Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 133(5)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31964707

RESUMO

Tumor-associated macrophages (TAMs) are detrimental in most cancers. Controlling their recruitment is thus potentially therapeutic. We previously found that TAMs perform protease-dependent mesenchymal migration in cancer, while macrophages perform amoeboid migration in other tissues. Inhibition of mesenchymal migration correlates with decreased TAM infiltration and tumor growth, providing rationale for a new cancer immunotherapy specifically targeting TAM motility. To identify new effectors of mesenchymal migration, we produced ER-Hoxb8-immortalized hematopoietic progenitors (cells with estrogen receptor-regulated Hoxb8 expression), which show unlimited proliferative ability in the presence of estrogen. The functionality of macrophages differentiated from ER-Hoxb8 progenitors was compared to bone marrow-derived macrophages (BMDMs). They polarized into M1- and M2-orientated macrophages, generated reactive oxygen species (ROS), ingested particles, formed podosomes, degraded the extracellular matrix, adopted amoeboid and mesenchymal migration in 3D, and infiltrated tumor explants ex vivo using mesenchymal migration. We also used the CRISPR/Cas9 system to disrupt gene expression of a known effector of mesenchymal migration, WASP (also known as WAS), to provide a proof of concept. We observed impaired podosome formation and mesenchymal migration capacity, thus recapitulating the phenotype of BMDM isolated from Wasp-knockout mice. Thus, we validate the use of ER-Hoxb8-immortalized macrophages as a potent tool to investigate macrophage functionalities.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Macrófagos , Animais , Diferenciação Celular/genética , Movimento Celular/genética , Engenharia Genética , Proteínas de Homeodomínio/genética , Camundongos
2.
Eur J Immunol ; 45(3): 794-806, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25472006

RESUMO

The relationship between Staphylococcus aureus and innate immunity is highly complex and requires further investigation to be deciphered. i.p. challenge of C57BL/6 and DBA/2 mice, resistant and susceptible to the infection, respectively, resulted in different patterns of cytokine production and neutrophil recruitment. Staphylococcus aureus infection induced macrophage pyroptosis, an inflammasome-dependent cell death program, whose rates significantly differed between C57BL/6 and DBA/2 mice. Fast rate pyroptosis of C57BL/6 macrophages released high levels of IL-1ß but limited the synthesis of other cytokines such as TNF-α, IL-6, CXCL1, and CXCL2. Conversely, the extended survival of DBA/2 macrophages allowed substantial production of these NF-κB-related cytokines. Phenotyping of resting macrophages in different mouse strains revealed differential predisposition toward specific macrophage phenotypes that modulate S. aureus-mediated inflammasome activation. Treatment of DBA/2 susceptible mice with inflammasome inducers (i.e. nigericin and ATP) artificially increased pyroptosis and lowered the levels of NF-κB-related inflammatory cytokines, but restored IL-1ß to levels similar to those in C57BL/6 mice. Collectively, this study promotes the concept that, in association with host genetics, the basal phenotype of resident macrophages influences the early inflammatory response and possibly participates in S. aureus infection outcome via the inflammasome pathway and subsequent pyroptosis.


Assuntos
Citocinas/imunologia , Inflamassomos/imunologia , Macrófagos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Macrófagos/patologia , Camundongos , Infecções Estafilocócicas/patologia
3.
Innate Immun ; 22(5): 382-92, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27220602

RESUMO

Resident macrophages play a central role in maintaining tissue homeostasis and immune surveillance. Here, we used single cell-based qPCR coupled with flow cytometry analysis to further define the phenotypes of large and small resident peritoneal macrophages (LPMs and SPMs, respectively) in mice. We demonstrated that the expression of Cxcl13, IfngR1, Fizz-1 and Mrc-1 clearly distinguished between LPMs and SPMs subsets. Using these markers, the dynamics of peritoneal macrophages in a Staphylococcus aureus-induced peritonitis model were analyzed. We found that S. aureus infection triggers a massive macrophage disappearance reaction in both subsets. Thereafter, inflammatory monocytes rapidly infiltrated the cavity and differentiated to replenish the SPMs. Although phenotypically indistinguishable from resident SPMs by flow cytometry, newly recruited SPMs had a different pattern of gene expression dominated by M2 markers combined with M1 associated features (inos expression). Interestingly, S. aureus elicited SPMs showed a robust expression of Cxcl13, suggesting that these cells may endorse the role of depleted LPMs and contribute to restoring peritoneal homeostasis. These data provide information on both resident and recruited macrophages dynamics upon S. aureus infection and demonstrate that single-cell phenotyping is a promising and highly valuable approach to unraveling macrophage diversity and plasticity.


Assuntos
Peritonite/imunologia , Análise de Célula Única/métodos , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Biomarcadores/metabolismo , Plasticidade Celular , Células Cultivadas , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Feminino , Homeostase , Humanos , Vigilância Imunológica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Receptor de Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA