RESUMO
OBJECTIVES: A virtual clinical trial (VCT) method is proposed to determine the limit of calcification detection in tomosynthesis. METHODS: Breast anatomy, focal findings, image acquisition, and interpretation (n = 14 readers) were simulated using screening data (n = 660 patients). Calcifications (0.2-0.4 mm3) were inserted into virtual breast phantoms. Digital breast tomosynthesis (DBT) acquisitions were simulated assuming various acquisition geometries: source motion (continuous and step-and-shoot), detector element size (140 and 70 µm), and reconstructed voxel size (35-140 µm). VCT results were estimated using multiple-reader multiple-case analyses and d' statistics. Signal-to-noise (SNR) analyses were also performed using BR3D phantoms. RESULTS: Source motion and reconstructed voxel size demonstrated significant changes in the performance of imaging systems. Acquisition geometries that use 70 µm reconstruction voxel size and step-and-shoot motion significantly improved calcification detection. Comparing 70 with 100 µm reconstructed voxel size for step-and-shoot, the ΔAUC was 0.0558 (0.0647) and d' ratio was 1.27 (1.29) for 140 µm (70 µm) detector element size. Comparing step-and-shoot with a continuous motion for a 70 µm reconstructed voxel size, the ΔAUC was 0.0863 (0.0434) and the d' ratio was 1.40 (1.19) for 140 µm (70 µm) detector element. Small detector element sizes (e.g., 70 µm) did not significantly improve detection. The SNR results with the BR3D phantom show that calcification detection is dependent upon reconstructed voxel size and detector element size, supporting VCT results with comparable agreement (ratios: d' = 1.16 ± 0.11, SNR = 1.34 ± 0.13). CONCLUSION: DBT acquisition geometries that use super-resolution (smaller reconstructed voxels than the detector element size) combined with step-and-shoot motion have the potential to improve the detection of calcifications. CLINICAL RELEVANCE: Calcifications may not always be discernable in tomosynthesis because of differences in acquisition and reconstruction methods. VCTs can identify strategies to optimize acquisition and reconstruction parameters for calcification detection in tomosynthesis, most notably through super-resolution in the reconstruction. KEY POINTS: ⢠Super-resolution improves calcification detection and SNR in tomosynthesis; specifically, with the use of smaller reconstruction voxels. ⢠Calcification detection using step-and-shoot motion is superior to that using continuous tube motion. ⢠A detector element size of 70 µm does not provide better detection than 140 µm for small calcifications at the threshold of detectability.
Assuntos
Neoplasias da Mama , Calcinose , Humanos , Feminino , Mamografia/métodos , Mama , Imagens de Fantasmas , Calcinose/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , AlgoritmosRESUMO
Breast density is an independent risk factor for breast cancer. In digital mammography and digital breast tomosynthesis, breast density is assessed visually using the four-category scale developed by the American College of Radiology Breast Imaging Reporting and Data System (5th edition as of November 2022). Epidemiologically based risk models, such as the Tyrer-Cuzick model (version 8), demonstrate superior modeling performance when mammographic density is incorporated. Beyond just density, a separate mammographic measure of breast cancer risk is parenchymal textural complexity. With advancements in radiomics and deep learning, mammographic textural patterns can be assessed quantitatively and incorporated into risk models. Other supplemental screening modalities, such as breast US and MRI, offer independent risk measures complementary to those derived from mammography. Breast US allows the two components of fibroglandular tissue (stromal and glandular) to be visualized separately in a manner that is not possible with mammography. A higher glandular component at screening breast US is associated with higher risk. With MRI, a higher background parenchymal enhancement of the fibroglandular tissue has also emerged as an imaging marker for risk assessment. Imaging markers observed at mammography, US, and MRI are powerful tools in refining breast cancer risk prediction, beyond mammographic density alone.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Densidade da Mama , Mama/diagnóstico por imagem , Mamografia/métodos , Fatores de RiscoRESUMO
In this study, we investigate the performance of advanced 2D acquisition geometries - Pentagon and T-shaped - in digital breast tomosynthesis (DBT) and compare them against the conventional 1D geometry. Unlike the conventional approach, our proposed 2D geometries also incorporate anterior projections away from the chest wall. Implemented on the Next-Generation Tomosynthesis (NGT) prototype developed by X-ray Physics Lab (XPL), UPenn, we utilized various phantoms to compare three geometries: a Defrise slab phantom with alternating plastic slabs to study low-frequency modulation; a Checkerboard breast phantom (a 2D adaptation of the Defrise phantom design) to study the ability to reconstruct the fine features of the checkerboard squares; and the 360° Star-pattern phantom to assess aliasing and compute the Fourier-spectral distortion (FSD) metric that assesses spectral leakage and the contrast transfer function. We find that both Pentagon and T-shaped scans provide greater modulation amplitude of the Defrise phantom slabs and better resolve the squares of the Checkerboard phantom against the conventional scan. Notably, the Pentagon geometry exhibited a significant reduction in aliasing of spatial frequencies oriented in the right-left (RL) medio-lateral direction, which was corroborated by a near complete elimination of spectral leakage in the FSD plot. Conversely T-shaped scan redistributes the aliasing between both posteroanterior (PA) and RL directions thus maintaining non-inferiority against the conventional scan which is predominantly affected by PA aliasing. The results of this study underscore the potential of incorporating advanced 2D geometries in DBT systems, offering marked improvements in imaging performance over the conventional 1D approach.
RESUMO
BACKGROUND: A next generation tomosynthesis (NGT) system, capable of two-dimensional source motion, detector motion in the perpendicular direction, and magnification tomosynthesis, was constructed to investigate different acquisition geometries. Existing position-based geometric calibration methods proved ineffective when applied to the NGT geometries. PURPOSE: A line-based iterative calibration method is developed to perform accurate geometric calibration for the NGT system. METHODS: The proposed method calculates the system geometry through virtual line segments created by pairs of fiducials within a calibration phantom, by minimizing the error between the line equations computed from the true and estimated fiducial projection pairs. It further attempts to correct the 3D fiducial locations based on the initial geometric calibration. The method's performance was assessed via simulation and experimental setups with four distinct NGT geometries: X, T, XZ, and TZ. The X geometry resembles a conventional DBT acquisition along the chest wall. The T geometry forms a "T"-shaped source path in mediolateral (ML) and posteroanterior (PA) directions. A descending detector motion is added to both X and T geometries to form the XZ and TZ geometries, respectively. Simulation studies were conducted to assess the robustness of the method to geometric perturbations and inaccuracies in fiducial locations. Experimental studies were performed to assess the impact of phantom magnification and the performance of the proposed method for various geometries, compared to the traditional position-based method. Star patterns were evaluated for both qualitative and quantitative analyses; the Fourier spectral distortions (FSDs) graphs and the contrast transfer function (CTF) were extracted. The limit of spatial resolution (LSR) was measured at 5% modulation of the CTF. RESULTS: The proposed method presented is highly robust to geometric perturbation and fiducial inaccuracies. After the line-based iterative method, the mean distance between the true and estimated fiducial projections was [X, T, XZ, TZ]: [0.01, 0.01, 0.02, 0.01] mm. The impact of phantom magnification was observed; a contact-mode acquisition of a calibration phantom successfully provided an accurate geometry for 1.85× magnification images of a star pattern, with the X geometry. The FSD graphs for the contact-mode T geometry acquisition presented evidence of super-resolution, with the LSR of [0°-quadrant: 8.57, 90°-quadrant: 8.47] lp/mm. Finally, a contact-mode XZ geometry acquisition and a 1.50× magnification TZ geometry acquisition were reconstructed with three calibration methods-position-based, line-based, and iterative line-based. As more advanced methods are applied, the CTF becomes more isotropic, the FSD graphs demonstrate less spectral leakage as super-resolution is achieved, and the degree of blurring artifacts reduces significantly. CONCLUSIONS: This study introduces a robust calibration method tailored to the unique requirements of advanced tomosynthesis systems. By employing virtual line segments and iterative techniques, we ensure accurate geometric calibration while mitigating the limitations posed by the complex acquisition geometries of the NGT system. Our method's ability to handle various NGT configurations and its tolerance to fiducial misalignment make it a superior choice compared to traditional calibration techniques.
Assuntos
Processamento de Imagem Assistida por Computador , Parede Torácica , Processamento de Imagem Assistida por Computador/métodos , Calibragem , Simulação por Computador , Imagens de Fantasmas , AlgoritmosRESUMO
Our lab at the University of Pennsylvania (UPenn) is investigating novel designs for digital breast tomosynthesis. We built a next-generation tomosynthesis system with a non-isocentric geometry (superior-to-inferior detector motion). This paper examines four metrics of image quality affected by this design. First, aliasing was analyzed in reconstructions prepared with smaller pixelation than the detector. Aliasing was assessed with a theoretical model of r -factor, a metric calculating amplitudes of alias signal relative to input signal in the Fourier transform of the reconstruction of a sinusoidal object. Aliasing was also assessed experimentally with a bar pattern (illustrating spatial variations in aliasing) and 360°-star pattern (illustrating directional anisotropies in aliasing). Second, the point spread function (PSF) was modeled in the direction perpendicular to the detector to assess out-of-plane blurring. Third, power spectra were analyzed in an anthropomorphic phantom developed by UPenn and manufactured by Computerized Imaging Reference Systems (CIRS), Inc. (Norfolk, VA). Finally, calcifications were analyzed in the CIRS Model 020 BR3D Breast Imaging Phantom in terms of signal-to-noise ratio (SNR); i.e., mean calcification signal relative to background-tissue noise. Image quality was generally superior in the non-isocentric geometry: Aliasing artifacts were suppressed in both theoretical and experimental reconstructions prepared with smaller pixelation than the detector. PSF width was also reduced at most positions. Anatomic noise was reduced. Finally, SNR in calcification detection was improved. (A potential trade-off of smaller-pixel reconstructions was reduced SNR; however, SNR was still improved by the detector-motion acquisition.) In conclusion, the non-isocentric geometry improved image quality in several ways.
Assuntos
Calcinose , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Mama/diagnóstico por imagem , Mamografia/métodos , Simulação por Computador , Modelos Teóricos , Imagens de Fantasmas , AlgoritmosRESUMO
Tomosynthesis acquires projections over a limited angular range, resulting in anisotropic sampling in the Fourier domain. The volume of the sampled space is therefore spatially dependent; different Fourier components are sampled for the same object, depending upon where the object is located relative to the system origin. A next-generation tomosynthesis (NGT) system was developed at the University of Pennsylvania to increase the spatial isotropy in DBT, by incorporating additional system motions. In this work, we investigate the spatial dependency of image quality in tomosynthesis and compare conventional and NGT tomosynthesis in terms of multiplanar reconstruction (MPR). Two test objects, a high-frequency star pattern and a low-frequency octagon phantom, were placed throughout the detector field of view at various obliquities to analyze the anisotropic nature of tomosynthesis. Reconstructions of the star pattern were analyzed both qualitatively and quantitatively using the Fourier distortion metric (FSD). Reconstructions of the octagon phantom were analyzed qualitatively. In a separate experiment, a container filled with water and acrylic beads of various diameters were imaged at various locations to simulate low-contrast objects mimicking breast tissue. We show that the spatial dependency of MPR is unique to the tilt angle, orientation, and frequency of the input. The NGT geometry benefitted the visualization of objects by reducing the out-of-plane artifacts in MPR.
RESUMO
Digital breast tomosynthesis (DBT) reconstructions introduce out-of-plane artifacts and false-tissue boundaries impacting the dense/adipose and breast outline (convex hull) segmentations. A virtual clinical trial method was proposed to segment both the breast tissues and the breast outline in DBT reconstructions. The DBT images of a representative population were simulated using three acquisition geometries: a left-right scan (conventional, I), a two-directional scan in the shape of a "T" (II), and an extra-wide range (XWR, III) left-right scan at a six-times higher dose than I. The nnU-Net was modified including two losses for segmentation: (1) tissues and (2) breast outline. The impact of loss (1) and the combination of loss (1) and (2) was evaluated using models trained with data simulating geometry I. The impact of the geometry was evaluated using the combined loss (1&2). The loss (1&2) improved the convex hull estimates, resolving 22.2% of the false classification of air voxels. Geometry II was superior to I and III, resolving 99.1% and 96.8% of the false classification of air voxels. Geometry III (Dice = (0.98, 0.94)) was superior to I (0.92, 0.78) and II (0.93, 0.74) for the tissue segmentation (adipose, dense, respectively). Thus, the loss (1&2) provided better segmentation, and geometries T and XWR improved the dense/adipose and breast outline segmentations relative to the conventional scan.
Assuntos
Artefatos , Mama , Humanos , Feminino , Mama/diagnóstico por imagem , Tecido AdiposoRESUMO
In breast tomosynthesis, multiple low-dose projections are acquired in a single scanning direction over a limited angular range to produce cross-sectional planes through the breast for three-dimensional imaging interpretation. We built a next-generation tomosynthesis system capable of multidirectional source motion with the intent to customize scanning motions around "suspicious findings". Customized acquisitions can improve the image quality in areas that require increased scrutiny, such as breast cancers, architectural distortions, and dense clusters. In this paper, virtual clinical trial techniques were used to analyze whether a finding or area at high risk of masking cancers can be detected in a single low-dose projection and thus be used for motion planning. This represents a step towards customizing the subsequent low-dose projection acquisitions autonomously, guided by the first low-dose projection; we call this technique "self-steering tomosynthesis." A U-Net was used to classify the low-dose projections into "risk classes" in simulated breasts with soft-tissue lesions; class probabilities were modified using post hoc Dirichlet calibration (DC). DC improved the multiclass segmentation (Dice = 0.43 vs. 0.28 before DC) and significantly reduced false positives (FPs) from the class of the highest risk of masking (sensitivity = 81.3% at 2 FPs per image vs. 76.0%). This simulation-based study demonstrated the feasibility of identifying suspicious areas using a single low-dose projection for self-steering tomosynthesis.
Assuntos
Neoplasias da Mama , Mamografia , Humanos , Feminino , Mamografia/métodos , Estudos Transversais , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Imageamento Tridimensional/métodosRESUMO
PURPOSE: Digital breast tomosynthesis (DBT) is a 3D x-ray imaging modality in which tomographic sections of the breast are generated from a limited range of tube angles. Because oblique x-ray incidence shifts the image of an object in subpixel detector element increments with each increasing projection angle, it is demonstrated that DBT is capable of super-resolution (i.e., subpixel resolution). METHODS: By convention, DBT reconstructions are performed on planes parallel to the breast support at various depths of the breast volume. In order for resolution in each reconstructed slice to be comparable to the detector, the pixel size should match that of the detector elements; hence, the highest frequency that can be resolved in the plane of reconstruction is the alias frequency of the detector. This study considers reconstruction grids with much smaller pixelation to visualize higher frequencies. For analytical proof of super-resolution, a theoretical framework is developed in which the reconstruction of a high frequency sinusoidal input is calculated using both simple backprojection (SBP) and filtered backprojection. To study the frequency spectrum of the reconstruction, its Fourier transform is also determined. The experimental feasibility of super-resolution was investigated by acquiring images of a bar pattern phantom with frequencies higher than the detector alias frequency. RESULTS: Using analytical modeling, it is shown that the central projection cannot resolve frequencies exceeding the detector alias frequency. The Fourier transform of the central projection is maximized at a lower frequency than the input as evidence of aliasing. By contrast, SBP reconstruction can resolve the input, and its Fourier transform is correctly maximized at the input frequency. Incorporating filters into the reconstruction smoothens pixelation artifacts in the spatial domain and reduces spectral leakage in the Fourier domain. It is also demonstrated that the existence of super-resolution is dependent on position in the reconstruction and on the directionality of the input frequency. Consistent with the analytical results, experimental reconstructions of bar patterns showed visibility of frequencies greater than the detector alias frequency. Super-resolution was present at positions predicted from analytical modeling. CONCLUSIONS: This work demonstrates the existence of super-resolution in DBT. Super-resolution has the potential to impact the visualization of fine structural details in the breast, such as microcalcifications and other subtle signs of cancer.
Assuntos
Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Imageamento Tridimensional/métodos , Mamografia/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Feminino , Humanos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
We have constructed a prototype next-generation tomosynthesis (NGT) system that supports a non-isocentric acquisition geometry for digital breast tomosynthesis (DBT). In this geometry, the detector gradually descends in the superior-to-inferior direction. The aim of this work is to demonstrate that this geometry offers isotropic super-resolution (SR), unlike clinical DBT systems which are characterized by anisotropies in SR. To this end, a theoretical model of a sinusoidal test object was developed with frequency exceeding the alias frequency of the detector. We simulated two geometries: (1) a conventional geometry with a stationary detector, and (2) a non-isocentric geometry. The input frequency was varied over the full 360° range of angles in the plane of the object. To investigate whether SR was achieved, we calculated the Fourier transform of the reconstruction. The amplitude of the tallest peak below the alias frequency was measured relative to the peak at the input frequency. This ratio (termed the r-factor) should approach zero to achieve high-quality SR. In the conventional geometry, the r-factor was minimized (approaching zero) if the orientation of the frequency was parallel with the source motion, yet exceeded unity (prohibiting SR) in the orientation perpendicular to the source motion. However, in the non-isocentric geometry, the r-factor was minimized (approaching zero) for all orientations of the frequency, meaning SR was achieved isotropically. In summary, isotropic SR in DBT can be achieved using the non-isocentric acquisition geometry supported by the NGT system.
RESUMO
X-ray imaging results in inhomogeneous irradiation of the detector and distortion of structures in the periphery of the image; yet the spatial dependency of tomosynthesis image-quality metrics has not been extensively investigated. In this study, we use virtual clinical trials to quantify the spatial dependency of lesion detectability in our lab's next-generation tomosynthesis (NGT) system. Two geometries were analyzed: a conventional geometry with mediolateral source motion, and a NGT geometry with T-shaped motion. Breast parenchymal texture was simulated using an open-source library with Perlin noise using 400 random seeds and three breast densities. Spherical mass lesions were inserted in the central slice of the phantoms using the voxel additive method. Image acquisition was simulated using in-house ray-tracing software and simple backprojection was performed using commercial reconstruction software. Lesion detectability with Channelized Hotelling Observers (CHOs) was analyzed using receiver operating characteristic curves to measure the detectability index (d') at 154 unique locations for the lesions. We also divided images into three non-overlapping regions (differing in terms of distance from the chest wall). At the 0.05 level of significance, there was a statistically significant difference between the geometries in terms of d' in one of the three regions, with the T geometry offering superior detectability. Examining all 154 lesion locations, the T geometry was found to offer lower spread (standard deviation) in d' values throughout the image area, and superior d' at 83 of 154 locations (53.9%). In summary, the T geometry enables superior lesion detection and mitigates anisotropies.
RESUMO
The reproducibility of handcrafted radiomic features (HRFs) has been reported to be affected by variations in imaging parameters, which significantly affect the generalizability of developed signatures and translation to clinical practice. However, the collective effect of the variations in imaging parameters on the reproducibility of HRFs remains unclear, with no objective measure to assess it in the absence of reproducibility analysis. We assessed these effects of variations in a large number of scenarios and developed the first quantitative score to assess the reproducibility of CT-based HRFs without the need for phantom or reproducibility studies. We further assessed the potential of image resampling and ComBat harmonization for removing these effects. Our findings suggest a need for radiomics-specific harmonization methods. Our developed score should be considered as a first attempt to introduce comprehensive metrics to quantify the reproducibility of CT-based handcrafted radiomic features. More research is warranted to demonstrate its validity in clinical contexts and to further improve it, possibly by the incorporation of more realistic situations, which better reflect real patients' situations.
RESUMO
Virtual clinical trials (VCTs) have been used widely to evaluate digital breast tomosynthesis (DBT) systems. VCTs require realistic simulations of the breast anatomy (phantoms) to characterize lesions and to estimate risk of masking cancers. This study introduces the use of Perlin-based phantoms to optimize the acquisition geometry of a novel DBT prototype. These phantoms were developed using a GPU implementation of a novel library called Perlin-CuPy. The breast anatomy is simulated using 3D models under mammography cranio-caudal compression. In total, 240 phantoms were created using compressed breast thickness, chest-wall to nipple distance, and skin thickness that varied in a {[35, 75], [59, 130), [1.0, 2.0]} mm interval, respectively. DBT projections and reconstructions of the phantoms were simulated using two acquisition geometries of our DBT prototype. The performance of both acquisition geometries was compared using breast volume segmentations of the Perlin phantoms. Results show that breast volume estimates are improved with the introduction of posterior-anterior motion of the x-ray source in DBT acquisitions. The breast volume is overestimated in DBT, varying substantially with the acquisition geometry; segmentation errors are more evident for thicker and larger breasts. These results provide additional evidence and suggest that custom acquisition geometries can improve the performance and accuracy in DBT. Perlin phantoms help to identify limitations in acquisition geometries and to optimize the performance of the DBT prototypes.
RESUMO
A next generation tomosynthesis (NGT) prototype has been developed to investigate alternative scanning geometries for digital breast tomosynthesis (DBT). The NGT system uses a 2D plane as an address space for the x-ray source to define an acquisition geometry. In previous work, tests of physics have been used as objective metrics to evaluate image quality for NGT. In this work, the performance of custom NGT acquisition geometries is evaluated for mastectomy specimens to validate previous phantom experiments. Two custom acquisition geometries - incorporating T- and K-shaped source motion paths in the posteroanterior direction - were compared with a conventional DBT acquisition geometry. Noise power spectra (NPS) are calculated using 3D image reconstructions of the three acquisition geometries to evaluate the degradation of image quality due to noise and to visualize NGT sampling properties in the Fourier domain. NPS are used to describe features of the specimen image reconstructions and compare acquisition geometries. NGT acquisition geometries were found to improve high-frequency performance with isotropic super resolution, reduce out-of-plane reconstruction artifacts, and improve overall image reconstruction quality. The T-geometry combines the benefits of narrow- and wide-angle tomosynthesis in a single scan improving high-frequency spatial resolution and out-of-plane blurring, respectively.
RESUMO
Our lab has built a next-generation tomosynthesis (NGT) system utilizing scanning motions with more degrees of freedom than clinical digital breast tomosynthesis systems. We are working toward designing scanning motions that are customized around the locations of suspicious findings. The first step in this direction is to demonstrate that these findings can be detected with a single projection image, which can guide the remainder of the scan. This paper develops an automated method to identify findings that are prone to be masked. Perlin-noise phantoms and synthetic lesions were used to simulate masked cancers. NGT projections of phantoms were simulated using ray-tracing software. The risk of masking cancers was mapped using the ground-truth labels of phantoms. The phantom labels were used to denote regions of low and high risk of masking suspicious findings. A U-Net model was trained for multiclass segmentation of phantom images. Model performance was quantified with a receiver operating characteristic (ROC) curve using area under the curve (AUC). The ROC operating point was defined to be the point closest to the upper left corner of ROC space. The output predictions showed an accurate segmentation of tissue predominantly adipose (mean AUC of 0.93). The predictions also indicate regions of suspicious findings; for the highest risk class, mean AUC was 0.89, with a true positive rate of 0.80 and a true negative rate of 0.83 at the operating point. In summary, this paper demonstrates with virtual phantoms that a single projection can indeed be used to identify suspicious findings.
RESUMO
PURPOSE: In digital breast tomosynthesis (DBT), a volumetric reconstruction of the breast is generated from a limited range of x-ray projections. One trade-off of DBT is resolution loss in the projections due to non-normal (i.e., oblique) x-ray incidence. Although degradation in image quality due to oblique incidence has been studied using empirical data and Monte Carlo simulations, a theoretical treatment has been lacking. The purpose of this work is to extend Swank's calculations of the transfer functions of turbid granular phosphors to oblique incidence. The model is ultimately used as a tool for optimizing the design of DBT detectors. METHODS: A quantum-limited system and 20 keV x-rays are considered. Under these assumptions, the modulation transfer function (MTF) and noise power spectra (NPS) are derived using the diffusion approximation to the Boltzmann equation to model optical scatter within the phosphor. This approach is applicable to a nonstructured scintillator such as gadolinium oxysulfide doped with terbium (Gd(2)O(2)S:Tb), which is commonly used in breast imaging and which can reasonably approximate other detector materials. The detective quantum efficiency (DQE) is then determined from the Nishikawa formulation, where it is written as the product of the x-ray quantum detection efficiency, the Swank factor, and the Lubberts fraction. Transfer functions are calculated for both front- and back-screen configurations, which differ by positioning the photocathode at the exit or entrance point of the x-ray beam, respectively. RESULTS: In the front-screen configuration, MTF and DQE are found to have considerable angular dependence, while NPS is shown to vary minimally with projection angle. As expected, the high frequency MTF and DQE are degraded substantially at large angles. By contrast, all transfer functions for the back-screen configuration have the advantage of significantly less angular dependence. Using these models, we investigated the possibility for optimizing the design of DBT detectors. As an example optimization strategy, the phosphor thickness which maximizes the DQE at a fixed frequency is analyzed. This work demonstrates that the optimal phosphor thickness for the front-screen is angularly dependent, shifting to lower thickness at higher angles. Conversely, the back-screen is not optimized by a single thickness but instead attains reasonably high DQE values over a large range of thicknesses. Although the back-screen configuration is not suited for current detectors using a glass substrate, it may prove to be preferred in future detectors using newly proposed plastic thin-film transistor (TFT) substrates. CONCLUSIONS: Using the diffusion approximation to the Boltzmann equation to model the spread of light in a scintillator, this paper develops an analytical model of MTF, NPS, and DQE for a phosphor irradiated obliquely. The model is set apart from other studies on oblique incidence in being derived from first principles. This work has applications in the optimization of DBT detector design.
Assuntos
Medições Luminescentes/métodos , Mamografia/métodos , Intensificação de Imagem Radiográfica/métodos , AnisotropiaRESUMO
Our previous work showed that digital breast tomosynthesis (DBT) supports super-resolution (SR). Clinical systems are not yet designed to optimize SR; this can be demonstrated with a high-frequency line-resolution pattern. SR is achieved if frequencies are oriented laterally, but not if frequencies are oriented in the perpendicular direction; i.e., the posteroanterior (PA) direction. We are developing a next-generation tomosynthesis (NGT) prototype with new trajectories for the x-ray source. This system is being designed to optimize SR not just for screening, but also for diagnostic mammography; specifically, for magnification DBT (M-DBT). SR is not achieved clinically in magnification mammography, since the acquisition is 2D. The aim of this study is to investigate SR in M-DBT, and analyze how anisotropies differ from screening DBT (S-DBT). We have a theoretical model of a high-frequency sinusoidal test object. First, a conventional scanning motion (directed laterally) was simulated. In the PA direction, SR was not achieved in either S-DBT or M-DBT. Next, the scanning motion was angled relative to the lateral direction. This motion introduces submillimeter offsets in source positions in the PA direction. Theoretical modeling demonstrated that SR was achieved in M-DBT, but not in S-DBT, in the PA direction. This work shows that, with the use of magnification, anisotropies in SR are more sensitive to small offsets in the source motion, leading to insights into how to design M-DBT systems.
RESUMO
Virtual clinical trials (VCTs) of medical imaging require realistic models of human anatomy. For VCTs in breast imaging, a multi-scale Perlin noise method is proposed to simulate anatomical structures of breast tissue in the context of an ongoing breast phantom development effort. Four Perlin noise distributions were used to replace voxels representing the tissue compartments and Cooper's ligaments in the breast phantoms. Digital mammography and tomosynthesis projections were simulated using a clinical DBT system configuration. Power-spectrum analyses and higher-order statistics properties using Laplacian fractional entropy (LFE) of the parenchymal texture are presented. These objective measures were calculated in phantom and patient images using a sample of 140 clinical mammograms and 500 phantom images. Power-law exponents were calculated using the slope of the curve fitted in the low frequency [0.1, 1.0] mm-1 region of the power spectrum. The results show that the images simulated with our prior and proposed Perlin method have similar power-law spectra when compared with clinical mammograms. The power-law exponents calculated are -3.10, -3.55, and -3.46, for the log-power spectra of patient, prior phantom and proposed phantom images, respectively. The results also indicate an improved agreement between the mean LFE estimates of Perlin-noise based phantoms and patients than our prior phantoms and patients. Thus, the proposed method improved the simulation of anatomic noise substantially compared to our prior method, showing close agreement with breast parenchyma measures.
Assuntos
Mama , Mamografia , Mama/diagnóstico por imagem , Ensaios Clínicos como Assunto , Simulação por Computador , Humanos , Imagens de Fantasmas , Interface Usuário-ComputadorRESUMO
We would like to thank Orlhac and Buvat [...].
RESUMO
While handcrafted radiomic features (HRFs) have shown promise in the field of personalized medicine, many hurdles hinder its incorporation into clinical practice, including but not limited to their sensitivity to differences in acquisition and reconstruction parameters. In this study, we evaluated the effects of differences in in-plane spatial resolution (IPR) on HRFs, using a phantom dataset (n = 14) acquired on two scanner models. Furthermore, we assessed the effects of interpolation methods (IMs), the choice of a new unified in-plane resolution (NUIR), and ComBat harmonization on the reproducibility of HRFs. The reproducibility of HRFs was significantly affected by variations in IPR, with pairwise concordant HRFs, as measured by the concordance correlation coefficient (CCC), ranging from 42% to 95%. The number of concordant HRFs (CCC > 0.9) after resampling varied depending on (i) the scanner model, (ii) the IM, and (iii) the NUIR. The number of concordant HRFs after ComBat harmonization depended on the variations between the batches harmonized. The majority of IMs resulted in a higher number of concordant HRFs compared to ComBat harmonization, and the combination of IMs and ComBat harmonization did not yield a significant benefit. Our developed framework can be used to assess the reproducibility and harmonizability of RFs.