Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neural Regen Res ; 17(8): 1629-1632, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35017407

RESUMO

Estrogen produces several beneficial effects in healthy neurological tissues and exhibits cardioprotective effects. Hormone therapy has been widely used to treat menopausal estrogen deficiency for more than 80 years. Despite high initial expectations of cardioprotective effects, there has been substantial distrust following important randomized clinical trials, such as the Women's Health Initiative. Subsequently, the timing of treatment in relation to the onset of menopause came under consideration and led to the proposal of the timing hypothesis, that early initial treatment is important, and benefits are lost as the timing since menopause becomes prolonged. Subsequent analyses of the Women's Health Initiative data, together with more recent data from randomized and observational trials, consistently show reductions in coronary heart disease and mortality in younger menopausal women. Regarding cognitive function, the timing hypothesis is consistent with observations from basic and animal studies. There is some clinical evidence to support the benefits of hormonal therapy in this context, though skepticism remains due to the paucity of clinical trials of substantial length in younger menopausal women. It is likely that the effects of estrogens on cognitive performance are due to rapid mechanisms, including mechanisms that influence Ca2+ homeostasis dynamics, provide protection in a hostile environment and reduce inflammatory signals from neural tissues. In the future, inflammatory profiles accounting for early signs of pathological inflammation might help identify the 'window of opportunity' to use estrogen therapy for successful cognitive protection.

2.
Front Cell Neurosci ; 16: 866122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634466

RESUMO

Menopause transition can be interpreted as a vulnerable state characterized by estrogen deficiency with detrimental systemic effects as the low-grade chronic inflammation that appears with aging and partly explains age-related disorders as cancer, diabetes mellitus and increased risk of cognitive impairment. Over the course of a lifetime, estrogen produces several beneficial effects in healthy neurological tissues as well as cardioprotective effects, and anti-inflammatory effects. However, clinical evidence on the efficacy of hormone treatment in menopausal women has failed to confirm the benefit reported in observational studies. Unambiguously, enhanced verbal memory is the most robust finding from longitudinal and cross-sectional studies, what merits consideration for future studies aiming to determine estrogen neuroprotective efficacy. Estrogen related brain activity and functional connectivity remain, however, unexplored. In this context, the resting state paradigm may provide valuable information about reproductive aging and hormonal treatment effects, and their relationship with brain imaging of functional connectivity may be key to understand and anticipate estrogen cognitive protective effects. To go in-depth into the molecular and cellular mechanisms underlying rapid-to-long lasting protective effects of estrogen, we will provide a comprehensive review of cognitive tasks used in animal studies to evaluate the effect of hormone treatment on cognitive performance and discuss about the tasks best suited to the demonstration of clinically significant differences in cognitive performance to be applied in human studies. Eventually, we will focus on studies evaluating the DMN activity and responsiveness to pharmacological stimulation in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA