Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 112(4): 1015-25, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19943851

RESUMO

The role of the endothelial contractile apparatus in the process of brain edema formation after brain trauma is not characterized. Phosphorylation of myosin light chains by myosin light chain kinases (MLCK) activates endothelial contractile elements and results in a rearrangement of the cytoskeleton. This may enhance post-traumatic blood-brain barrier dysfunction. In order to investigate the role of the MLCK on brain edema formation and blood-brain barrier permeability after brain injury, mice were anesthetized and subjected to a controlled cortical impact (CCI). MLCK expression is significantly up-regulated after CCI with a maximum 12 h post-injury. Specific inhibition of MLCK by ML-7 resulted in a reduction of phosphorylation of myosin light chains and improved blood-brain-barrier integrity. Accordingly, ML-7 attenuated post-traumatic brain edema formation and intracranial hypertension 24 h after CCI. Prevention of brain edema formation did not translate into improved neurological outcome or reduced brain lesion. In conclusion, the results confirm that the endothelial contractile apparatus is activated by CCI and opens the endothelial barrier leading to vasogenic brain edema formation. Lack of neurological and histological improvement suggests that specific targeting of vasogenic brain edema at the endothelial level is not sufficient to limit secondary brain damage and has, therefore, to be combined with other potential neuroprotective strategies.


Assuntos
Azepinas/uso terapêutico , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Lesões Encefálicas/complicações , Inibidores Enzimáticos/uso terapêutico , Quinase de Cadeia Leve de Miosina/metabolismo , Naftalenos/uso terapêutico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Edema Encefálico/etiologia , Edema Encefálico/patologia , Constrição , Modelos Animais de Doenças , Esquema de Medicação , Azul Evans , Lateralidade Funcional , Regulação da Expressão Gênica/efeitos dos fármacos , Pressão Intracraniana/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Exame Neurológico/métodos , Estatísticas não Paramétricas , Fatores de Tempo
2.
PLoS One ; 5(1): e8568, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20052290

RESUMO

Protein stability under changing conditions is of vital importance for the cell and under the control of a fine-tuned network of molecular chaperones. Aging and age-related neurodegenerative diseases are directly associated with enhanced protein instability. Employing C. elegans expressing GFP-tagged luciferase as a reporter for evaluation of protein stability we show that the chaperoning strategy of body wall muscle cells and neurons is significantly different and that both are differently affected by aging. Muscle cells of young worms are largely resistant to heat stress, which is directly mediated by the stress response controlled through Heat Shock Transcription Factor 1. During recovery following heat stress the ability to refold misfolded proteins is missing. Young neurons are highly susceptible to chronic heat stress, but show a high potency to refold or disaggregate proteins during subsequent recovery. The particular proteome instability in neurons results from a delayed induction of the heat shock response. In aged neurons protein stability is increased during heat stress, whereas muscle cells show enhanced protein instability due to a deteriorated heat shock response. An efficient refolding activity is absent in both aged tissues. These results provide molecular insights into the differential protein stabilization capacity in different tissues and during aging.


Assuntos
Envelhecimento/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Chaperonas Moleculares/fisiologia , Músculos/fisiologia , Neurônios/fisiologia , Fatores de Transcrição/fisiologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Proteínas de Caenorhabditis elegans/genética , Primers do DNA , Proteínas de Fluorescência Verde/genética , Microscopia de Fluorescência , Proteoma , Fatores de Transcrição/genética
3.
J Biol Chem ; 284(1): 265-275, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18957436

RESUMO

DcuB of Escherichia coli catalyzes C4-dicarboxylate/succinate antiport during growth by fumarate respiration. The expression of genes of fumarate respiration, including the genes for DcuB (dcuB) and fumarate reductase (frdABCD) is transcriptionally activated by C4-dicarboxylates via the DcuS-DcuR two-component system, comprising the sensor kinase DcuS, which contains a periplasmic sensing domain for C4-dicarboxylates. Deletion or inactivation of dcuB caused constitutive expression of DcuS-regulated genes in the absence of C4-dicarboxylates. The effect was specific for DcuB and not observed after inactivation of the homologous DcuA or the more distantly related DcuC transporter. Random and site-directed mutation identified three point mutations (T394I, D398N, and K353A) in DcuB that caused a similar derepression as dcuB deletion, whereas the transport activity of the DcuB mutants was retained. Constitutive expression in the dcuB mutants depended on the presence of a functional DcuS-DcuR two-component system. Mutation of residues E79A, R83A, and R127A of DcuB, on the other hand, inactivated growth by fumarate respiration and transport of [14C]succinate, whereas the expression of dcuB'-'lacZ was not affected. Therefore, the antiporter DcuB is a bifunctional protein and has a regulatory function that is independent from transport, and sites for transport and regulation can be differentiated.


Assuntos
Antiporters/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Mapeamento de Peptídeos , Proteínas Quinases/metabolismo , Substituição de Aminoácidos , Antiporters/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fumaratos/metabolismo , Técnicas de Silenciamento de Genes , Transporte de Íons/fisiologia , Mutagênese Sítio-Dirigida , Proteínas Quinases/genética , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Succinatos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA