Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Entropy (Basel) ; 25(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36981289

RESUMO

Deep learning of artificial neural networks (ANNs) is creating highly functional processes that are, unfortunately, nearly as hard to interpret as their biological counterparts. Identification of functional modules in natural brains plays an important role in cognitive and neuroscience alike, and can be carried out using a wide range of technologies such as fMRI, EEG/ERP, MEG, or calcium imaging. However, we do not have such robust methods at our disposal when it comes to understanding functional modules in artificial neural networks. Ideally, understanding which parts of an artificial neural network perform what function might help us to address a number of vexing problems in ANN research, such as catastrophic forgetting and overfitting. Furthermore, revealing a network's modularity could improve our trust in them by making these black boxes more transparent. Here, we introduce a new information-theoretic concept that proves useful in understanding and analyzing a network's functional modularity: the relay information IR. The relay information measures how much information groups of neurons that participate in a particular function (modules) relay from inputs to outputs. Combined with a greedy search algorithm, relay information can be used to identify computational modules in neural networks. We also show that the functionality of modules correlates with the amount of relay information they carry.

2.
Philos Trans A Math Phys Eng Sci ; 380(2227): 20210250, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35599555

RESUMO

The information content of symbolic sequences (such as nucleic or amino acid sequences, but also neuronal firings or strings of letters) can be calculated from an ensemble of such sequences, but because information cannot be assigned to single sequences, we cannot correlate information to other observables attached to the sequence. Here we show that an information score obtained from multivariate (multiple-variable) correlations within sequences of a 'training' ensemble can be used to predict observables of out-of-sample sequences with an accuracy that scales with the complexity of correlations, showing that functional information emerges from a hierarchy of multi-variable correlations. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.


Assuntos
Sequência de Aminoácidos
3.
Entropy (Basel) ; 24(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35626617

RESUMO

Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network's structure as opposed to its function. Here, we introduce a new information-theoretic tool-information fragmentation analysis-that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices we can also create information flow graphs that illustrate how information propagates through these networks. We illustrate the use of this tool by analyzing how artificial brains that evolved in silico solve particular tasks, and show how information fragmentation analysis provides deeper insights into how these brains process information and "think". The measures of information fragmentation and encryption that result from our methods also quantify complexity of information processing in these networks and how this processing complexity differs between primary exposure to sensory data (early in the lifetime) and later routine processing.

4.
J Mol Evol ; 88(5): 435-444, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32350572

RESUMO

High mutation rates select for the evolution of mutational robustness where populations inhabit flat fitness peaks with little epistasis, protecting them from lethal mutagenesis. Recent evidence suggests that a different effect protects small populations from extinction via the accumulation of deleterious mutations. In drift robustness, populations tend to occupy peaks with steep flanks and positive epistasis between mutations. However, it is not known what happens when mutation rates are high and population sizes are small at the same time. Using a simple fitness model with variable epistasis, we show that the equilibrium fitness has a minimum as a function of the parameter that tunes epistasis, implying that this critical point is an unstable fixed point for evolutionary trajectories. In agent-based simulations of evolution at finite mutation rate, we demonstrate that when mutations can change epistasis, trajectories with a subcritical value of epistasis evolve to decrease epistasis, while those with supercritical initial points evolve towards higher epistasis. These two fixed points can be identified with mutational and drift robustness, respectively.


Assuntos
Epistasia Genética , Taxa de Mutação , Modelos Genéticos , Mutagênese , Mutação
5.
Am Nat ; 195(1): E1-E19, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868538

RESUMO

Learning is a widespread ability among animals and, like physical traits, is subject to evolution. But how did learning first arise? What selection pressures and phenotypic preconditions fostered its evolution? Neither the fossil record nor phylogenetic comparative studies provide answers to these questions. Here, we take a novel approach by studying digital organisms in environments that promote the evolution of navigation and associative learning. Starting with a nonlearning sessile ancestor, we evolve multiple populations in four different environments, each consisting of nutrient trails with various layouts. Trail nutrients cue organisms on which direction to follow, provided they evolve to acquire and use those cues. Thus, each organism is tested on how well it navigates a randomly selected trail before reproducing. We find that behavior evolves modularly and in a predictable sequence, where simpler behaviors are necessary precursors for more complex ones. Associative learning is only one of many successful behaviors to evolve, and its origin depends on the environment possessing certain information patterns that organisms can exploit. Environmental patterns that are stable across generations foster the evolution of reflexive behavior, while environmental patterns that vary across generations but remain consistent for periods within an organism's lifetime foster the evolution of learning behavior. Both types of environmental patterns are necessary, since the prior evolution of simple reflexive behaviors provides the building blocks for learning to arise. Finally, we observe that an intrinsic value system evolves alongside behavior and supports associative learning by providing reinforcement for behavior conditioning.


Assuntos
Aprendizagem por Associação , Evolução Biológica , Navegação Espacial , Animais , Modelos Biológicos
6.
Artif Life ; 26(2): 274-306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32271631

RESUMO

Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an algorithmic process that transcends the substrate in which it occurs. Indeed, many researchers in the field of digital evolution can provide examples of how their evolving algorithms and organisms have creatively subverted their expectations or intentions, exposed unrecognized bugs in their code, produced unexpectedly adaptations, or engaged in behaviors and outcomes, uncannily convergent with ones found in nature. Such stories routinely reveal surprise and creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. Bugs are fixed, experiments are refocused, and one-off surprises are collapsed into a single data point. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This article is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.


Assuntos
Algoritmos , Biologia Computacional , Criatividade , Vida , Evolução Biológica
7.
Entropy (Basel) ; 22(4)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33286159

RESUMO

How cognitive neural systems process information is largely unknown, in part because of how difficult it is to accurately follow the flow of information from sensors via neurons to actuators. Measuring the flow of information is different from measuring correlations between firing neurons, for which several measures are available, foremost among them the Shannon information, which is an undirected measure. Several information-theoretic notions of "directed information" have been used to successfully detect the flow of information in some systems, in particular in the neuroscience community. However, recent work has shown that directed information measures such as transfer entropy can sometimes inadequately estimate information flow, or even fail to identify manifest directed influences, especially if neurons contribute in a cryptographic manner to influence the effector neuron. Because it is unclear how often such cryptic influences emerge in cognitive systems, the usefulness of transfer entropy measures to reconstruct information flow is unknown. Here, we test how often cryptographic logic emerges in an evolutionary process that generates artificial neural circuits for two fundamental cognitive tasks (motion detection and sound localization). Besides counting the frequency of problematic logic gates, we also test whether transfer entropy applied to an activity time-series recorded from behaving digital brains can infer information flow, compared to a ground-truth model of direct influence constructed from connectivity and circuit logic. Our results suggest that transfer entropy will sometimes fail to infer directed information when it exists, and sometimes suggest a causal connection when there is none. However, the extent of incorrect inference strongly depends on the cognitive task considered. These results emphasize the importance of understanding the fundamental logic processes that contribute to information flow in cognitive processing, and quantifying their relevance in any given nervous system.

8.
Artif Life ; 25(3): 250-262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31397601

RESUMO

Populations exposed to a high mutation rate harbor abundant deleterious genetic variation, leading to depressed mean fitness. This reduction in mean fitness presents an opportunity for selection to restore fitness through the evolution of mutational robustness. In extreme cases, selection for mutational robustness can lead to flat genotypes (with low fitness but high robustness) outcompeting fit genotypes (with high fitness but low robustness)-a phenomenon known as survival of the flattest. While this effect was previously explored using the digital evolution system Avida, a complete analysis of the local fitness landscapes of fit and flat genotypes has been lacking, leading to uncertainty about the genetic basis of the survival-of-the-flattest effect. Here, we repeated the survival-of-the-flattest study and analyzed the mutational neighborhoods of fit and flat genotypes. We found that the flat genotypes, compared to the fit genotypes, had a reduced likelihood of deleterious mutations as well as an increased likelihood of neutral and, surprisingly, of lethal mutations. This trend holds for mutants one to four substitutions away from the wild-type sequence. We also found that flat genotypes have, on average, no epistasis between mutations, while fit genotypes have, on average, positive epistasis. Our results demonstrate that the genetic causes of mutational robustness on complex fitness landscapes are multifaceted. While the traditional idea of the survival of the flattest emphasized the evolution of increased neutrality, others have argued for increased mutational sensitivity in response to strong mutational loads. Our results show that both increased neutrality and increased lethality can lead to the evolution of mutational robustness. Furthermore, strong negative epistasis is not required for mutational sensitivity to lead to mutational robustness. Overall, these results suggest that mutational robustness is achieved by minimizing heritable deleterious variation.


Assuntos
Aptidão Genética , Seleção Genética , Evolução Biológica , Simulação por Computador , Estudos de Associação Genética , Aptidão Genética/genética , Genoma/genética , Genótipo , Mutação/genética , Seleção Genética/genética , Software
9.
Nucleic Acids Res ; 45(1): 255-270, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899637

RESUMO

Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures.


Assuntos
Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Divisão Celular , Biologia Computacional , Dosagem de Genes , Perfilação da Expressão Gênica , Genes Letais , Aptidão Genética , Mutação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
PLoS Genet ; 12(3): e1005960, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27028897

RESUMO

Epistatic interactions between residues determine a protein's adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1) using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient) condition that detects epistasis in most cases. We analyze the "fossils" of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing. We suggest that the mechanism of encoding new information into pairwise interactions is central to protein evolution not just in HIV-1 protease, but for any protein adapting to a changing environment.


Assuntos
Epistasia Genética , Evolução Molecular , Protease de HIV/genética , Seleção Genética , Adaptação Fisiológica/genética , HIV-1/genética , Humanos , Mutação
11.
Artif Life ; 29(3): 293-307, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490705
12.
PLoS Comput Biol ; 12(12): e1005066, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27923053

RESUMO

A major aim of evolutionary biology is to explain the respective roles of adaptive versus non-adaptive changes in the evolution of complexity. While selection is certainly responsible for the spread and maintenance of complex phenotypes, this does not automatically imply that strong selection enhances the chance for the emergence of novel traits, that is, the origination of complexity. Population size is one parameter that alters the relative importance of adaptive and non-adaptive processes: as population size decreases, selection weakens and genetic drift grows in importance. Because of this relationship, many theories invoke a role for population size in the evolution of complexity. Such theories are difficult to test empirically because of the time required for the evolution of complexity in biological populations. Here, we used digital experimental evolution to test whether large or small asexual populations tend to evolve greater complexity. We find that both small and large-but not intermediate-sized-populations are favored to evolve larger genomes, which provides the opportunity for subsequent increases in phenotypic complexity. However, small and large populations followed different evolutionary paths towards these novel traits. Small populations evolved larger genomes by fixing slightly deleterious insertions, while large populations fixed rare beneficial insertions that increased genome size. These results demonstrate that genetic drift can lead to the evolution of complexity in small populations and that purifying selection is not powerful enough to prevent the evolution of complexity in large populations.


Assuntos
Evolução Molecular , Deriva Genética , Modelos Genéticos , Simulação por Computador , Genética Populacional , Genoma/genética
13.
Philos Trans A Math Phys Eng Sci ; 375(2109)2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133448

RESUMO

While all organisms on Earth share a common descent, there is no consensus on whether the origin of the ancestral self-replicator was a one-off event or whether it only represented the final survivor of multiple origins. Here, we use the digital evolution system Avida to study the origin of self-replicating computer programs. By using a computational system, we avoid many of the uncertainties inherent in any biochemical system of self-replicators (while running the risk of ignoring a fundamental aspect of biochemistry). We generated the exhaustive set of minimal-genome self-replicators and analysed the network structure of this fitness landscape. We further examined the evolvability of these self-replicators and found that the evolvability of a self-replicator is dependent on its genomic architecture. We also studied the differential ability of replicators to take over the population when competed against each other, akin to a primordial-soup model of biogenesis, and found that the probability of a self-replicator outcompeting the others is not uniform. Instead, progenitor (most-recent common ancestor) genotypes are clustered in a small region of the replicator space. Our results demonstrate how computational systems can be used as test systems for hypotheses concerning the origin of life.This article is part of the themed issue 'Reconceptualizing the origins of life'.


Assuntos
Simulação por Computador , Origem da Vida , Evolução Biológica , Aptidão Genética
15.
Phys Rev Lett ; 116(10): 101301, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015471

RESUMO

One-shot decoupling is a powerful primitive in quantum information theory and was hypothesized to play a role in the black hole information paradox. We study black hole dynamics modeled by a trilinear Hamiltonian whose semiclassical limit gives rise to Hawking radiation. An explicit numerical calculation of the discretized path integral of the S matrix shows that decoupling is exact in the continuous limit, implying that quantum information is perfectly transferred from the black hole to radiation. A striking consequence of decoupling is the emergence of an output radiation entropy profile that follows Page's prediction. We argue that information transfer and the emergence of Page curves is a robust feature of any multilinear interaction Hamiltonian with a bounded spectrum.

17.
Artif Life ; 27(2): 131-137, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727157
18.
Phys Biol ; 12(4): 046005, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26031571

RESUMO

The evolution of cooperation has been a perennial problem in evolutionary biology because cooperation can be undermined by selfish cheaters who gain an advantage in the short run, while compromising the long-term viability of the population. Evolutionary game theory has shown that under certain conditions, cooperation nonetheless evolves stably, for example if players have the opportunity to punish cheaters that benefit from a public good yet refuse to pay into the common pool. However, punishment has remained enigmatic because it is costly and difficult to maintain. On the other hand, cooperation emerges naturally in the public goods game if the synergy of the public good (the factor multiplying the public good investment) is sufficiently high. In terms of this synergy parameter, the transition from defection to cooperation can be viewed as a phase transition with the synergy as the critical parameter. We show here that punishment reduces the critical value at which cooperation occurs, but also creates the possibility of meta-stable phase transitions, where populations can 'tunnel' into the cooperating phase below the critical value. At the same time, cooperating populations are unstable even above the critical value, because a group of defectors that are large enough can 'nucleate' such a transition. We study the mean-field theoretical predictions via agent-based simulations of finite populations using an evolutionary approach where the decisions to cooperate or to punish are encoded genetically in terms of evolvable probabilities. We recover the theoretical predictions and demonstrate that the population shows hysteresis, as expected in systems that exhibit super-heating and super-cooling. We conclude that punishment can stabilize populations of cooperators below the critical point, but it is a two-edged sword: it can also stabilize defectors above the critical point.


Assuntos
Comportamento Cooperativo , Teoria dos Jogos , Punição , Evolução Biológica , Humanos , Modelos Estatísticos
19.
Phys Biol ; 12(5): 056004, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26331781

RESUMO

Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.


Assuntos
DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Simulação por Computador , DNA/química , DNA/genética , Drosophila/química , Drosophila/genética , Proteínas de Drosophila/genética , Evolução Molecular , Regulação da Expressão Gênica , Loci Gênicos , Modelos Genéticos , Probabilidade , Ligação Proteica , Termodinâmica
20.
PLoS Comput Biol ; 10(12): e1003966, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25521484

RESUMO

Natural selection favors the evolution of brains that can capture fitness-relevant features of the environment's causal structure. We investigated the evolution of small, adaptive logic-gate networks ("animats") in task environments where falling blocks of different sizes have to be caught or avoided in a 'Tetris-like' game. Solving these tasks requires the integration of sensor inputs and memory. Evolved networks were evaluated using measures of information integration, including the number of evolved concepts and the total amount of integrated conceptual information. The results show that, over the course of the animats' adaptation, i) the number of concepts grows; ii) integrated conceptual information increases; iii) this increase depends on the complexity of the environment, especially on the requirement for sequential memory. These results suggest that the need to capture the causal structure of a rich environment, given limited sensors and internal mechanisms, is an important driving force for organisms to develop highly integrated networks ("brains") with many concepts, leading to an increase in their internal complexity.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Simulação por Computador , Modelos Neurológicos , Seleção Genética , Algoritmos , Biologia Computacional , Retroalimentação Fisiológica , Aptidão Genética , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA