Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 808228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087561

RESUMO

Dendrobium officinale Kimura et Migo is an important epiphytic plant, belonging to the Orchidaceae family. There are various bioactive components in D. officinale plants, mainly including polysaccharides, alkaloids, and phenolic compounds. These compounds have been demonstrated to possess multiple functions, such as anti-oxidation, immune regulation, and anti-cancer. Due to serious shortages of wild resources, deterioration of cultivated germplasm and the unstable quality of D. officinale, the study has been focused on the biosynthetic pathway and regulation mechanisms of bioactive compounds. In recent years, with rapid developments in detection technologies and analysis tools, omics research including genomics, transcriptomics, proteomics and metabolomics have all been widely applied in various medicinal plants, including D. officinale. Many important advances have been achieved in D. officinale research, such as chromosome-level reference genome assembly and the identification of key genes involved in the biosynthesis of active components. In this review, we summarize the latest research advances in D. officinale based on multiple omics studies. At the same time, we discuss limitations of the current research. Finally, we put forward prospective topics in need of further study on D. officinale.

2.
Plants (Basel) ; 10(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810588

RESUMO

The Dendrobium plants (members of the Orchidaceae family) are used as traditional Chinese medicinal herbs. Bibenzyl, one of the active compounds in Dendrobium officinale, occurs in low amounts among different tissues. However, market demands require a higher content of thes compounds to meet the threshold for drug production. There is, therefore, an immediate need to dissect the physiological and molecular mechanisms underlying how bibenzyl compounds are biosynthesized in D. officinale tissues. In this study, the accumulation of erianin and gigantol in tissues were studied as representative compounds of bibenzyl. Exogenous application of Methyl-Jasmonate (MeJA) promotes the biosynthesis of bibenzyl compounds; therefore, transcriptomic analyses were conducted between D. officinale-treated root tissues and a control. Our results show that the root tissues contained the highest content of bibenzyl (erianin and gigantol). We identified 1342 differentially expressed genes (DEGs) with 912 up-regulated and 430 down-regulated genes in our transcriptome dataset. Most of the identified DEGs are functionally involved in the JA signaling pathway and the biosynthesis of secondary metabolites. We also identified two candidate cytochrome P450 genes and nine other enzymatic genes functionally involved in bibenzyl biosynthesis. Our study provides insights on the identification of critical genes associated with bibenzyl biosynthesis and accumulation in Dendrobium plants, paving the way for future research on dissecting the physiological and molecular mechanisms of bibenzyl synthesis in plants as well as guide genetic engineering for the improvement of Dendrobium varieties through increasing bibenzyl content for drug production and industrialization.

3.
Vascul Pharmacol ; 125-126: 106636, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31881276

RESUMO

Vascular calcification (VC) is an independent cardiovascular event and also a complication commonly found in chronic kidney disease (CKD) and diabetic patients. The mechanisms underpinning pathophysiology of VC is yet to be fully understood. Nevertheless, certain processes are generally believed to participate in its onset and progression. VC pathology is characterized by disequilibrium in the amount of natural inhibitors and active inducers of VC process. The imbalance may favor ectopic deposition of calcium-phosphate in form of hydroxyapatite in media or intima tunica compartments of blood vessels. This eventually could trigger phenotypic switch of smooth muscle cells to osteoblasts related cells. Thus, VSMC phenotypic trans-differentiation is currently considered as one of the hallmarks of VC. At the moment, there is no approved treatment. Fibroblast growth factors (FGFs) are a protein family that participates in varieties of biological processes. More recently, FGF21 seems to be gaining more attention with recent findings showing its anti-calcifying efficacy. In this review, the aim is to point out specific processes involved in VC and also to highlight the participation of FGF21 in the pathology of vascular calcification.


Assuntos
Transdiferenciação Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteoblastos/metabolismo , Osteogênese , Calcificação Vascular/metabolismo , Animais , Transdiferenciação Celular/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/uso terapêutico , Humanos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteogênese/efeitos dos fármacos , Fenótipo , Transdução de Sinais , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/patologia
4.
Heliyon ; 6(6): e04205, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32577572

RESUMO

Bacterial and fungal exopolysaccharides (EPSs) are extracellular metabolites of living organisms (plants, animals, algae, bacteria and fungi) associated with adaptation, survival and functionalities. The EPSs also afford humans multiple value-adding applications across different spheres of endeavors. The variable chemical and biochemical architecture that characterizes an EPS presets its biological functionality and potential biotechnological benefits. Suffices to say that it is amenable to genetic, biotechnological and biochemical maneuverability for desired bioactivity or application during their production and extraction. EPSs have been shown to have, antioxidant, anti-tumor and antiviral activities; enhance soil aridity and nutritional value of food consumed by humans. Their innocuous domestic and commercial versatility and biotechnological relevance is a reliable confirmation of the recent attention accorded EPSs by the global research community. This is especially with respect to their biosynthesis, composition, production, structure, characterization, sources, functional properties and applications. It is also responsible for the development of newer strategies for their extraction. EPSs' relative prospects, perspectives and orientation in the African context are seldom reported in recognized scientific literature data bases. A random preliminary study showed that EPS applications, biotechnological and research orientations are still developing, and influenced by preponderant vegetation, level of industrialization, political will and culture. Africa is endowed with untapped bioresources (biomaterials), bioproducts and bioequivalents that can mediate several global foods, industrial and technological challenges for which EPS may be a potential remedy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA