgery.
Assuntos
Tecido Adiposo , Doença da Artéria Coronariana , Ecocardiografia , Pericárdio , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/cirurgia , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/diagnóstico , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/patologia , Tecido Adiposo/metabolismo , Pericárdio/diagnóstico por imagem , Pericárdio/patologia , Pericárdio/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Ecocardiografia/métodos , Estresse Oxidativo/fisiologia , Idoso , Espécies Reativas de Oxigênio/metabolismo , Tecido Adiposo EpicárdicoRESUMO
Background and Objectives: This cross-sectional study conducted at the TimiÈoara Institute of Cardiovascular Diseases, Romania, and the Centre for Translational Research and Systems Medicine from "Victor BabeÈ" University of Medicine and Pharmacy of TimiÈoara, Romania, investigated the relationship between indexed epicardial adipose tissue thickness (EATTi) and oxidative stress in epicardial adipose tissue (EAT) adipocytes in the context of coronary artery disease (CAD) among open-heart surgery patients. The objective was to elucidate the contribution of EATTi as an additional marker for complexity prediction in patients with CAD, potentially influencing clinical decision-making in surgical settings. Materials and Methods: The study included 25 patients undergoing cardiac surgery, with a mean age of 65.16 years and a body mass index of 27.61 kg/m2. Oxidative stress in EAT was assessed using the ferrous iron xylenol orange oxidation spectrophotometric assay. The patients were divided into three groups: those with valvular heart disease without CAD, patients with CAD without diabetes mellitus (DM), and patients with both CAD and DM. The CAD complexity was evaluated using the SYNTAX score. Results: The EATTi showed statistically significant elevations in the patients with both CAD and DM (mean 5.27 ± 0.67 mm/m2) compared to the CAD without DM group (mean 3.78 ± 1.05 mm/m2, p = 0.024) and the valvular disease without CAD group (mean 2.67 ± 0.83 mm/m2, p = 0.001). Patients with SYNTAX scores over 32 had significantly higher EATTi (5.27 ± 0.66 mm/m2) compared to those with lower scores. An EATTi greater than 4.15 mm/m2 predicted more complex CAD (SYNTAX score >22) with 80% sensitivity and 86% specificity. The intra- and interobserver reproducibility for the EATTi measurement were excellent (intra-class correlation coefficient 0.911, inter-class correlation coefficient 0.895). Conclusions: EATTi is significantly associated with CAD complexity in patients undergoing open-heart surgery. It serves as a reliable indicator of more intricate CAD forms, as reflected by higher SYNTAX scores. These findings highlight the clinical relevance of EATTi in pre-operative assessment, suggesting its potential utility as a prognostic marker in cardiac surgical patients.
Assuntos
Procedimentos Cirúrgicos Cardíacos , Doença da Artéria Coronariana , Diabetes Mellitus , Humanos , Idoso , Doença da Artéria Coronariana/cirurgia , Tecido Adiposo Epicárdico , Estudos Transversais , Reprodutibilidade dos Testes , Tecido Adiposo/metabolismo , Adipócitos , Estresse Oxidativo , Angiografia CoronáriaRESUMO
Vascular dysfunction in cardiovascular diseases includes vasomotor response impairments, endothelial cells (ECs) activation, and smooth muscle cells (SMCs) proliferation and migration to the intima. This results in intimal hyperplasia and vessel failure. We previously reported that activation of the P2Y11 receptor (P2Y11R) in human dendritic cells, cardiofibroblasts and cardiomyocytes was protective against hypoxia/reoxygenation (HR) lesions. In this study, we investigated the role of P2Y11R signaling in vascular dysfunction. P2Y11R activity was modulated using its pharmacological agonist NF546 and antagonist NF340. Rat aortic rings were exposed to angiotensin II (AngII) and evaluated for their vasomotor response. The P2Y11R agonist NF546 reduced AngII-induced vascular dysfunction by promoting EC-dependent vasorelaxation, through an increased nitric oxide (NO) bioavailability and reduced AngII-induced H2O2 release; these effects were prevented by the use of the P2Y11R antagonist NF340. Human vascular SMCs and ECs were subjected to AngII or H/R simulation in vitro. P2Y11R agonist modulated vasoactive factors in human ECs, that is, endothelial nitric oxide synthase (eNOS) and endothelin-1, reduced SMC proliferation and prevented the switch towards a synthetic phenotype. H/R and AngII increased ECs secretome-induced SMC proliferation, an effect prevented by P2Y11R activation. Thus, our data suggest that P2Y11R activation may protect blood vessels from HR-/AngII-induced injury and reduce vascular dysfunctions. These results open the way for new vasculoprotective interventions.
Assuntos
Difosfonatos/farmacologia , Naftalenossulfonatos/farmacologia , Agonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2/metabolismo , Traumatismo por Reperfusão/metabolismo , Túnica Íntima/patologia , Angiotensina II/toxicidade , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Aorta/fisiopatologia , Difosfonatos/uso terapêutico , Endotelina-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hiperplasia/prevenção & controle , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Naftalenossulfonatos/uso terapêutico , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Agonistas do Receptor Purinérgico P2/uso terapêutico , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/metabolismo , Vasodilatação , Água/metabolismoRESUMO
Melanoma represents one of the most aggressive and drug resistant skin cancers with poor prognosis in its advanced stages. Despite the increasing number of targeted therapies, novel approaches are needed to counteract both therapeutic resistance and the side effects of classic therapy. Betulinic acid (BA) is a bioactive phytocompound that has been reported to induce apoptosis in several types of cancers including melanomas; however, its effects on mitochondrial bioenergetics are less investigated. The present study performed in A375 human melanoma cells was aimed to characterize the effects of BA on mitochondrial bioenergetics and cellular behavior. BA demonstrated a dose-dependent inhibitory effect in both mitochondrial respiration and glycolysis in A375 melanoma cells and at sub-toxic concentrations (10 µM) induced mitochondrial dysfunction by eliciting a decrease in the mitochondrial membrane potential and changes in mitochondria morphology and localization. In addition, BA triggered a dose-dependent cytotoxic effect characterized by apoptotic features: morphological alterations (nuclear fragmentation, apoptotic bodies) and the upregulation of pro-apoptotic markers mRNA expression (Bax, Bad and Bak). BA represents a viable therapeutic option via a complex modulatory effect on mitochondrial metabolism that might be useful in advanced melanoma or as reliable strategy to counteract resistance to standard therapy.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Concentração Inibidora 50 , Melanócitos/metabolismo , Melanócitos/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/agonistas , Transdução de Sinais , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismo , Ácido BetulínicoRESUMO
The current minireview aims to assess the implications of epicardial fat secretory function in the development of coronary artery disease. The epicardial adipose tissue (EAT) is a visceral fat depot that has been described as a cardiovascular risk factor. In addition to its mechanical protection role and physiological secretory function, it seems that various secretion products of the epicardial fat are responsible for metabolic disturbances at the level of the cardiac muscle when in association with pre-existing pathological conditions, such as metabolic syndrome. There is a pathological reduction in sarcomere shortening, abnormal cytosolic Ca2+ fluxes, reduced expression of sarcoplasmic endoplasmic reticulum ATPase 2a and decreased insulin-mediated Akt-Ser473-phosphorylation in association with abnormal levels of epicardial fat tissue. Activin A, angiopoietin-2, and CD14-positive monocytes selectively accumulate in the diseased myocardium, resulting in reduced cardiomyocyte contractile function. At the same time, it is believed that these alterations in secretory products directly decrease the myocyte function via molecular changes, thus contributing to the development of coronary disease when certain comorbidities are associated.
RESUMO
Diabetes mellitus (DM) is the most severe metabolic disease that reached the level of a global pandemic and is associated with high cardiovascular morbidity. Statins are the first-line lipid-lowering therapy in diabetic patients with or without a history of atherosclerotic disease. Although well tolerated, chronic treatment may result in side effects that lead to treatment interruption. Mitochondrial dysfunction has emerged as a central pathomechanism in DM- and statin-induced side effects. Assessment of mitochondrial respiration in peripheral platelets has been increasingly used as a mirror of organ mitochondrial dysfunction. The present study aimed to assess the: (i) changes in mitochondrial respiration elicited by statins in patients with type 2 DM and (ii) the effects of cell-permeable succinate (NV118) on respiratory parameters in platelets harvested from these patients. No significant changes were found in global mitochondrial respiration of intact platelets isolated from diabetic patients treated with either atorvastatin or rosuvastatin. Similarly, no significant changes in mitochondrial respiration of permeabilized platelets were found between diabetic patients treated with atorvastatin and healthy controls. Acute ex vivo administration of NV118 significantly improved respiration in isolated platelets. These results prompt further research on the role of permeable succinate as a therapeutic alternative for improving mitochondrial function in metabolic pathologies and point to the role of peripheral platelets as a potential biomarker of treatment response.
RESUMO
Chronic inflammation is the hallmark of cardiovascular pathologies with a major role in both disease progression and occurrence of long-term complications. The massive release of ATP during the inflammatory process activates various purinergic receptors, including P2Y11. This receptor is less studied but ubiquitously expressed in all cells relevant for cardiovascular pathology: cardiomyocytes, fibroblasts, endothelial and immune cells. While several studies suggested a potential pro-inflammatory role for P2Y11 receptors, recent literature data are supportive of an anti-inflammatory profile characterized by the immunosuppression of dendritic cells, inhibition of fibroblast proliferation and of cytokines and ATP secretion. Moreover, modulation of its activity appears to mediate the positive inotropic effect of ATP and mitigate endothelial dysfunction, thus rendering this receptor a promising therapeutic target in the cardiovascular disease armamentarium. The aim of the present review is to summarize the current available knowledge on P2Y11-related purinergic signaling in the setting of inflammation and cardio-metabolic diseases.